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The dual parton model (DPM) describes soft and semihard multiparticle production. The version of
the DPM presented in this paper includes soft and hard mechanisms as well as diffractive processes. The
model is formulated as a Monte Carlo event generator. We calculate in this model, in the energy range
of the hadron colliders, rapidity distributions and the rise of the rapidity plateau with the collision ener-
gy, transverse-momentum distributions and the rise of average transverse momenta with the collision en-
ergy, multiplicity distributions in different pseudorapidity regions, and transverse-energy distributions.
For most of these quantities we find a reasonable agreement with experimental data.

PACS number(s): 13.85.Hd, 12.40.Aa, 12.40.Lk

I. INTRODUCTION

The present situation in high energy physics is charac-
terized by the trend to study the interaction of elementa-
ry particles at ever increasing energies. Several hadron
colliders in the TeV energy range are under construction
or under intense discussion.

The theoretical models to study hadronic multiparticle
production processes at the energies of existing and fu-
ture accelerators have changed several times during the
last decades. During the 1970’s models which imple-
mented the concept of Feynman-scaling [1] were favored.
The experiments at the CERN ISR and SPS colliders in
the 1980’s showed however that Feynman scaling is not
realized by nature. Therefore models for inelastic ha-
dronic reactions which do not show Feynman scaling
were studied. The most important feature is a rapidity
plateau slowly rising with the collision energy. Further-
more, models which start in their construction from
quark-parton ideas are now preferred.

Hadronic multiparticle production is nonperturbative
in nature and unfortunately cannot be studied with per-
turbative QCD. Models for multiparticle production
therefore use concepts such as the Pomeron, and these
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models are expected to be explained eventually by QCD.
At present, there exist several attempts to derive the
Pomeron from QCD [2], but this connection is not yet
completely clear.

Soft multiparticle production in hadron-hadron col-
lisions in the framework of the dual parton model (DPM)
has been studied since the beginning of the 1980’s by
several groups [3—-7]. The DPM is very successful in ex-
plaining the non-Feynman-scaling behavior of the data
and also the deviations from Koba-Nielsen-Olsen (KNO)
scaling behavior [8] of multiplicity distributions.

Experiments at the proton-antiproton colliders further-
more indicated that hard and soft production processes
are closely related. The best known of these experiments
are the observation of correlations between the average
transverse momenta of hadrons produced and the
charged multiplicity of produced hadrons [9], the obser-
vation of “minijets” in hadronic collisions, and changes
of the properties of the underlying soft events in data
samples with jets or minijets [10].

These experiments can be explained by perturbative
hard or semihard constituent scattering. The same con-
stituent scattering is also responsible for at least part of
the rise of the hadronic cross sections with energy. This
was studied quantitatively in papers by Capella, Tran
Thanh Van, and Kwiecinski [11] and Durand and Pi [12].
In these papers the consequences for the total and inelas-
tic cross sections of the unitarization of soft and hard
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scattering cross sections were studied.

A preliminary Monte Carlo description of the two-
component DPM incorporating soft hadronic processes,
described by the supercritical Pomeron, and semihard
processes, described by perturbative constituent scatter-
ing, was given by Ranft et al. [13]. In [14] the perturba-
tive hard scattering component of the model was studied
in more detail. Different kinds of correlations were stud-
ied within this model recently in a paper by Bopp et al.
[15] as well as in a previous version of the model [16].
The model is implemented in the form of the Monte
Carlo code DTUJET [17-19].

The models in [13] and [14] contain only the soft and
semihard components. In the present paper we include in
addition also high-mass diffractive processes, which are
described by diagrams containing the triple-Pomeron
coupling, and low-mass diffractive processes, described
using a two-channel eikonal method.

In Sec. II and in the Appendixes we give a description
of the model. In Sec. III various average properties and
distributions are calculated within the model in the ener-
gy range of hadron colliders and compared to experimen-
tal data. In Sec. IV we give a summary.

II. THE TWO-COMPONENT DUAL PARTON MODEL
INCLUDING DIFFRACTIVE PROCESSES

A. Construction of the model

In this section we will discuss the basic ideas of the
dual parton model and the way in which the hard com-
ponent and a diffractive component is included. Many
technical details related to this section are given in Ap-
pendixes A and B.

The two most important components of the model are
the soft component, described by the supercritical Pome-
ron and the hard component, described by perturbative
QCD (the hard Pomeron).

At higher energies the hadron-hadron interaction is
dominated by Pomeron exchange. The Pomeron is cut
into two chains (or strings) and these chains are connect-
ed to the hadron constituents. In the leading order the
proton consists of one valence quark and one valence di-
quark and the interaction between the hadrons gives rise
to two chains which are stretched between these constitu-
ents. Figure 1(a) shows the leading diagram (one cut
Pomeron) for a pure soft p-p collision.

The Pomeron exchange corresponds to a pure soft
cross section and can be parametrized as the so-called su-
percritical Pomeron. The cross section corresponding to
the supercritical Pomeron is given in Appendix Al. We
use the parameters as obtained by Capella, Tran Thanh
Van, and Kwiecinski [11].

