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Hery-quark renormalization parameters in nonrelativistic /CD
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We calculate the self-energy of the heavy quark to O(a, ) in nonrelativistic +CD (NRQCD) on
the lattice. We use the lowest-order (in 1/M) NRQCD action which includes the time derivative
and kinetic energy terms, but we ignore spin effects. Results are given for the wave-function renor-
malization, mass renormalization, and energy shift. Our results agree with the lowest-order static
effective field theory as Ma ~ oo, where Ma is the quark mass in lattice units. At values of Ma
appropriate to b and -c-quark calculations, the differences are significant. We also consider 1/Ma
corrections to the static theory arising from the kinetic term.

PACS number(s): 12.38.Gc, 11.15.Ha, 12.38.Bx

I. INTRODUCTION

Recently the first nonperturbative calculations involv-

ing dynamical heavy quarks on a lattice have demon-
strated that it will soon be possible to extract quantita-
tive information on heavy-quark bound states [1]. These
calculations make use of an effective field theory, nonrel-
ativistic QCD (NRQCD), which is suited to the physics
and numerical simulation of heavy-quark systems. Given
the experimental data now available, it is clear that cal-
culations using NRQCD on the lattice can provide a pre-
cise nonperturbative test of QCD with a fraction of the
computing resources required for light-quark physics.

To achieve this precision requires systematically ex-
tending the set of operators used in the Lagrangian of
NRQCD and tuning their coupling constants. Since the
choice of coupling constants is in principle a perturbative
problem, a whole series of calculations in lattice pertur-
bation theory must be performed if this program is to
be realized. In this paper we present the first of these
calculations.

To simulate in detail the physics of energy scales up to
and beyond the heavy-quark mass M is a difficult task
in lattice QCD and largely a waste of computer time.
The energy scale M is not important for the low-energy
physics of heavy-quark bound states and is well sepa-
rated from the much smaller scales of quark momentum
and kinetic energy which are important. In NRQCD we
therefore exclude momenta above the scale M by impos-
ing a cutoff A of order M. We can then concentrate
computing power on the important low-energy scales.

A useful Lagrangian for NRQCD is obtained by ex-
panding the usual relativistic quark Lagrangian in pow-
ers of the inverse quark mass. The lowest-order spin-
independent terms consist of a single time derivative and
a nonrelativistic kinetic energy term. This Lagrangian
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has been successfully used for a preliminary study of
the T and 4 systems [1]. Spin-dependent terms start
at, 1/M with a coupling to the gluon chromomagnetic
field. Higher-dimension operators can then be added,
suppressed by additional powers of 1/M or by the lattice
spacing a.

For a given calculation and required accuracy, a deci-
sion can be made as to how many operators to include in
the Lagrangian. The coupling constants of these opera-
tors must also be known with sufficient accuracy and this
requires adjusting them from their value at the tree level
given by the 1/M expansion. The coupling constants
must account for the effect of loop diagrams with highly
ultraviolet momenta () A) which are present in QCD but
not in NRQCD. Their effect is the same as that of having
the local operators already present in NRQCD but with
a coefficient which is a power series in g2(A). We can
therefore mimic it by setting the coupling constants of
NRQCD to be the appropriate power series required to
match full QCD. If A is large enough, g (A) is a small ex-
pansion parameter and we can sensibly demand a certain
level of accuracy in g2.

The coupling constants that result, however, will gen-
erally contain powers of A/M and so diverge as A/M
becomes large, even as g2(A) becomes small. This sim-
ply reflects the breakdown of perturbation theory for the
effective theory in that limit. We might expect perturba-
tion theory to be accurate in the region around A M
for large M. The size of this region will depend on the
numerical size of the coefficients of the divergent terms
and can only be decided by doing the perturbative calcu-
lation. The alternative is to tune the couplings numeri-
cally to fit experiment and this will certainly increase the
complexity of the numerical calculation. Also, if the cou-
pling constants can be fixed perturbatively, the theory
will have its maximum predictive power.

We must always give up some predictions, however,
to fix certain parameters of the theory. In light-quark
physics we must fix the lattice spacing and quark mass
in this way. For heavy-quark physics with NRQCD we
have these two parameters and an additional one —the
zero point of energy. When the Lagrangian of NRQCD
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is defined an energy shift is performed to remove the
usual mass term at the tree level. As we shall see in this
paper, loop diagrams generate an energy shift term with
a coefBcient proportional to A, since no symmetry pre-
vents it. In principle, the energy shift can be determined
in perturbation theory, like t,he other coupling constants.
This would then allow a numerical simulation to predict
absolute energies. Whether this is feasible depends upon
the value obtained.

In this paper we present results for the O(n, ) correc-
tions to the heavy-quark self-energy in NRQCD calcu-
lated in lattice perturbation theory W. e work with the
lowest-order (in 1/M) NRQCD Lagrangian with no spin
effects included. We obtain the wave-function renormal-
ization, mass renormalization, and energy shift required
to match full continuum @CD. We give results for an
infinite-volume lattice for difkrent values of the quark
mass in lattice units, Ma. We also give results for finite
spatial lattice volume.

