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Using a covariant model of mesons developed previously, we obtain new numerical solutions for the
light-quark sector, and show explicitly how the small mass of the pion emerges as a natural consequence
of chiral-symmetry breaking. Then we generalize the model, and show how chiral-symmetry breaking
and confinement could be realized through completely independent mechanisms with different mass
scales. In particular, the confining potential can be chosen to be purely scalar, as suggested by lattice
studies and phenomenology, and the remaining part of the interaction can be chosen to be chirally in-
variant. In a symmetry-breaking mode, this new model can still generate quark mass and a massless-

pion bound state.

PACS number(s): 12.40.Aa, 12.40.Qq

I. INTRODUCTION

The two most salient features of low-energy QCD re-
lated to the hadronic spectrum are confinement and
chiral-symmetry breaking. Although these mechanisms
might ultimately be related at some deeper level (beyond,
of course, that they both presumably follow from the
QCD Lagrangian) there appears phenomenologically to
be distinct scales associated with each (Aqcp~200 MeV
in the case of confinement and 47/, ~1 GeV as the natu-
ral scale coming from chiral perturbation theory [1]) thus
suggesting that they might be independent infrared
effects. Further indications come from lattice studies
which suggest that the confining potential is purely scalar
[2]. Indeed, in the case of a quark-gluon plasma, it has
become commonplace to discuss the possibility of two
separate phase transitions, one associated with
deconfinement and one with chiral restoration [3]. One
naturally wonders if these two dual features of low-
energy QCD can be independently and simultaneously in-
cluded into a model of the hadronic spectrum. Early
models generally focused on one or the other of these two
defining features: confinement in the case of the bag and
nonrelativistic potential models [4], and chiral-symmetry
breaking in the case of the various effective-Lagrangian
approaches [1,5]. In addition, many of these models
suffer from a lack of Lorentz covariance. More recent
approaches have attempted to include both ingredients
[6], but generally in a fashion that closely weds the
confinement mechanism with the chiral-breaking one.
(One early attempt which, however, does not can be
found in Ref. [7].) And of these, only one, to our
knowledge, is covariant [8].

We recently proposed a new model of mesons as
quark-antiquark bounds states that is covariant,
confining, and chirally symmetric [9]. The equations
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which emerge from this approach give an analytic solu-
tion for a zero-mass pseudoscalar bound state in the case
of exact chiral symmetry, and also reduce to the familiar,
highly successful nonrelativistic linear-potential models
in the limit of heavy-quark mass and lightly bound sys-
tems. The approach is therefore suitable for a unified
description of all the mesons from the pion through the
Y. In this paper we extend and further develop this ap-
proach by (i) presenting new solutions in the light-quark
sector which show that the physical pion can be de-
scribed by the model, and (ii) showing how it can be gen-
eralized so that chiral symmetry and confinement can be
realized in a completely decoupled fashion. In particular,
we show that the confinement mechanism could be taken
as arising from a purely scalar interaction, and that, as
long as the remaining interaction is chirally invariant,
dynamical quark mass and a zero-mass Goldstone boson
(the pion) can still emerge through symmetry breaking.
Independent of the ultimate correctness of this decou-
pling, a model in which this separation is explicitly real-
ized shows that at least in principle we could be discuss-
ing two separate, independent manifestations of low-
energy QCD.

The paper is divided into five sections. In Sec. II, the
model is briefly reviewed. Much of the formalism has al-
ready been presented in Ref. [9] and we will refer back to
it, when necessary, for details of the approach. However,
in that first paper solutions for the case of light quarks
and mesons were not given, and these solutions are now
presented in Sec. III. We find that a form factor which
depends on the off-shell quark mass must be added to the
kernel in order to obtain solutions which have the correct
chiral limit, and with this addition the model can de-
scribe a realistic pion. In Sec. IV it is shown how to
decouple the confinement mechanism from dynamical
chiral-symmetry breaking. Conclusions are presented in
Sec. V.
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II. THE MODEL