The hard scattering input cross section as calculated in
the QCD parton model for a lower transverse-momentum
cut p, min =2 or 3 GeV/c s given in Appendix A3.

Both the hard o}, and the soft o input cross sections
increase with energy practically like powers of s whereas
the total cross section is proportional to (Ins)? so that the
input cross sections exceed the total cross section o, at
higher energies. The average multiplicities of hard and

soft scatterings in an inelastic event are (n, ) =0, /0.y
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FIG. 1. Diagrams for the exchange of soft, hard, diffractive,
and double-diffractive chains (a) one soft cut Pomeron (two soft
chains); (b) one hard cut Pomeron (two soft and two hard
chains), we always get soft chains in addition to the hard chains
resulting directly from the parton-parton scattering; (c) one soft
and one hard cut Pomeron (four soft, two hard chains); (d) one
diffractively cut triple-Pomeron graph; (e) one cut Pomeron-
loop graph (double diffraction).

and {n, ) =0, /0, respectively. These multiplicities in-
crease with energy and at higher Vs a sizable part of
events has more than one hard or soft scattering. The
multiplicities are calculated with an unitarization scheme
[11] which makes use of the Abramovski-Gribov-
Kancheli (AGK) cutting rules [20]. This scheme gives
the weights for events with i soft and j hard scatterings
[13].

In Fig. 1(b) we show a cut hard Pomeron. We always
get soft chains in addition to the hard chains resulting
from the parton-parton scattering. Here two gluons un-
dergo a hard 2—2 scattering and the resulting gluons
which have transverse momenta p, 2 p, .., are split into
quark-antiquark pairs. In Fig. 1(c) we give an example
how a hard component is added to the leading pure soft
diagram.

There are contributions with more than one hard
scattering. These hard scatterings are mostly indepen-
dent of each other and the only interconnection is the
sharing of energy and momentum of the incoming had-
rons. The hard (soft) component causes an increase of
the average multiplicity of produced hadrons with energy
due to the increase of the number of hard (soft) scatter-
ings n;(ny).

In addition to the hard and the soft components [Fig.
2(a) and Fig. 2(b)], we introduce furthermore the triple-
Pomeron graph and a triple-Pomeron loop graph into the
unitarization scheme; see Figs. 2(c) and 2(d). The sim-
plest cut of the triple-Pomeron graph gives high-mass
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FIG. 2. The graphs representing the exchange of (a) soft
Pomerons and (b) hard Pomerons, (c) the triple-Pomeron graph,
and (d) a graph with a Pomeron loop.
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single-diffractive events and the simplest cut of the loop
graph gives high-mass double-diffractive events.

We introduce the input cross sections corresponding to
the four different mechanisms in the impact-parameter
representation:

2

!
exp . (2.1)

X,’(B,S)= 87Tb,

Here i stands for any one of the four inputs: s, the soft
cross section; h, the hard cross section; TP, the triple-
Pomeron cross section; and /, the loop cross section (see
Appendix A2). The expressions of o; are given in Ap-
pendix Al. From Eq. (2.1) we get

[ 2x:(B,5)d*B=0, . 2.2)

With this, in the impact-parameter representation we ob-
tain the exclusive cross sections with /. cut soft Pome-
rons, m, cut hard Pomerons, m, cut triple-Pomeron
graphs, and p, cut loop graphs:
nC
a
nc—a

> ouetl.,mn.,p.,B,s)=0oll,m n.p.,B,s) .
B=0

o“'ﬁ(lc,mc,nc,pc,B,s)=0(lc,mc,nc,pc,B,s)

Notice that the sum
2
a=0

(2.6)

The treatment of the loop graph is completely equivalent
to that of the triple-Pomeron graph.

In fact, since the triple-Pomeron coupling is small, it is
sufficient to treat the single-diffractive and loop contribu-
tions to first order. But this is also necessary. Using the

FIG. 3. The three ways to cut the triple-Pomeron graph.
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where y(B,s) is given in Appendix Bl. Numerical in-
tegration over the impact parameter B yields the ex-
clusive multi-Pomeron cross sections o(l.,m.,n.,p.).
These are the cross sections, which we need for the con-
struction of inelastic events in the dual parton model.

The expressions for the total, inelastic, etc., cross sec-
tions are given in Appendix B1. The total cross section,
for instance, is given by

—2x(B,s) , (2.3)

O =47 fO“’B dB(1—e XB.9) (2.4)

The hadronization of the /. cut soft Pomerons and the
m,. cut hard Pomerons has been described above; see Fig.
1. The hadronization of the n, cut triple-Pomeron
graphs and the p. cut loop graphs is more complicated,
since these graphs can be cut in different ways. Let us
discuss this for the triple-Pomeron graph. One can dis-
tinguish the three different types of cuts of the triple-
Pomeron graph, which are given in Fig. 3. We suppose,
out of the n_. cut triple-Pomeron graphs a are cut like in
Fig. 3(a), B are cut like in Fig. 3(b), and n, —a—p3 are cut
like in Fig. 3(c). We get according to the AGK cutting
rules [20] the corresponding cross sections

—a—8

(—2)%4B(—1)" @.5)

r

triple-Pomeron and loop graphs up to higher order in the
eikonal framework used above would be inconsistent,
since we would include only higher-order graphs of one
special class such as those given in Fig. 4(a) and not
graphs such as the ones given in Fig. 4(b) which in a con-
sistent treatment should also be included up to the same
number of loops. A consistent treatment of all enhanced
graphs has been given in Ref. [21]. However, the result-
ing formalism is too cumbersome to be applied to the
multiparticle production.