In addition, we compare NRQCD to the static effec-
tive theory [2], which retains only the time derivative
part of the action and treats the kinetic term as a per-
turbation. The static effective theory has been used to
simulate bound states of heavy quarks with light quarks
[3]. It is not appropriate for the bound states of purely
heavy quarks. The expansion in powers of 1/M is orga-
nized differently in the static theory and this gives rise
to different coupling constants beyond the tree level.

The plan of the paper is as follows. In Sec. II we

present our action and Feynman rules. Section III con-
tains the O(n, ) corrections to the heavy quark self en-

ergy. In Sec. IV we discuss the results and their useful-
ness for numerical simulations. Section V contains our
conclusions.

G„, =O, t&0,
where H is the gauge-covariant operator

)- b~A 1
2Ma

2

The NRQCD lattice Feynman rules for heavy quarks
derived from Eq. (1) are given in Fig. 1. We work in
the Feynman gauge and take the gluon field to sit at the
center of a link. A gluon mass A is introduced to provide
an infrared cutoff.

Note that our approach is different from that of the
static effective theory [2], which however uses the same
action. There the kinetic energy term is treated as a
perturbation, so that at every order in 1/M it gives rise
to new contributions which are not suppressed by g. In
NRQCD the kinetic energy term is included in the quark
propagator. This means that contributions to the self-
energy that result from the operators in Eq. (1) are au-
tomatically included completely at a fixed order in g .
When Eq. (1) is extended to include additional terms,

e.g. , gt(D4/Ms)i/i, all those with order-1 coupling con-
stants will be included in the quark propagator. All ver-
tices will be at least O(g). We shall see the effect of this
difference in the two theories later.

We want to work in a region where the lattice spacing

a5~
t'p gl

b exp(ipoa) —1+ g 4 sin' —'
2150 t 2

a'5 5„„

II. NRC}CD LATTICE FEVNMAN RULES

To lowest order, the nonrelativistic lattice action can
be written
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The gauge-covariant difference operators are defined by
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where U „ is the usual lattice link variable at site z =
(x, t) in direction p (representing the gauge field) and
g„i is the quark field at spatial site x and time t An.
energy shift has been done to remove the usual mass term
[4]. Note that we have omitted all spin terms from the
action even though o B/2M is the same order in 1/M
as the kinetic term. It is not as important as the kinetic
term for spin-independent quantities. A more complete
calculation will include it [5].

The propagator satisfies the evolution equation [6]

G„i+i ——U„, 4[(1 —H)Gxi + bi, Obx, O]

a,j

p, d

p, c

b
Ia I-.

Tb
1" p a+ p a

2 2

FIG. 1. Feynman rules for the action of Eq. (1). A
dashed line indicates a temporal gluon Ao and a curly line
indicates a spatial gluon A, . They must be integrated us-

ing (1/a ) J [d (ka)/(2x') ] to give the self-energy in lattice
units.
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is small and perturbation theory is valid although Ma
should not be too small. A problem arises, however, in
numerical simulations with NRQCD, while Ma is still
fairly large. The problem is that the high-momentum
modes (p, a s) can tend to swamp the contribution of
low-momentum modes when numerical precision is lim-

ited. The region where this happens can be seen by per-
forming the Fourier transform of the free lattice quark
propagator. We have

changed to

«f
p c

000000000000
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we must distort the contour away from a unit circle. The
integral then gives

where z = exp(ipoa). In the numerical work we select
forward propagation in time and we must enforce this in
any analytic calculation. This means we must choose the
z contour so that the pole in the propagator is inside the
contour for all values of the spatial momentum. For

g sin' ~ +sin' —'
2 2

1
l 1 +

& 4ma

p,a+ p,'a- k,a
2

FIG. 2. Additional Feynman rules for interactions be-
tween quarks and spatial gluons, when the action of Eq. (10)
is used.

4 ) [sin (p, a/2)]

2Ma

If Ma ( 3 modes with high spatial momenta will satisfy
Eq. (7) and will give a contribution to the quark prop-
agator which actually grows with t. On a computer it
may then be difficult to separate the small contribution
of physical low-momentum modes from underneath this
huge background.

This instability in the evolution equation corresponds
to the well-known numerical instability of the diffusion
equation if the time step is too large. The usual remedy
is to take smaller time steps or, on the lattice, to re-
duce the temporal lattice spacing. However, in general,
gluon field configurations are generated with the same
lattice spacing in all directions and so another remedy
is necessary. In the numerical simulations of Ref. [1] the
nonrelativistic action was modified so that the evolution
equation becomes

G sip ——U„, 4 1 — H~ | g + bi, ob„—,o, (9)
n )

where n is a small integer. This equation is stable for
masses of order 3/n or larger. The modified action differs
from the original action by O(a/M) corrections. Clearly
as n ~ oo the central term of the evolution equation
will look like exp( —H) which is the version appropriate
for continuum time. No problem with high-momentum
modes occurs in that case. For n=2 the action becomes

and the evolution will be stable for Ma & 1.5.
Since this is the action that has been used in numerical

work for Ma ( 3 [1], it is the action we use for pertur-
bative calculations also. We quote the results for n = 1

and n = 2. The additional Feynman rules for the n = 2
case are given in Fig. 2.