The model given in Ref. [9] is a covariant generaliza-
tion of nonrelativistic linear-potential models [10], that
includes chiral-symmetry breaking by dynamically gen-
erating a constituent quark mass. The light mesons are
viewed as bound states of these dynamically generated,
massive quark-antiquark pairs. A self-consistency condi-
tion then ensures that in the chiral limit when the current
quark mass is zero, the pion appears as a zero-mass pseu-
doscalar Goldstone boson. Our effective quark interac-
tion V. 4(k), contains two components: one piece is a co-
variant generalization of a linear potential and provides
confinement, and a second piece is a covariant generaliza-
tion of a nonrelativistic constant potential:

Vak)=V, (k) 3005+ V.(k) 30105 . (1)

The Dirac matrices O and O operate on the Dirac indices
of quarks 1 and 2, and describe the spin-dependent struc-
ture of each of the two pieces of the effective interaction.
In Ref. [9], O =0 was assumed, but they are, in general,
distinct. The covariant scalar functions V; (k) and V(k)
contain the momentum dependence of the two pieces of
the effective interaction.

We start from the self-consistent equations for the
quark self-energy and bound-state vertex function, Figs.
1(a) and 1(b). The heavy dashed lines schematically
represent the quark potential, modeled as an exchange in-
teraction (as would occur in a simple boson-exchange pic-
ture), involving two three-point vertices with the ex-
changed momentum determined by energy-momentum
conservation. In both equations, the kernel is further
defined by restricting some of the quarks to their mass
shell. In the vertex equation, two channels are created,
one with the quark restricted to its positive-energy mass
shell, and one with the antiquark restricted to its
negative-energy mass shell. The resulting two-channel
bound-state equation is shown in Fig. 2. These restric-
tions mean that even though the equations are exactly co-
variant, they depend, like nonrelativistic equations, on
the relative three-momentum only, and have a smooth
nonrelativistic limit. The second (antiquark) channel is
necessary for a consistent description of deeply bound
states, as discussed in Ref. [9], but is negligible for loosely
bound heavy-quark systems. Finally, restricting both the
internal and external quarks to their mass shell reduces
the self-energy equation [Fig. 1(a)] to an algebraic self-
consistency condition between the bare (current) and
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FIG. 1. The self-consistent Dyson equations for the quark
self-energy and vertex function.
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FIG. 2. The representation of the two-channel bound-state
equation with four potentials. A quark line with an X is on
shell.

dynamical (constituent) quark masses, and the parame-
ters of the same kernel appearing in the bound equation.
An essential feature which makes these equations tract-
able is the infrared-regularized Fourier-transformed
linear potential V(r)=ocr. In momentum space, the
linear potential behaves as 1/g* plus an infrared subtrac-
tion that regulates the potential at g>=0 and ensures that

V(r=0)=0 [9]. The covariant generalization of this
condition satisfied by the confining potential V; (k) is
d’k | m
— |V, (k)=0, ()
/ @m? |E | "

where Ek=\/m2+k2, and m is the quark constituent
mass. (Note that, in the limit m — o , the factor
[m/E(k)]—1, and expression (2) is precisely the state-
ment V(r =0)=0.) We likewise define a covariant gen-
eralization of a nonrelativistic constant potential, V(k),
which satisfies:

f d3k
(2m)?
For the initial numerical studies, we chose to work with a

particularly convenient form for the Dirac matrices, O
and O:

1
E)

Velk)=C . 3)

30,0,=30,0,=4(1—yiy3—viry) . )
1 1
This form was chosen because it is invariant under U(1)
chiral transformations, and because it simplifies the equa-
tions for the vertex function I'(p,P) (where P is the
bound-state momentum and p the relative momentum of
the two quarks) allowing a bound-state solution which is
a pure isovector pseudoscalar: I'(p,u)=Ty(p)7y>, where
p is the bound-state rest mass. While the choice (4) is
convenient, it is certainly not best from a phenomenologi-
cal point of view, and the optimal form for O and O will
be deferred to a later work when we use this model to fit
the physical spectrum. This will be discussed further in
Sec. IV.