The last component of the model to be described is
low-mass diffraction, which is introduced via a two-
channel eikonal formalism. The corresponding equations
are given in Appendix B2, the formalism is similar to the
one already described, however somewhat more involved.

The introduction of low-mass diffraction is very impor-
tant for the consistency of our approach. Without it, one
would need a large value of the triple-Pomeron coupling
in order to reproduce the measured single-diffractive
cross sections and our first-order treatment of the triple
Pomeron would no longer be possible.

In Fig. 5 we present the cross sections for /. cut soft
and m, cut hard Pomerons (for n.,=p.=0) at two
different collision energies in the form of lego plots.
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FIG. 4. Higher-order loop graphs containing the triple-
Pomeron coupling.

B. Momentum distribution functions of the string ends

We have to sample the constituents at the ends of the
different strings. In an event with n; soft Pomerons we
have to sample the 2n; constituents for each of the pri-
mary hadrons [valence quark, valence diquark, and
(2n,—2)/2 quark-antiquark pairs or gluons which frag-
ment subsequently into quark-antiquark pairs]. This ex-
clusive parton distribution has the form [3]

2ns—l 1
I+

2 i

1 2n,+ny,
l_ 2 x"
1

)~
yx2ns i_x1

1.5
plxy, ... xz,,sﬁ

(2.7)

The form of the soft-parton distributions for small x
values is obtained by dual Regge arguments. For valence
partons

(ST

»

1 =
p(xq)"‘—aR‘, agp=
Xq

1 (2.8)
flxg)~—=s ap=—1L5,
Xqq

where ay is the leading (g7 ) Regge trajectory and aj the
exotic (gqgq) trajectory. The x distribution of soft sea
quarks is f(x)~1/x for x —0.

In an event with n, soft Pomerons and n;(n; = 1) hard
Pomerons (to be definite we consider as an example the
case of hard gluon-gluon scattering) the expression be-
comes somewhat more complicated. This exclusive par-
ton distribution has the form

2n +2

IT

2

1

p(‘xl"" 7x2ns+2+nh)~——
43

2X2 3 Xon +15 - -+

s

The distribution g(x;,Q;) are the distribution functions
for the x values of partons engaged in the hard scattering.

The triple-Pomeron graph cut such as in Fig. 3(a) and
the correspondingly cut loop graph are treated in the
same way as two cut soft Pomerons. The triple-Pomeron
graph cut such as Fig. 3(b) and the correspondingly cut
loop graph are treated in the same way as one cut soft
Pomeron. For the triple-Pomeron graph cut such as in
Fig. 3(c) (single diffraction) and the corresponding cut of
the loop graph (double diffraction) we need a special
treatment. The sum of the x values x, =x, +x; (x, and

X1

FIG. 5. Cross section given in arbitrary units for the produc-
tion of given numbers of soft and hard Pomerons in the form of
lego plots as obtained from our unitarization scheme: (a) for
Vs =1000 GeV, (b) for V's =30 TeV. The comparison of the
two graphs makes the dramatic rise of the number of semihard
scatterings with rising energy clearly visible.

2n,+2+n, 2n +2+n,
xhmo I &x,Q)8|l— 3 x 2.9)
2n +3 1

[
Xz belong to the sea quark and antiquark at the ends of
the two diffractive chains) are sampled from a distribu-
tion =~1/xp with the condition that the mass M of the
diffractive two-chain system satisfies M2/s < L.

All data considered in this paper refer to non-single-
diffractive events. A comparison of the single-diffraction
model with the available data was given in [22].

In the present version of the model we do not use a
method sampling exactly from (11), instead we use a re-
jection method, where the x values of the hard and soft
partons are first sampled independently and we reject the
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event if the x value remaining for the diquark is incon-
sistent, that means, if the sum of all x values becomes
larger than one. In most configurations the valence di-
quarks get much larger x values than all other partons
and therefore only very few configurations sampled by
this approximate method have to be rejected. A method
to sample exactly from the exclusive multiparton distri-
bution is also available and gives equivalent results.