Analytically we can always take a smaller temporal lat-
tice spacing if we wish, and we will discuss this case also.
It may turn out to be the numerical solution of choice
in the future, since the computational time required is
shorter. We take a temporal lattice spacing a~ and a
spatial lattice spacing a with na~ ——a. n can then be
chosen appropriately to prevent instability of the high-
momentum modes. No adjustment of the action is nec-
essary. The Feynman rules for this case [7] are a simple
modification of those in Fig. 1. Every occurrence of the
sine of a spatial momentum is divided by n, and there
is an overall factor of I/ns multiplying each Feynman
diagram.

For the static theory the numerical problem with high-
momentum modes on the lattice does not arise. The
propagator is evolved forward in time using a variant of
Eq. (3) in which the operator H is treated as a pertur-
bation and acts only on a small number of time slices.
In analytic calculations there is no kinetic energy term
in the quark propagator; propagation forward in time is
enforced by an c prescription. As we shall see, this gives
rise to another problem in which perturbative coefficients
have large mass-dependent contributions.
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III. ORDER-ns CORRECTIONS
TO THE HEAVY-QUARK PROPAGATOR

The diagrams which contribute to the mass and wave-
function renormalization and the energy shift of the
heavy quark are shown in Fig. 3. At O(g2) we write
the quark self-energy in lattice units as

~ Q 2

E(p) =Aa+8 ) (sin
'

)

4 p g 2
+C exp (ipoa) —1+ ) sin +

t

for small values of the quark momentum p, and energy
po and the action of Eq. (1). For Eq. (10) the term mul-

tiplying C is modified to include the appropriate quartic
terms in the spatial momentum from the zeroth-order
self-energy. We write the self-energy in this form so that
it combines easily with the zeroth-order term. It is of
course indistinguishable at small pa from the continuum
form.

Ag2 is then the energy shift for the quark propagator
in GeV. 8 is the O(g ) contribution to the mass renor-
malization and C is part of the O(gz) contribution to the
wave-function renormalization. We discuss this in more
detail in Sec. IV.

The constant A is calculated by simply setting the
quark momenta and energy to zero on the external legs
of all the diagrams. B is found by setting the quark on
shell (exp (ipoa) —1 + 4[sin (pa/2)]2/2Ma)=0 for n=l,
taking the second derivative with respect to the three-
momentum pa, and then setting pa to zero. C is cal-
culated by setting pa to zero, taking the derivative with
respect to the energy poa, and then setting poa to zero.
The integrals over loop momenta (k) must be done nu-

merically; we used vEGAs [8] to evaluate them. Note that
the integrals are a function of the product Ma only and
not M or a separately.

One useful numerical check is that in the Ma ~ oo
limit we should agree with the results of the static effec-
tive theory to zeroth order in 1/M at O(gz) [2]. This fol-

lows simply by looking at the integrals and noticing that
in that limit the terms containing spatial quark momenta
are always small and can be neglected. An appropriate e

prescription must be chosen instead, to enforce forward
propagation in time. The integrals then become those of
the static theory.

Beyond leading order in 1/M the values for A, 8, and
C calculated in the static theory and NRQCD will not
agree. The results for the static theory are basically ob-
tained from those for NRQCD by expanding the internal
quark propagators to a given order in 1/M before in-

tegrating. The results are then a truncated expansion
in powers of 1/M of the expressions for A, B and C in
NRQCD. If Ma is sufficiently large the expansion will

be very convergent and the two theories will give very
similar results. As Ma is reduced, the coeScients in the
static theory will diverge earlier than those in NRQCD.
This gives the latter theory a larger window in principle
in which perturbation theory is accurate. How large this
window is for either theory is yet to be determined.

We give results for A, B, and C for NRQCD on an
infinite lattice in Tables I—III. We have chosen values of
Ma appropriate to b and c quarks at a = 1.0 GeV
(i9 5 7) an. d for 6 quarks at a = 0.5 GeV ~ (P 6.0).
For values of Ma ( 3 (c quarks at a=1.0 GeV ~ and
b quarks at a=0.5 GeV ~) we have used the action of
Eq. (10). We have not treated c quarks at a=0.5 GeV
since this would require using n=3 in Eq. (9).

We also give results for finite spatial volumes 8 x 8 x
16 and 16 to estimate finite-volume effects. We have
not studied the case of a finite-size lattice in the time
direction. Since the evolution equations can be continued
for an arbitrary number of lattice time units, it is possible
to take the effective time extent of the lattice for the

TABLE I. Results for the energy shift aA in lattice units.
The error in the infinite-volume results is +0.0002 and the
estimated error in the finite-volume results is +0.005. The
values for Ma are chosen to cover the range of possible values
for the b- and c-quark masses. 5 and 4.7 are appropriate for
b quarks at a=1.0 GeV and 2.5 and 2.35 at a=0.5 GeV
1.8 and 1.5 are values for the c quark at a=1.0 GeV

(b)

OO

5
4.7
2.5
2.35
1.8
1.5

a Az.