Using the form (4), and placing both quark legs on
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shell in the self-energy diagram Fig. 1(a), gives the follow-
ing relation [9] between the constituent quark mass m,
the bare quark mass m, and the strength of the constant
potential C:

- _dk
(217')3Ek

Notice that, because of the constraint (2), the strength of
the linear confining potential does not enter this relation.
The linear confining potential thereby makes no contribu-

m
1Mo

scalar. (This is discussed further in Sec. IV.) In nonrela-
tivistic models, the constant piece provides an overall
mass shift. This is also true in our relativistic model, but
now this shift comes about through the dynamical break-
ing of chiral symmetry, and is therefore associated with
the structure of the vacuum.

Assuming that the quark self-energy can be approxi-
mated by a constant mass shift in the effective quark
propagator, Fig. 1(a), as occurs in the model of Nambu
and Jona-Lasinio [5], we obtain the following two-
channel bound-state equation [9] for the wave functions

tion to the generation of quark mass, and it is the decou-  ¥,(p)=T'(p,P)/(2E,—p), and Y, (p)=T5(p,P)/
pling which permits the confining potential to be purely (2E,—p):
J
(2E, —p+E,C)¥,(p)+E,C¥(p)=— [ 2K o )3 Vii(p,k) | W (k)—‘ W )] f V,2(p,k)\1'2(k)
(6)
(2E,+u+E,C =— d’k —
» tHuTE,C)¥)(p)+E,C¥(p)= mezz(p,k) W,(k) E_ ¥,(p)
E
d’k ky
- —Vy(p,k) |Y(k)— | — |¥,(k,)
k!k (27)° ap : E; ll
E
d k k,
- ——Voup,k) |Y(k)— | — [V (ky | .
k<k( )} 2P 1 E, 1 2)]

The potentials V,,, V,, ¥V, and V,; are schematically
defined in Fig. 2(b). The off-diagonal potentials V|, and
V,, depend on the bound-state mass u and have been re-
gulated with an infrared subtraction analogous to that for
the diagonal potentials, Eq. (3). In the limit of zero pion
mass, they reduce to the diagonal elements ¥, and V,,.
Observe that in the zero-mass-pion limit with zero bare
quark mass, my=0, because of the constraint Eq. (3) we
obtain the analytic solution ¥,(p)=W,(p)=N/E, and
C =—1, as required by chiral symmetry, Eq. (5). The
linear potential again completely decouples in the chiral
limit.

III. NUMERICAL SOLUTIONS FOR LIGHT QUARKS

For finite pion masses, we solve the equations numeri-
cally by expanding the wave functions in a set of basis
functions b;(p), and then creating a generalized eigenval-
ue problem by acting upon the bound-state equation (6)
with the covariant operator f d’pb; {(p)/E,. For con-

venience, we choose to fix the bound-state mass u, and
then solve for the constant C.

The linear-potential term ¥V (g) requires an ultraviolet
form factor not needed in its nonrelativistic counterpart.
This arises because the 1/g* potential loses two powers of
k when the quarks are restricted to their mass shell,
thereby generating a logarithmic divergence in the sub-
tracted pieces of Eq. (6) that contain the wave function
evaluated at some fixed point (p, k,, or k,). In our first

r

paper [9] we chose a form factor that depended only on
g, the argument of the linear potential. At that time we
could only obtain reliable solutions for heavy-quark
masses (i.e., when the constituent quark mass is taken to
be much larger than the strength of the linear potential:
m2>>0). We also ignored the off-diagonal matrix ele-
ments ¥, and ¥,,. In the case of light-quark masses, we
were obtaining values for C less than —1, in apparent
contradiction to the mass-shift relation Eq. (5), which re-
quires C > —1. We subsequently discovered that a form
factor which depends only on ¢? does not provide
sufficient convergence to ensure consistency with chiral
symmetry. With such a form factor, the residue of the
principal value integration at g>=0 remains very large,
even at very large momenta, generating terms which
behaved like an additional positive constant potential,
driving C to values less than — 1. This effect presumably
occurs also for the heavy-quark cases studies in Ref. [8],
but the effect depends strongly on the scaled strength of
the linear potential, 0,=0/m?, and is very small in the
heavy-quark case. To obtain light-quark solutions con-
sistent with chiral symmetry, we must therefore choose a
form factor with a more general momentum dependence.
We have tried two distinct (covariant) choices for this
dependence: one which depends on the sum of the quark
momenta entering a vertex, the so-called sideways form
factor [11], and one which can be factored into functions
which depend only on one of the invariant masses of each
of the legs entering a vertex (the factorized form factor).
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They both give the same qualiative results. Here we will
present results only for the factorized form factor, antici-
pating future applications when issues of electromagnetic
gauge invariance will be a concern [12].