C. Intrinsic transverse momenta

The partons at the ends of the hard or semihard chains
get transverse momenta p, = p .. as predicted by pertur-
bative QCD. This was described in detail in [14]. It is
usual also to give some typically “soft” transverse mo-
menta to the partons at the ends of the chains resulting
from the cut soft Pomerons. The subdivision of multipar-
ticle chains into “soft” and “hard” ones is, however, only
due to our inability to solve QCD at low p,. Therefore,
we try to get a continuous transition from soft to hard
jets. We introduce for the constituents at the ends of the
soft chains a p, distribution, normalized to the average
number of soft chains which joins continuously with the
hard chain p, distribution at p, =p ;.. At small ener-
gies, where the hard component is practically absent, the
model stays unchanged. At larger energies this continui-
ty requirement gives to the soft chain ends transverse mo-
menta, which are bigger than typical soft ones and which
rise with the collision energy. At the energies of the
present colliders we get quite similar resulting models
with p ;=2 or 3 GeV/c, if the bare hard cross section is
adjusted correspondingly. This means the model is quite
independent of the arbitrary value of the transverse
momentum cutoff. At collision energies higher than 2
TeV we prefer the cutoff p,,;,, =3 GeV/c, which allows
the transverse momenta of hadrons obtained after the
hadronization step to rise with the collision energy up to
the energies of the proposed supercolliders. A cutoff of
D =2 GeV/c leads to a saturation of the average had-
ron transverse momenta already at energies of some TeV,
which we consider as unphysical. The reason for this sat-
uration in the model is the following. After hadroniza-
tion we find for the minijet components with parton-
transverse-momentum cutoffs p, ;=2 GeV/c (3 GeV/c)
average hadron transverse momenta of about 0.55 GeV/c
(0.70 GeV/c). This changes only weakly with the col-
lision energy. At all energies the parton cross section de-
creases steeply with the transverse momentum above the
cutoffs. The average hadron transverse momenta due to
the soft component is always smaller. Even with a mini-
jet cross section rising with energy, the average hadron
transverse momenta can never become larger than the
ones due to the minijet component alone. Also for a
cutoff of 3 GeV/c a saturation will occur, however at en-
ergies above the TeV energy scale of the proposed super
colliders. This saturation is an artifact of the two-
component model in its present form; it could be over-
come only with a future one-component model giving a
unified description of hard and soft chains.

D. Total, inelastic, elastic, and diffractive cross sections

The simultaneous unitarization of the soft and hard ha-
dronic cross sections was first performed in papers by
Capella, Tran Thanh Van, and Kwiecinski [11] and
Durand and Pi [12]. We use for the soft-input cross sec-
tion the parameters of the supercritical Pomeron as
determined by Capella, Tran Thanh Van, and Kwiecinski
[11]; see Appendixes Al and A2. We use the hard-input
cross section as calculated from the QCD parton model
using the parton distributions of Martin, Roberts, and
Stirling (set 1) [23]; see Appendix A3.

It should be stressed that there is considerable theoreti-
cal and experimental uncertainty about this rise of o,
with the energy. Structure functions such as the ones
used here postulate a 1/x dependence for gluon- and sea-
quark-structure functions at some reference scale (Q3 =5
GeV?) but of course the QCD evolution makes the gluon
distribution much steeper of larger Q2 values. At the x
values of 10™* which become important for the produc-
tion of minijets in the energy region of tens of TeV, the
structure functions cannot be determined experimentally
at present accelerator energies and there is presently no
practical method available which would permit to calcu-
late the structure functions from QCD. It has been ar-
gued that the x dependence of the structure functions at
these small x values indeed differ from x ~!. Collins [24]
presented arguments for a x ~ > behavior.

During the last year new improved fits of the structure
functions to experimental data became available [25].
However, the uncertainty regarding the behavior at small
x values remains. Kwiecinski et al. [26] study parton
distributions with the singular x ~!> behavior of the
gluon and sea-quark distributions. They find significant
QCD shadowing corrections [44,45] for x <1073 and
show that even the production of heavy particles such as
the Z and W gauge bosons in 10-TeV energy region can-
not be predicted reliably at present. We plan in a future
paper to study the implications of the different structure
functions [25,26] for the minijet component in our model.

In Figs. 6 and 7 we compare cross sections according

82t Dual Parton model

)

1 1

30 100 1000 10000
Vs (Gev)

FIG. 6. Comparison of the total cross section o, and the
elastic cross section o as calculated within the model with ex-
perimental data [27]-[34].
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FIG. 7. Comparison of the single-diffractive cross section
osp as calculated from the model with experimental data
[35]-[43].

to our unitarization scheme with data in the energy re-
gion from the CERN ISR to the Fermilab collider.

In Fig. 6 we compare the total cross sections and find a
rather good agreement with the observed rise with ener-
gy. It is, however, obvious that at the highest energies an
even better agreement might have been possible had we
performed a new fit to the data to adjust the parameters
of the supercritical Pomeron (recall, that we use the pa-
rameters determined in the fit performed in 1987 [11]).
In the same figure, we plot also the calculated inelastic
cross section o, and compare the elastic cross section
o, in the same energy region with data. The agreement
is reasonable.

In Fig. 7 we compare the single-diffractive cross sec-
tion ogp with data; this is the sum of the high-mass
single-diffractive cross section oyygp and the low-mass
single-diffractive cross section oyysp. The agreement is
satisfactory. No attempt has been made to get a precise
description of the low-energy region.

We would like to stress that the fit of the model to
these cross sections fixes already the essential free input
parameters in the model, these are the parameters of the
soft, supercritical Pomeron, and the parameter A entering
the two-channel eikonal model; see Appendix B2. We
find the optimum value of this parameter to be A=0.6
and we shall use this value always throughout this paper.