—0.1684
—0.1472
—0.1461
—0.1383
—0.1374
—0.1333
—0.1314

aAs

0.0
—0.0603
—0.0641
—0.1104
—0.1167
—0.1476
—0.1727

aA

—0.1684
—0.2075
—0.2102
—0.2487
—0.2541
—0.2809
—0.3041

(c)

FIG. 3. Diagrams which contribute to the heavy-quark
self-energy. A dashed line indicates a temporal gluon Ao. A
curly line indicates a spatial gluon A, .

8x8x16

16

5
4 7
1.8
1.5

2.5
2.35

—0.139
—0.136
—0.126
—0.123

—0.138
—0.137

—0.059
—0.0634
—0.165
—0.198

—0.120
—0.128

—0.198
—0.199
—0.291
—0.321

—0.258
—0.265
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oo volume
5

4.7
2.5
2.35
1.8
1.5

0.2370
0.2509
0.2517
0.3194
0.3243
0.3484
0.3688

8x8x16
4.7
1.8
1.5

0.284
0.283
0.392
0.413

TABLE II. Results for the mass renormalization B. The
error in the infinite-volume results is +0.0003 and the esti-
mated error in the finite spatial volume results is +0.002.
The significance of the different values of Ma is described in

the caption to Table I.

and gives good agreement between numerical calculations
and O(g2) lattice perturbation theory for a number of dif-
ferent quantities. It will be the scheme we adopt here.
The expansion parameter gi (q ) is then given by the
usual two-loop formula where A~ is 46.08Ai «I«and the
scale q is chosen as the logarithmically averaged scale
for the process. We choose q2 to be z'/a since the quanti-
ties we calculate here (A and B) are ultraviolet divergent
and therefore mainly sensitive to scales close to the cut-
olf. We find gzz(z/a) = 1.9 at P = 5.7 and gvz (ir/a) = 1.7
at P = 6.0.

One consequence of absorbing potentially large O(g4)
contributions into g~ is that g~ becomes much larger than

g~ «,«and more scale dependent. We hope that by do-
ing this the perturbative series will be more convergent.
A test will be provided by comparing perturbative re-
sults for (some of) the coupling const, ants of the nonrel-
ativistic theory with those from numerical tuning to fit
experiment.

16 2.5
2.35

0.347
0.351 A. Energy shift

TABLE III. Results for the heavy-quark wave-function
renormalization on the lattice, Z, with the infrared loga-
rithmic dependence subtracted out. The error in the infi-
nite-volume results is +0.0002 and the estimated error in the
finite spatial volume results is +0.002. The significance of the
different values for Ma is described in the caption to Table I.

oo volume
5

4 7
2.5

2.35
1.8
1.5

0.0383
0.0070
0.0052

—0.0101
—0.0121
—0.0208
—0.0264

quark fields to be very long in numerical simulations if
necessary. It is only the gluon fields which see a finite-size
lattice in the time direction.

To obtain actual values for the O(g~) contributions we

must multiply them by g2 and there is some ambigu-
ity in doing this. Recent work [9] has suggested that
we should choose a renormalization scheme in which the
heavy-quark potential at momentum transfer q has no
O(g4) contribution in perturbation theory. It is hoped
that this will mean O(g~) terms in other quantities will

then be small also. The scheme has a physical motivation

Calculation of the energy shift A is straightforward.
The numerical results for Aa for diR'erent values of the
quark mass Ma are given in Table I. A is broken into
a contribution from temporal gluons AT [Figs. 3(a) and
3(b)] and that from spatial gluons As [Figs. 3(c) and
3(d)]. This will become useful later.

All four diagrams in Fig. 3 cont, ribute to Aa. As ex-
plained earlier, the external quark momentum pa is set
to zero and the integration over gluon momentum ka is
done numerically. The gluon mass A can be set to zero
when evaluating the integrals since Aa is infrared finite.
To obtain results on a finite spatial volume, we do the in-
tegration over kpa analytically and sum over the spatial
momenta ka. We use periodic spatial boundary condi-
tions, since they are generally used in numerical simula-
tions. That means, however, that we must reintroduce
the gluon mass to avoid a divergent contribution from
ka = 0. Provided A a is larger than the smallest nonzero
value for k a on that volume we can safely extrapolate
the results as a function of A a to A a = 0.