Our results are shown in Figs. 3-5. which take the
constituent quark mass m =350 MeV, the strength of the
linear potential 0 =0.2 GeV?, and both masses in the
form factor are A=A,;=A,=600 MeV. The form factor
has the factorized form

F(k},p},q*=(k,—p)=F (kD f,(p1)fL(g?) (7a)
where

£ (k)= (Aj—m?)? i

S (A2 =m )2+ (m 2=k |
(7b)
A4
(g =—"
fL q (A4+q4)

In Fig. 3 we plot our results for the constant C as a func-
tion of the bound-state mass. Notice how close the value
of C is to the chiral limit at the physical pion mass
(u/2m ~0.2). Inserting numbers, (C ~—0.996), and us-
ing the mass-shift relation, Eq. (5), gives a bare quark
mass my~ 1.5 MeV, in rough agreement with sum-rule
estimates. By adjusting the parameters (e.g., A—490
MeV) we can obtain a more canonical value for my~4.6
MeV. It seems clear that this approach can give an ac-
count of the physical pion, provided the parameters are
properly chosen.

In Fig. 4 we plot our solutions for the wave functions
W,(p) (solid curves) and ¥,(p) (dashed curves) for a fami-
ly of values of the bound-state mass (u/2m=0.8, 0.5, 0.3,
and 0.15). Notice how the wave functions grow in
momentum space as the bound-state mass decreases, and
how the second channel smoothly approaches the first.
We have found that, as the bound-state mass u ap-
proaches zero, the solutions tend to approach the limiting
analytic form 1/E,, deviating from this form at a value
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FIG. 3. Solutions for the constant C as a function of u/2m.
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FIG. 4. Solutions for the wave functions ¥, (solid curves)
and ¥, (dashed curves) for a family of bound-state masses:
©u/2m=0.8, 0.5, 0.3, and 0.15. The states with a smaller mass u
are more spread out in p.

of p which increases as p decreases. These solutions have
been obtained using the full coupled-channel bound-state
equation with the off-diagonal matrix elements included.
As Fig. 5 shows, there are only the smallest changes in
these curves when only the diagonal matrix elements, V',
and V,,, are kept. This occurs for two reasons. In the
case of lightly bound systems, the second channel is
small, as is its mixing with the first channel, and the
bound-state equation reduces to effectively a relativistic,
one-channel Schrodinger equation. In the deeply bound
limit, the confining potential is decoupling from the prob-
lem, and so once again the contributions from ¥V, and
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FIG. 5. Solutions for the case u/2m=0.3 and 0.15, with and
without the off-diagonal potentials, ¥, and V,;. In both cases,
the wave functions ¥, (solid curves) and ¥, (dashed curves) are
the full solutions (identical to Fig. 4), while ¥, (dotted curves)
and V¥, (dashed-dotted curves) are the solutions with V,, and
V, =0.
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V,, are very small. These observations, which justify ig-
noring the off-diagonal potentials in all cases, will prove
useful in future work. When the off-diagonal potentials
can be ignored, it is easy to include the one-gluon-
exchange interaction in a gauge-invariant manner.

With these results, the presentation begun in Ref. [9] is
now complete. In the next section we show how the
model can be generalized.

IV. DECOUPLING CONFINEMENT
FROM CHIRAL-SYMMETRY BREAKING

Lattice studies and recent phenomenological fits to the
upsilon spectrum suggest that the linear potential is pure-
ly scalar. In this section we show that, as long as the
constant part of the interaction is chirally invariant, a
zero-mass pion arises in the chiral limit (m,=0), and that
an analytic solution for this state can be found. To show
this we will demonstrate that (i) the scalar part of the
mass equation is unaffected by the presence of the scalar
linear potential, and (ii) the scalar confining potential
gives no contribution to the pion bound-state equation in
the chiral limit, u=0.