III. RESULTS

In this section we present results as obtained from the
Monte Carlo event generator DTUJET 90 [19]. The
transverse-momentum cutoff p, .., was set to 3 GeV/c
and the hard scale was Q2=p? /4. For the minijets we
have not included initial- and final-state bremsstrahlung
effects to the hard scattered partons. This will be done
for events with higher transverse momentum. For the
hadronization of chains, i.e., the transition of partons to
hadrons we use the independent-fragmentation chain
code BAMIJET [46] and the decay of resonances is handled
by the code DECAY [47].

A. The rise of the rapidity plateau

In Fig. 8 we present the central rapidity and pseudora-
pidity plateau of all charged particles as function of the
center-of-mass energy V's in the region between Vs =20
GeV and 40 TeV. Both the rapidity and pseudorapidity
plateau rise approximately like logs. The rise of the pseu-
dorapidity plateau has been measured at energies up to
Vs =1.8 TeV; in this region the model agrees very well
with the data.

In Fig. 9 we present rapidity and pseudorapidity distri-
butions of charged particles at 0.2, 0.54, 0.9, 1.8, 16, and
40 TeV. The pseudorapidity distributions at
Vs =0.2-0.9 TeV are compared with the data from the
UAS Collaboration [48]. The agreement is very good in
the central region but the model tends to overestimate
the data in the fragmentation region. The extrapolation
to the supercollider energies of 16 and 40 TeV seems to
be smooth, since, as we have seen in Fig. 8, the plateau
continues to rise logarithmically with the same slope as
found experimentally. Nevertheless, the calculation cor-
responds only to minijets according to one particular pa-
rametrization of the structure functions. If the structure
functions down to x values of x =10~* behave differently,
a threshold could be reached between 2 and 40 TeV with
a steeper slope of the rising plateau.

T | |
7+ -
®
B UA1 ns.d. [ ]
6 |- 0O UAS -
x UAS n.s.d.
<O ISR
‘E_ (¢]
— S5p o -1
3 °
ﬁc )
© 4 ° i
(@)
i g
> ]
= .
S 3r L™ ]
5 ° Eﬁ*
© [ ]

° dn""/dy|y=0 DTUJET

o
1} O dn®/dn| DTUJET .
n=0
0 | | 1
101 102 103 104 105

Vs (Gev)

FIG. 8. The central rapidity and pseudorapidity plateau of
all charged particles as function of the c.m.-system energy. The
rise of the pseudorapidity density is compared to data
[48],[49],[52],[53].
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FIG. 9. (a) Rapidity and (b) pseudorapidity distribution of
charged particles at 0.2, 0.54, 0.9, 1.8, 16, and 40 TeV. The
pseudorapidity distributions at 0.2-0.9 TeV are compared with
data from the UAS Collaboration [48].

0.55 T T T T T T T T T T
O ISR
» UA1
050 — O E735 (n| <1) ° ]
o CDF (1| <1) °
@ In < o
Q O Inl <25 DTUJET +0 o
g 045 g oann 4 -
= ot o
2 o o
~ [ ]
0.40 ° 4 0 = —
O g O
O
( ] O
o<
035 O a —
a
a
0.30 vl vl ool L1111l
10 102 103 104 10%
Vs (Gev)

FIG. 10. Rise of average transverse momenta of charged par-
ticles in the total pseudorapidity region and in restricted regions
|71 <2.5 and 9| <1. The model predictions are compared to
data [54],[55].

B. The rise of average transverse momenta

Transverse-momentum distributions of charged parti-
cles according to the model were computed by Hahn and
Ranft [14]. The correlation between the central multipli-
city and the average transverse momenta of pions, kaons,
and antinucleons was already compared to data by Bopp
et al. [15]. Here we present in Fig. 10 the rise of the
average transverse momentum of charged particles in
different rapidity windows as function of the collision en-
ergy. The average transverse-momenta rise proportional
to logs. The agreement with data is good in the energy
region of past and present colliders.

The extrapolation provided by the model seems to be
safe, since the average transverse momenta continue to
rise logarithmically with a slope which corresponds to
the slope of the experimental data. But again, if the
structure functions down to x =10"* behave differently
from the present extrapolations, a threshold connected
with a change of this slope could occur in the TeV energy
range.

In Table I we present material which indicates that
there would be room for a minijet-related threshold in the
rapidity plateau and the average p, in the TeV energy re-
gion. The three main components of the present model

TABLE 1. Multiplicities, average transverse momenta, and
rapidity plateaus separately according to the three main com-
ponents of the model: soft valence chains (sv), soft sea chain
(ss), and hard chains (h).

‘/E pl,:v pl,xs d pJ.,h d
(TeV) n,, (GeV/c) 2 n, (GeV/o) 22 n, (GeV/c) =

dysu dyss dyh
09 493 035 26 181 042 1.5 164 070 0.1
1.8 585 034 27 227 043 17 286 069 0.1
160 88.5 0.36 3.0 429 043 25 102 068 0.6
400 98.0 037 3.0 540 043 28 162 0.69 0.9
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are soft valence chains, soft sea chains, and hard chains
(minijets). In Table I we give for energies between 200
GeV and 40 TeV separately for the three mechanisms the
average multiplicities, average transverse momenta, and
rapidity plateaus. Clearly, in this energy range the soft
valence chains still dominate and the minijets are still
rather unimportant. The situation could be changed
strongly, if the gluon structure function and correspond-
ingly the minijet cross section at large V's would increase
significantly, say by a factor of 5 or so. Such a rise is like-
ly to occur with the structure functions recently proposed
by Kwiecinski et al. [26].