We have checked that the results agree with those of
the leading-order static theory [2] in the Ma ~ oo limit.
It is in fact quite instructive to study the lattice integrals
for A in this limit. Only Figs. 3(a) and 3(b) contribute.
The sum of these diagrams is given by the integral

2 d k 1 ( 2exp( —ikp)
3 «(2s) 4) [sin(k /2)]2 &exp( —ikp) —1+ E

(12)
8 x 8 x 16

16

5
4.7
1.8
1.5

2.5
2.35

0.016
0.014

—0.003
—0.005

—0.001
—0.002

where c 1/Ma and k replaces ka. Combining terms
and symmetrizing the denominator with respect to ko
shows that the resulting integral is odd in ko except for
pieces proportional to 1/Ma. In fact these terms give a
finite result even as 1/Ma ~ 0. This is seen by replacing
the gluon propagator by the diR'erence between itself and
the gluon propagator evaluated at kp ——0 [10]:
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1 1 1

A, (k) A~(ko ——0) b.~(ko ——0)
—4[sin (ko/2)]2 1

a, (k)a, (k, = 0) a, (k, = 0)
+ (13)

The piece with [sin(ko/2)] in the numerator vanishes
as I/Ma ~ 0. The other piece is finite as 1/Ma ~ 0
and gives the result simply as the three-dimensional (3D)
integral over the gluon propagator with ko ——0.

At, finite Ma one can also derive a useful result. In that
case the second term of Eq. (13) gives the same answer,
independent of Ma, provided that we keep c & 1, i.e.,

that we use the n = 2 action when Ma & 3. This means
that AT has only weak dependence on Ma provided by
the first term of Eq. (13).

In the Ma ~ oo limit, Aa is simply a number:
—0.1684. A is then linearly divergent as a ~ 0. At finite
Ma extra quadratic divergences are introduced by terms
in Aa of the form I/Ma. These arise from the spatial
tadpole diagram [Fig. 3(c)], for example. When Ma is
so small that the n = 2 action must be used Aa contains
(1/Ma)~, i.e., cubic divergences. Since A is such an ul-
traviolet quantity and not sensitive to the infrared cutoff
of the lattice volume, we do not expect large finite-size
effects when a finite spatial lattice is considered, Table I
shows that such effects are indeed small, growing as Ma
is reduced.

From Table I we see that gzA will be around —0.5
GeV at P = 57 and close to —10 GeV for b quarks at
P = 6.0. This is small compared to the b quark mass but
large compared to the energy splittings between states.

It is interesting to consider what the static theory
would give for A. The results at O(1/M) are readily
obtained as part of our calculation. The static theory
would have the same temporal quark-gluon vertices as in
NRQCD (see Fig. 1) but a quark propagator with the
kinetic energy term replaced by e. There would be an
additional vertex of the form p /2m that could appear
once [to O(1/M)] on the internal quark line of Fig. 3(a).

Figure 3(a) provides a useful illustration of the differ-
ences between the two theories. If we replace the lat-
tice sine functions by their continuum counterparts, we
can do the integrals analytically. NRQCD would then
give —2M ln(1+ A/2M) where the static theory would
give —A+ A /4M to O(l/M). As an expansion in pow-
ers of 1/M the static theory result is clearly unreliable
once A/2M ) l. Attempts to systematically improve the
static theory by including higher orders in 1/M will have
problems if perturbative coeKcients change drastically
from one order to the next.

On the lattice Fig. 3(a) combines with the temporal
tadpole which is the same for the two theories and inde-
pendent of M [Fig. 3(b)]. For comparison to the results of
NRQCD we find for the static theory aAT has the value
—0.1477 at Ma = 5, —0.1271 at Ma = 2.5 and —0.0995
at Ma = 1.5 O(1/M). The coeflicient of the 1/M de-
pendence in these results is 0.1035. This contrasts with
NRQCD in which ATa is not strongly mass dependent,
changing only by 10% as Ma changes by a factor of 3 in
Table I.

The situation for the spatial gluon diagrams [Figs. 3(c)
and 3(d)] is rather different. Asa vanishes as Ma ~ oo
and is strongly mass dependent. In NRQCD it varies as
I/Ma at large Ma. As we reduce Ma and have to mod-
ify the action for NRQCD, additional powers of I/Ma
are introduced into both diagrams by the new Feynman
rules of Fig. 2. The additional terms are more diver-
gent, but they enter with opposite sign to the previ-
ous terms. The resulting divergence is slight, ly less than
1/Ma over the range of masses in Table I. In the static
theory only Fig. 3(d) gives a result at O(1/M). Figure
3(c) is O(l/Mz) and should be neglected when consid-
ering 1/M corrections. The results at O(1/M) are then
larger in magnitude than the results of NRQCD, since
they scale as I/Ma for all Ma. We obtain —0.0620 at
Ma = 5, —0.1240 at Ma = 2.5, and —0.2066 at Ma = 1.5
for the static theory. The total result for aA is actually
very similar for NRQCD and the static theory over the
range of masses in Table I.

We have also calculated the energy shift in NRQCD
by allowing the lattice spacing in the time direc-
tion, a~, to be less than that in the spatial direc-
tion, a. For ai —— a/n, the results for the energy
shift are basically unchanged as n is increased for
fixed a. At Ma = 5, we found aA to be —0.2211,
—0.2265, —0.2282 for n = 2, 4, 8, respectively, and at
Ma = 1.8, the values of aA were —0.3155, —0.3304,
—0.3351 for n = 2, 4, 8. These numbers are not signif-
icantly different from the n = 1 case.