First, the Dyson equation for the self-energy for an
on-shell quark (with the internal quark also restricted to
its mass shell), is

3 my+35
s= [k _y 2,
(2m)°2E), (1—2")

(8)

y_ d3k . Exk
m2'=[ anr2g, FP O,
where 35 and 3" are the scalar and vector parts of the
self-energy, at the constituent quark pole. Since these are
constants, the constraint (2) guarantees that the scalar
term, 35, is zero. (Note that the vector part is not zero,
but can be removed by wave-function renormalization
[9].) Hence the linear potential does not contribute to the
quark mass, as anticipated in Sec. II. It is clear that this
result will hold for many choices of the spin invariants O;
only cnes which contain momentum-dependent factors
can upset this general result.
Next, from Fig. 2, the effect of a scalar linear potential
on a pure pseudoscalar bound state I'=yI", where [, is
a scalar function, is

—d’k
(27)*2E,
(K+iP+m)y(k—L1P+m)
[m2—(k—LP)

O, p= [ [V.(p—k)] k2, P?)

, (9a)

where both the external and internal quarks are on shell
(denoted by the subscript 1), and by

—dk
(27)2E,
9 k+iP+m)ys(K—L1P+m)

[m?2—(k+1P)?]

when the external quark is on shell and the internal anti-

LS, P)= [ [Vi(p—k)]T2k2, P?)

, (9b)

quark is on its negative-energy mass shell (2). In the first
case kt=(E,—1lpu,k), and in the second
k#=(E,+ju,k). Now, for a zero-mass bound state,
P=(u,0)—0, and this limit may be studied for each of
the terms (9) using the relation

(m+K+LP)ys(m+Kk—1P)
=[m2—k2+1P2lys—mysP+1ly(KP—PK) . (10)

In this limit, [{=T3 and [V, ];;=[V. ], (because they
are identical), and the remaining terms approach

(m+¥K+1IP)ys(m+K—1P)

lim

Poo m?—(k—1P)?
1 m Kyo—vok
=y |=— + , (11
Ys12 7 2E. 7" T 4E, (11a)
. (m+K+LIP)ys(m+K—1P)
lim ) )
P—0 m*—(k+1P)
1 m Kyo—7vok
=y |= - , (11
Ys| 228, YT T 4E, (11b)

where the first relation applies to I'$<(p,P), and the
second to I'{5(p,P). Note that these terms are regular in
this limit. The total contribution from the linear poten-
tial is the sum of these two terms, and is therefore

— 3
FSC(P’O)ZYSI d’k

— Yy — 2
2n)iE, L(p—k)T(k%,0)  (12)

because the other spin invariants cancel.

Equation (12) shows that, in the P —0 limit, the scalar
linear gives a vertex function with a pure ys structure.
Furthermore, since the k2 in the argument of Ty is the
square of the four-vector (because I'; is a Lorentz-
invariant function), when P=0, k2=m?2, and I, is neces-
sarily a constant. In this case, (12) reduces to the con-
straint (2), proving that the scalar potential does not con-
tribute to the pion equation in the limit P=0. The
decoupling is hence complete.

V. CONCLUSIONS

This paper completes the model study begun in Ref.
[9], and discusses some generalizations of that work. We
find that solutions for light quarks (or a large linear po-
tential, which is by scaling the same thing) require a form
factor dependent on the mass of the off-shell quark in or-
der to converge sufficiently rapidly to be consistent with
chiral symmetry. With this added convergence, we are
able to map out the light-quark solutions just as we did
for heavy quarks in Ref. [9]. Illustrative numbers show
that it is easy in this model to explain why the symmetry
breaking represented by a current quark mass of a few
MeV can generate a pion bound state with a mass of 140
MeV.

We also show that the model is sufficiently flexible to
permit the linear confining potential to completely break
chiral symmetry without changing the connection be-
tween the generation of dynamical quark mass and the
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emergence of an almost-zero-mass Goldstone boson (the
pion) which is an essential feature of this model. In par-
ticular, we show that the linear part of the confining po-
tential could be pure scalar without altering the chiral
properties of the model. The reason for this surprising
result is that the constraint which controls the infrared
behavior of the linear potential also ensures that it does
not contribute in the chiral limit.
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