C. Transverse-energy distributions

Transverse-energy cross sections do /d 3 E, were mea-
sured by the UA1 Collaboration [49] in the pseudorapidi-
ty range || <6 at energies between 0.2 and 0.9 TeV. In
Fig. 11 we compare the transverse-energy cross section
with the cross section calculated in our model. We find
at 0.2 and at 0.54 TeV a rather good agreement with the
data. At 0.9 TeV the tail of the experimental data is well
above the calculated histogram; there is no obvious
reason which could be responsible for this disagreement.

D. Multiplicity distributions

It has been pointed out repeatedly [3,5] that the dual
parton model violates KNO scaling. This was also found
in Monte Carlo calculations [6,7]. A non-KNO-scaling
behavior of this type was also found by the UAS Colla-
boration [42].
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FIG. 11. Comparison of calculated transverse-energy distri-
butions with data from the UA1 Collaboration [49].

In Fig. 12 we compare the multiplicity distributions
measured by the UA1 Collaboration [49] for || <2.5 at
200, 500, and 900 GeV with the calculated multiplicity
distributions. We find a reasonable agreement as well of
the position of the maximum as of the general shape be-
tween the measured and calculated multiplicity distribu-
tions.

In Fig. 13 we compare the multiplicity distributions
measured by the UAS Collaboration [50] for || <5 at
200 and 900 GeV with the calculated non-single-
diffractive multiplicity distributions. At the high-
multiplicity tails of the distributions we find a reasonable
agreement. However, there is a noticeable disagreement
regarding the positions of the maxima of the distribu-
tions. The maxima of the calculated distributions are at
higher values of the multiplicity n. The disagreement can
be attributed to low-multiplicity events. We would how-
ever like to point out that in [13], taking the acceptance
of the experiment properly into account, a better fit to
the data was obtained with a DPM Monte Carlo program
similar to ours.

IV. SUMMARY

Our model was already briefly described in a first paper
[15]. The present paper gives the full account of the
model and compares the Monte Carlo results with fur-
ther experimental data. Here we study for the first time
multiparticle production in the complete model including
both high-mass and low-mass diffraction.

Particle production in the two-component dual parton
model is highly constrained by (i) the measured cross sec-
tions Oy, Oy O and ogg, (i) the unitarization
scheme, which predicts the exclusive multi-Pomeron
cross sections, and (iii) the QCD parton model, which is
used to calculate the hard-input cross sections o,.

Even without a new fit to the total, elastic, and inelas-
tic cross sections (we use still the parametrization of the
Pomeron obtained in the fit by Capella, Tran Thanh Van,
and Kwiecinski [11]), we get a good description of the to-
tal, inelastic, elastic, and single-diffractive cross sections.

The model is found to be consistent with a wealth of
data in the collider energy range. The Monte Carlo mod-
el contains high-mass single diffraction and double
diffraction. However, single diffraction has been exclud-
ed from the comparisons with most data, where single
diffraction is also excluded.

We find good agreement with the following features of
multiparticle production.

(1) The rise of the rapidity plateau with the collision
energy.

(2) The rise of average transverse momenta and the tail
of the transverse-momentum distribution with the col-
lision energy [14].

(3) The violation of KNO scaling of the multiplicity
distribution and the shape of the multiplicity distribution.

(4) The correlation of average transverse momenta
with multiplicity [15].

(5) The pedestal effect in the low-p, events under the
hard jets [14].

(6) Forward-backward correlations [15].
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(7) Transverse-energy distributions.

(8) Rapidity and pseudorapidity distributions.

(9) The rise of factorial moments [15]. The first com-
parison of the model with intermittency phenomena is
encouraging, but a quantitative agreement is not yet
found.
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FIG. 13. Comparison of calculated multiplicity distributions
for || <5 with data from the UAS Collaboration [50] (a) for

200 GeV, (b) for 900 GeV. The experimental data (but not the
model results) are given by symbols with error bars.

Our aim was more to find an overall agreement with
most of the features of multihadron production known
from experiment rather than a detailed fit to a single ex-
periment using all necessary corrections and acceptances
of the experiment.

The most important lines for a further improvement of
the model could be to find theoretical guidelines to con-
strain the string fragmentation in the model and to work
towards a unified description of the hard and soft com-
ponents of the model. Also the implications of noncon-
ventional gluon distributions on the minijet component at
the energies of future supercolliders will be studied.
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APPENDIX A: INPUT CROSS SECTIONS FOR THE
DPM UNITARIZATION SCHEME

We include four different cross sections into the unitar-
ization scheme. These are the soft hadronic cross sec-
tions, the semihard or hard cross section, the single-
diffractive or triple-Pomeron cross section, and the
double-diffractive or loop cross section.