B. Mass renormalization

The contribution to the mass renormalization 8 was
much harder to calculate numerically. It is necessary to
set the quark on shell and take the second derivative with
respect to pa analytically. Attempts at setting the quark
on shell numerically yielded inconsistent results.

First, exp(ipoa) must be eliminated by use of the ap-
propriate on-shell condition for the n = 1 or 2 action.
This modifies the quark propagators with momentum

p —k for the diagrams of Figs. 3(a) and 3(c) as well as
modifying the vertices for the temporal gluons for Figs.
3(a) and 3(b). After differentiation, pa is set to zero and
the 4D integration over loop momentum k must be done.

One term contains the cube of the quark propagator
and was hard to handle numerically. We used integration
by parts with respect to koa to reduce it to the square
of the quark propagator, which was then easy to inte-
grate numerically. Another approach is to do the whole
koa integration analytically. This is not hard, since the
only pole inside the koa integral comes from t, he gluon
propagator. The resulting 3D integral is easy to handle
numerically. Both methods of doing the integral agree.

Another method is to calculate B + C by setting poa
to zero before differentiating with respect to pa. This is
a useful check on the results for B and C.

At finite Ma, B is logarithmically divergent as a ~ 0
for the n = 1 action and linearly divergent when n =
2. The numerical results for B for the infinite volume
case and for diA'erent spatial lattice volumes are given in
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Table II. The results at finite volume were obtained with
the same summation techniques which were used for A.
8 is again not very volume dependent.

The values for Bg~ are quite large and change consid-
erably with Ma. They amount to a 50%%up correction to the
mass for b quarks and 70% for c quarks using gv~

——1.9.
The infinite-mass value for B is 0.2370. This corresponds
to the O(g2) correction to the coefficient of the kinetic
term, which is needed in the static effective theory on the
lattice when working strictly to O(1/M). It, has not been
calculated previously.

We have also calculated the value of B in NRQCD
for temporal lattice spacing, aq

——a/n, as we did for
the energy shift. We find 8 = 0.1928, 0.1644, 0.1487
for n = 2, 4, 8 at Ma = 5. At Ma = 1.8, B
0.2214, 0.1972, 0.1836 for n = 2, 4, 8. Clearly, the size
of the temporal lattice spacing relative to the spatial lat-
tice spacing has a fairly strong effect on the mass renor-
malization, particularly at low masses. Using a smaller
temporal lattice spacing could decrease the O(gz) contri-
bution to the mass renormalization to 40%%uo for c quarks.

C. Wave-function renormalization

4 d4k ( exp [i(poa + ko)] )
3 .(2~)4 q Z, (k)a, (pu —k) ) (14)

Differentiation with respect to ipoa gives two pieces: one
from differentiating the numerator and one from differ-
entiating the quark propagator. Since the numerator is

simply proportional to exp(ipoa), the first piece repro-
duces the contribution of this diagram to aA when po is
set to zero. When combined with the differential of the
tadpole diagram, Fig. 3(b), we obtain exactly aAz . The
second piece from Fig. 3(a), obtained by differentiating
t, he quark propagator, is combined with a similar piece
from the diagram with spatial gluons, Fig. 3(c), to give
a contribution we call Z. Thus C = Z+ aAz. In this
section we calculate Z since A~ has been given before.

Z has an infrared divergence as the gluon mass A is
taken to zero. The coeKcient of this divergence can be
calculated analytically, because it comes from the region
of integration where k 0 in Fig. 3(a). In this region
we can expand all the sine functions of spatial momen-
tum into their continuum counterparts and perform the
integration. At O(g~) the infrared divergence is found to
take the form

The constant C is found by first differentiating with
respect to the energy, ipoa, and then setting pp —0.
Diff'erentiation breaks C into two distinct pieces, one of
which is identical to aAz, where Az is the temporal con-
tribution to the energy shift. This is particularly easy
to see if Fig. 3(a) is drawn with momentum p —k going
through the gluon propagator and k through the quark
propagator. The integral becomes

The coeKcient of the divergence is the same as that ob-
tained for the wave-function renormalization in the full
relativistic theory and this confirms that they are repro-
ducing the same low-energy behavior.

We subtract Eq. (15) from the numbers obtained to
give an answer for Z which is finite as A ~ 0. These
results are given in Table III. The numbers are all very
small.

Our results for Z agree in the Ma ~ oo limit with
those calculated by Eichten and Hill [10]. However, our
result for C is C = Z + aAz, while they obtained C =
Z —aAz . This will be explained in Sec. IV.

In the large mass limit Z takes the value 0.0383. It is
clear from Table III that Z is st;rongly mass dependent,
even changing sign at small Ma. In the value for C, Z

will be overwhelmed by aAz .
The static theory results for Z to O(1/M) are 0.00467,

—0.02890, —0.07362 for quark masses in lattice units of
5, 2.5, and 1.5. The coefficient of the 1/M dependence
in these results is 0.168. This is again a rather stronger
mass dependence than the results in NRQCD. The total
result for C = Z + aAz, however, is very similar for the
static theory and NRQCD.

For the case with different spatial and temporal lat-
tice spacings (aq ——a/n), Z = —0.0020, —0.0189, —0.0397
for n = 2, 4, 8 and Ma = 5. For Ma = 1.8, Z
—0.0433, —0.0567, —0.0748, for n = 2, 4, 8. There is a
significant change in Z as n is increased, but Z will still
be much smaller than aAz .

IV. DISCUSSION

When the O(gz) corrections are included the inverse
propagator in lattice units becomes

6& —Z = (1 —Cg ) exp (ipoa) —1 —Aag

~ a
g.(1 —Bgg) ) (sin

'
)

(1 Ccggntg )[P™(I~contg )] (17)

where C, „q
—

[—4 + ln(M /p2) + 21n(M /A )]/12z'
and 6 „&

—(4 + 31n p~/M~)/12m~. The nonrelativis-
tic expansion of Eq. (17) will agree with the result from
NRQCD at small pa if we adjust the coefficients of the
operators in the Lagrangian of NRQCD or, equivalently,
add counterterms.

The NRQCD Lagrangian becomes

(16)
for lattice regularized NRQCD. We must compare this to
the result for full QCD in continuum Minkowski space. In
the renormalization scheme (modified minimal subtrac-
tion scheme) MS we would have an inverse propagator at
O(gz) of the form

(—21nA a). (15)

The lattice calculation of Z must reproduce the infrared
divergence in this form and we have checked that it does. (18)
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(19)

This would lead in NRQCD to an evolution equation:

G„, = (1+ H) '(U„, 4G~~- i + ~~,ph, p), (20)

The overall wave-function renormalization factor (1 +
Cg )/(1+ C, „&g ) is conventionally not included in the
action. We work with the bare fields of Eq. (18) and later
renormalize our measured values for the matrix elements
of currents involving @. The energy shift Aagz is also not
included in the action. It can be added afterwards to the
masses obtained from the action of Eq. (18).

The kinetic term, however, must be renormalized in
the action. If we work with a kinetic term of effective
mass MRa/(I+ Bgz) we will match a continuum calcu-
lation with a mass in the action of M~(1+ b, „,g ) and
a renormalized or pole mass in its perturbative quark
propagator of M~. Of course we do not know the value
of M~, although presumably it is around 5 GeV for a b

quark. We must therefore fix the effective mass in the
kinetic term of NRQCD on the lattice by numerical tun-
ing. Once the effective mass is obtained we can extract
M~, although we have seen that (1+Bg2) is rather large
for this to be reliable.

A value for M~ leads in principal to a prediction for ab-
solute hadron masses by applying a shift to the masses
extracted from simulation. The shift is M~ + Ag per
quark. The shift of Ag~ is required to cancel the pertur-
batively generated energy. Notice that A is negative so
that masses calculated in numerical simulations with the
NRQCD action of Eq. (18) will be positive. M~ is added
from outside NRQCD, because for that theory the usual
mass term has been removed. To match the energy per
quark of the relativistic theory, we must have an energy
in the nonrelativistic theory of M~+ p /2M~+. so the
added mass must be M~. Since 2Ag2 is less than 20%
of the T mass, the main uncertainty in the energy shift
will be the uncertainty in the value of Mg and the size of
any nonperturbative effects. Nevertheless a reasonably
accurate prediction for absolute masses, to within 30%,
could be obtained. This is in itself a useful test of the
theory. For mass splittings, on the other hand, no energy
shift is required, and they should be obtained much more
accurately.

Thus we have to fix the lattice spacing and effective
mass numerically in lattice NRQCD. This is actually
much simpler than in the relativistic theory. The lat-
tice spacing can be fixed essentially independently of the
mass by using the s-p splitting. The effective mass in lat-
tice units can be tuned by comparing the wave function
at the origin to that extracted from experimental leptonic
decay rates. An additional perturbative vertex renormal-
ization factor is required for this comparison [11].