1. The soft input cross section o

The soft-input cross section o is parametrized accord-
ing to the supercritical Pomeron with parameters as
determined by Capella, Tran Thanh Van, and Kwiecinski

[11]:

o, =gk (A1)
with

g2=40.8 mb (A2)
and the Pomeron intercept

A=a(0)—1. (A3)
The Pomeron trajectory is given by

a(t)=a(0)+a't (A4)
with

a(0)=1.076 and a’'=0.24 GeV 2. (AS5)

2. The single-diffractive
and double-diffractive input cross sections

The single-diffractive input cross section ogp is ob-
tained by integrating the triple-Pomeron cross section
(~expbspt/M?) over t and in the range 5
GeV2<M?<5/20 over M%:
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o= 2 g°r N s
167 bsp, 100 GeV? '

The double-diffractive cross section is obtained by in-
tegrating a distribution [ ~exp(bppt/M2M?2)] over both
masses

1 gr? |, s ,25
0, =0pp= n +1n?==
LUPP g6 2bpp | 400 GeV? 5
5
—2In— A7
n 30 (A7)
with the slopes in ogp,
bsp=b3p+2a’Ins , (A8)
b3p=1.372 mb=3.7 GeV 2,
(A9)
a’'=0.0925 mb=0.24 GeV %,
and
'=0.42 mb!”? (A10)
and the slope in opp
bpp=2a’lns . (A11)

3. Hard constituent scattering cross sections

The calculation and sampling of hard constituent
scattering cross sections within our model was described
in detail in [14]. We use in the calculation the parton-
parton scattering cross sections as obtained by Com-
bridge, Kripfganz, and Ranft [S1] in lowest-order QCD
perturbation theory and the quark and gluon distribution
functions in the parametrization of Martin, Roberts, and
Sterling (set 1) [23]. The results are essentially un-
changed, if other popular parametrizations for the struc-
ture functions are used. In order to remain in the region
where the QCD perturbation theory is valid, we use for
the minijet component a low p, cutoff p ;.. The out-
come of the model should not depend on the exact value
of this cutoff; we use values p,,;,, =2 GeV/c and p 4, =3
GeV/c. In the energy region of hadron colliders up to
Vs =1 or 2 TeV the results are indeed nearly indepen-
dent on the cutoff. At higher energies, we prefer the
higher value of the cutoff; see the end of Sec. IT A.

In Table IT we give calculated values of the hard cross
sections o, for the cutoffs of 2 and 3 GeV/c. This table
can be used to determine o, at other energies by interpo-
lation.

APPENDIX B: UNITARIZATION
OF THE CROSS SECTIONS

1. Model with soft and hard cross sections
and high-mass diffraction

We start from input cross sections in the impact pa-
rameter representation (eikonal) and describe first a mod-
el with only high-mass diffraction represented by the
triple-pomeron graph (single diffraction) and a loop graph
(double diffraction). We introduce the soft cross section

o B?

Xs(B,s)= §mb, exp | — ab, ] , (B1)
the hard cross section

Xn(B,s)= S;Tr;;h exp “TBI;Z‘] , (B2)
the triple-Pomeron cross section

T 2

Xtp(B,s)= Smbrp exp | — pronli (B3)
and the loop cross section

XL (B,s)= SZIZ;L exp _Zl% (B4)
We use the slopes b=3.52 GeV? and b,=b,

b,=bpp=b, =b+a’In(s/1 GeV?). The normalization
of these cross sections is given by

J2x:(B,s)d*B=0; . (BS)

In Fig. 2 we give the Pomeron-exchange graphs, which
correspond to these cross sections.

Let us now consider the exclusive cross sections with /,
cut soft Pomerons, m_ cut hard Pomerons, m, cut triple-
Pomeron graphs, and p, cut loop graphs. These are the
cross sections, which we need for the construction of in-
elastic events in the dual parton model. In the eikonal
model we have

TABLE II. Cross sections for the hard scattering of constitu-
ents with lower p, cutoffs p,;,, =2 and 3 GeV/c calculated with
parton distributions according to Martin, Roberts, and Stirling
[23]); set 1 with A=0.107 GeV.

o, (mb) o, (mb)
Vis (TeV) P =2 GeV/c Pine=3 GeV/c
0.005 1.1x107%
0.01 1.4x1073 7X107°
0.02 0.099 4.7x107°
0.035 0.58 0.058
0.053 1.48 0.196
0.15 422 0.73
0.2 9.76 2.02
0.35 16.6 3.79
0.54 23.7 5.72
1.0 36.7 9.53
2.0 56.4 15.7
5.0 91.5 27.8
10.0 126.3 40.9
20.0 168.3 57.8
40.0 219.3 79.3
100.0 301.0 116.
200.0 375.0 158.




45 MULTIPARTICLE PRODUCTION IN A TWO-COMPONENT DUAL ... 103

(2x,)"° 2x)" (—2x1p)"

(—2x. )

e ~X(B.s) (B6)

o(l.,m.n.p.B,s)= I m] nt

with

X(B’s)=Xs(B)s)+Xh(B,s)—XTP(B,S)'“XL(B,S) . (B7)

We obtain the unitarized hadronic cross sections as fol-
lows. The inelastic cross section

ainel=fdzB E U(lc’mc’nc’pc!B’S)

l+m +n +p 21

=27 [ “BdB(1—¢ 25, (BS)

the inelastic cross section with at least one hard or sem-
ihard scattering,

0h,ine1=fd23 >

>
m, 21

o(l,,m,,n_p.,B,s)

—2x,(B,s)

=2 [ "B dB(1- ), (B9)

the single-diffractive cross section,

osp=[d*B 3 0(0,0,n,,0,B,s)
n.21
=4r [ "B dB(M N —1)e ) (B10)
The total cross section is given by
amt=47rf0mB dB(1—e " X(B9) (B11)

Notice that this last formula is only approximate, since
we have neglected the real parts of the eikonal.

2. Model with high-mass diffraction and
low-mass diffraction introduced via
a two-channel eikonal formalism

Besides the high-mass diffraction introduced above we
introduce in addition low-mass diffraction via a two-
channel eikonal formalism. We introduce a new coupling
A, which appears in the three graphs with the low-mass
excitation given in Fig. 14:

(a) Ax,(B,s), (b) Ax,(B,s), (c)A’x,(B,s). (Bl12)

The result is that each graph with [ soft, m hard, n
triple-Pomeron, and p loop exchanges has to be modified
by a factor

X1+m+n+p(k)X1+m+2n+p()") (B13)
with
X;(AM)=L[(1+A)Y+(1-1)] . (B14)

It is to be noted that we have treated approximately all
triple-Pomeron contributions to be equal irrespectively
whether the two legs of the graph point to the upper or
lower line. This approximation is justified, if the triple-
Pomeron coupling is so weak, that it is sufficient to treat
both the triple-Pomeron graph and the loop graph only
to first order. We will comment on this again later.
We calculate (B13) and obtain

X1+m+"+p()~)X1+m+2"+p(}\’)=%{(1+k)21+2m+3n+2p+(l_k)2'1+2m+3n+2p+(1_)\'2)1+m+n+p[(1+k)n+(l_k)n]} .

Therefore we obtain now for the different cross sections
in the impact parameter representation the total cross
section

Ou(B,s)=Ho )l +od)+a+old) (B16)
with

o =2(1—¢ X(B5) (B17)
and

Xi(B,s)=x"+x{" —x{—x¥ (B18)

For i =s,h, or ] we have

a) b) c)
FIG. 14. Low-mass diffractive states introduced in the two-
channel eikonal formalism.

] (B15)
x{V=(1+1)2x,(B,s) , (B19)
X' =(1—1)x;(B,s) , (B20)
X =x"=(1-Ay,(B,s) (B21)
X13=(1+A)x1p(B,s) (B22)
XPB=(1—21)xp(B,s) (B23)
X=1=A%)(1+A)x1p(B,s) , (B24)

XB=(1=A%)(1—A)x1p(B,s) . (B25)

The inelastic cross section without low-mass single and
double diffraction,

Oinel= 0 inel—LMSD — O LMDD >» (B26)
is obtained from
Finel( B,S)=4(3 y+& 2y +a 3 +5 () (B27)
with
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7l =(1—e%B9) (B28)
The elastic cross section is obtained from
Oo(B,s)=1[0(B,s)]*. (B29)

The low-mass single-diffractive cross section is obtained
from

—x?y2

ULMSD(B,S)=‘%‘(C—X(U—‘€ X (B30)

The low-mass double-diffractive cross section is obtained
from

@ Q)™ (=2 (=2
e

— D —4(2) —3) —(4)
o mpp(B,s)=1k(e X +e X T —e X —eTX )2,

(B31)

The inelastic cross section with at least one hard scatter-
ing is obtained from

—2 (1) —2 (2) -2 (3)
OhinalBsS)=1—Le " +e M 42¢ ) (B3
Finally, we write the exclusive cross section for I, cut soft
Pomerons, m, cut hard Pomerons, n, cut triple-Pomeron
graphs, and p. cut loop graphs:

(B33)

a'(l,,m.,n,,p.,B,s)=

1! m,! n! D!

2x'(B,s)
b

o(lc,mc,nc,pc,B,s)=%[U(1’(IC,mc,nc,pc,B,s)+o‘2’(lc,mc,nc,pc,B,s)+0(3’(lc,mc,nc,pc,B,s)+U(4)(lc,mc,nc,pc,B,s)] .

The high-mass single-diffractive cross section is ob-
tained as

4 .
Fumsp(B,s)= I 00,0,0=% 3 T Hmsp (B35)
n.z1 i=1
with
7 {vps=Lexp(x§})—1]exp(—2x'") . (B36)
It is to be noted that this is in reality

(B34)

[

EHMSD= O HMSD + 0 HMLMDD (high‘maSS—IOW'maSS dou-
ble diffraction).
The high-mass double-diffractive cross section becomes

4 .
Tumpp(B,S)= 3 00,00, =% 3 OHiMpD (B37)
p. 21 i=1
with
o vpp=[exp(x$’)—1]exp(—2x'") . (B38)
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