Now we will return to the ambiguity in the value for
C noted at the end of Sec. III. The resolution of this
ambiguity lies in a comparison of the evolution equations
for the Green's function used in our calculation and that
of Ref. [10]. Our evolution equation is given in Eq. (3).
In Ref. [10] an alternative, but equally valid choice of the
time derivative operator is used:

G 4 ——O, t(0. (21)

If we write out the evolution equations step by step we

will see a clear difference. For the version using A4 we

have

Go ——0,
Gg: Uo 4

Gp ——U, 4(1 —Hg)Up 4 .t t

For the version using 6 4 we have

(22)

(23)

(24)

Gp —(1+Hp)

Gy ——(1 + Hg ) 'Up ~(1 + Hp) (26)

G2 = (1 + H2) U) 4(1 + Hy) Up 4(1 + Hp) . (27)

(25)

Counting powers of (1—H) would lead to a different fit to
the numerical results for a correlation function calculated
using the two evolution equations. For A4 one would use
exp [—m(t —1)] and for 6 4, exp[—m(t+ 1)]. This is
also clear, as it must be, from performing a Fourier trans-
form of the free quark propagator in momentum space
[see Eq. (8)]. The results we provide in this paper refer to
the evolution equation for 6&. We prefer this form since
the numerical simulation is easier. From Eq. (27), the

4 case requires a 3D inversion of the operator (1+H).
Nevertheless, both evolution equations should lead to the
same physical results, for masses etc. The raw numerical
results for amplitudes may look different but there will
also be different renormalization constants to be applied.
For example, the constant C calculated in this paper will

be different for the 6 q case.
One situation where the two evolution equations must

yield identical numerical results before renormalization is

in the Ma ~ oo limit. Then H ~ 0 and both equations

yield the same string of Ut matrices for t ) 0. This is

also the Green's function for the static effective theory to
zeroth order in 1/M. However, in this limit, the Aq ac-
tion yields a wave-function renormalization C = Z+aAT
and the 4 4 action gives C = Z —aAT. The 6 4 result
follows simply from the fact that the Feynman rules for
Eq. (20) have vertices of the form exp( —ipp) rather than
exp(ipp). Differentiation with respect to pp then intro-
duces a minus sign into the pieces of C which correspond
with aAT. It is straightforward to show that Z and aAT
have the same va, lue.

Since the naive interpretation of C is that it is the
wave-function renormalization, this result is at first sight
disturbing. Since the numerical value of the quark prop-
agator calculated on the lattice is the same in the two
cases, this must also be true in perturbation theory; and
in fact it is. As noted above, the exponent of the Green's
function has a different t dependence in the two cases and
this difference is exactly matched, in perturbation theory,
by the difference in the wave-function renormalization. It
was pointed out in Ref. [10] that changing the t+ 1 to t in
the exponent of the Green's function changes the wave-
function renormalization by a finite amount aAz, Here
the difference is between t —1 and t + 1 and the effect is
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to change C by two units of AT . Thus to O(g2) we have

1
2(1+ aATg )'

1 —Zg2 —aATg2

(1+aAT g )'+' . (28)
gg2 + pAT g2

Higher orders in g2 must also make this equality true.
This leads one to suspect that the Z and AT pieces of C
may factorize.

One is still left, with an ambiguity in numerical sim-
ulations. There a fit to an exponent of t —1 will give
a different answer for the amplitude of some correlation
function to one with a fit of t + 1, even after the appro-
priate wave-function renormalization for that fit is used.
The difference between t —1 and t + 1 is equivalent to
shifting two units of the mass for that correlation func-
tion into the amplitude. The mass will consist of aA7
plus a physical binding energy. The contribution of the
physical mass will vanish as a ~ 0 but can give a signif-
icant contribution at finite a. There will also be differ-
ences in the renormalization constants at higher orders
in g~ than those that have been calculated. It may be
true that, based on some estimation of the large contri-
butions to the renormalization constant, one can prefer
one fit over the other [9].

V. CONCLUSIONS

The calculations reported here for NRQCD differ from
previous calculations given for the static theory [10] by
the inclusion of the kinetic term in the action. There is
a significant mass dependence in all of the renormaliza-
tion parameters we have calculated; a 50% change over
the mass range from b quarks to c quarks is typical. We
discuss results from two different methods of controlling
instability in the high-momentum modes. The method
currently used in numerical simulation is that of modify-
ing the action. Another possible method for the future is
to take a lattice with reduced temporal lattice spacing.
The results for the renormalization parameters are simi-
lar in the two cases, although the latter method gives a
significantly smaller mass renormalization.

We compare our results to the static theory in which
the kinetic term is included as a perturbation to O(1/M).
Renormalization parameters in that case inevitably have
a mass dependence such as I/Ma, and this is signifi-
cantly stronger than the mass dependence of NRQCD in

most cases. It may lead to an earlier breakdown in per-
turbation theory for the static effective theory as Ma is
reduced, although we see no sign of that for the values
of Ma that we have considered here. We find the results
of the static theory at O(1/M) to be significantly differ-
ent from those of NRQCD for individual pieces of the
renormalization constants but in the total energy shift
and wave-function renormalization these differences tend
to cancel.

We have calculated the mass and wave-funct;ion renor-
malization and the energy shift for heavy quarks in

NRQCD. These values will be useful in numerical sim-
ulations involving heavy quarks. The values for the mass
renormalization and energy shift are large at O(gz). Nev-

ertheless they can be used for a prediction of absolute
hadron masses from a numerical simulation. The wave-

function renormalization C can be combined with the
O(cx, ) corrections to vertex operators to produce values
for O(o.,) corrections to decay constants measured in the
lattice simulation. These values will be reported in an-
other paper [11].
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