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We describe the measurement of the light quark mass ratios when one calculates to second order in
the quark masses. At this order there is an ambiguity in the meaning of the quark mass, which afflicts
the past attempts to provide a model-independent measurement of the ratios. We argue that this is simi-
lar to the regularization-scheme dependence of coupling constants. We study the anomalous Ward iden-
tities and the effects of strong CP violation in an attempt to resolve the ambiguity. The ambiguity per-
sists even with singlet fields, such as the 7’, but can be resolved by observing the 6 dependence of the
theory. Since matrix elements of FF are related to 3L ocp /96, they are useful probes of quark masses.
We give a procedure by which quark mass ratios can be measured in a model-independent way through
the matrix elements (O|FF|7°), (O|FF|n), and (O|FF|37), which in turn are observable in V' — V7°
(n,3m), with V being ¥ or Y, when analyzed using a heavy-quark multipole expansion. Present data are
not sufficient to complete this program, but we use available results to provide the value
((my—m,)/(myg+m,)]m,+@)/(m,—#)=0.59+0.07+0.08 (i.e., m,/m,=0.300.05+0.05), where
the first error is experimental and the second is our estimate of the remaining theoretical model depen-

dence.

PACS number(s): 12.15.Ff, 11.30.Rd, 11.40.Fy

I. INTRODUCTION

In most field theories, the masses of the particles are
the most obvious and accessible properties. However, in
QCD the masses of the light quarks (u,d,s) have a very
different character. They are not directly measurable in
inertial experiments, but enter the theory only indirectly
as parameters in the fundamental Lagrangian. In this
respect they are much more similar to coupling constants
than they are to inertial masses. Both coupling constants
and the light quark masses must be measured by their
influence on observables. To do this properly, one has to
be able to calculate the observables in terms of the renor-
malized coupling constants and masses, defined in a
specified regularization and renormalization scheme.
Generally this is accomplished order by order in a pertur-
bative scheme. In the case of the light quark masses, our
inability to calculate hadronic properties at low energy
makes it difficult to use this method to extract the renor-
malized masses.

There is, however, a rigorous, semiphenomenological
method, chiral perturbation theory [1-3], to extract in-
formation about the ratios of quark masses, order by or-
der, in an expansion in the masses themselves. It relies
on the fact that there would be an exact chiral symmetry
in the limit that the masses vanish. Deviations from the
exact-symmetry predictions are then functions of the
masses which, to the extent that the masses are small, can
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be expanded in a series in the mass. To first order,! the
results are extremely simple [4]:
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To this order, the interpretation is equally simple. Since
the leading-order QCD renormalization is mass indepen-
dent, these ratios are equally well the ratios of renormal-
ized masses or of bare parameters in the Lagrangian.
These measurements of mass ratios will be modified if the

IWe would like to emphasize that here and throughout the rest
of the paper, when we describe the order of the expansion, it
refers to an expansion in the mass. A perturbative expansion in
the QCD coupling constant is never implied.
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theoretical analysis is carried out to next order, when the
subtleties appear. It is the purpose of this paper to dis-
cuss the analysis of quark mass ratios at next order.

There are several motivations for this work. In the
first place, the quark masses are some of the basic param-
eters of the standard model, and it is important to docu-
ment our level of understanding of them. There is in the
community an almost universal acceptance of the
lowest-order mass ratios of Eq. (1). This is not warrant-
ed, as we will demonstrate that sizable corrections to
these ratios are allowed. A second motivation is a known
ambiguity which first surfaces at second order [5]. While
we will leave the precise statement of the ambiguity to
the next section, it states that we can obtain the same
phenomenological consequences either from a mass ma-
trix m, or from a changed mass matrix

mM=m +Adettm)m "', (2)

where A is an arbitrary constant. Specifically (at second
order)

mM=

m,+Amgm; ,

mM=my+xm,m,, (3)

mP=m +Am,m, .

As far as phenomenology is concerned, any one in this
family of mass matrices can be chosen as the primary
mass matrix. There have been conflicting claims about
the effect of this ambiguity [5-7], including an interesting
recent investigation by Leutwyler to resolve the ambigui-
ty [7], and we will spend a good deal of the paper in an
attempt to clarify this issue.

A further motivation comes from the strong CP prob-
lem [8]. The only solution which does not require physics
outside the standard model is the option with m, =0, in
which case the effect of the 6 term vanishes. Put another
way, the physical CP-violating parameter is 6detm,
which would vanish if detm =0. Although it has been
argued in the past that this option is not viable phenome-
nologically, this conclusion has been questioned because
of the ambiguity mentioned above [5]. We note, howev-
er, that, even if it were to be allowed phenomenologically,
the “m, =0 option” does not resolve the naturalness
problem within the standard model as it is no more natu-
ral to set m, =0 than to set 6=0.

There is, in addition, a stimulating calculation by Kim,
Choi, and Sze [9]. These authors consider a massless up
quark in an instanton gas and show that, through the in-
stanton quantum effects of Fig. 1 (the 't Hooft deter-
minant), the up quark would pick up a nonzero mass

eff —
u

mT=Cmym. %, @)
where the constant C depends on the details of the calcu-
lations including the cutoff on the integration over instan-
ton sizes. More important than the precise numerical
coefficient C is the explicit demonstrations that this form
of mass shift takes place in QCD. This calculation raises
questions about how one defines the quark mass, and

which quark mass plays a role in the chiral U(1) , rota-
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FIG. 1. The diagram used to generate an effective up quark
mass in Ref. [9]. The symbol X indicates a mass insertion.

tion needed to remove 8. This phenomenon will fit natu-
rally into the description of mass effects which are con-
sidered in chiral perturbation theory.

One of our goals is to provide a procedure by which
quark mass ratios can be unambiguously measured. At
this stage, we should distinguish between a ‘“‘measure-
ment” and a “model.” For our purposes, a ‘“measure-
ment” means a determination (from experiment) which
follows rigorously from QCD to the order that one is
working. In contrast, a “‘model” implies that one uses re-
sults from nonrigorous calculations which attempt to
mimic low-energy QCD. Past attempts to extract quark
masses at second order have all had some aspects which
are in the model category. This is not to say that they are
bad estimates; they may, in fact, be successful at mimick-
ing QCD. However, because models involve adjustable
assumptions, they do not form a controlled approxima-
tion scheme to QCD, and we cannot be truly confident of
the results.

We will find that the 8 dependence of the theory can be
used to probe the quark masses. While it is unfortunately
not possible to measure the 6 dependence from the obser-
vation of strong CP-violating effects, the matrix elements
of FF are related to dLqcp/d6. Fortunately, the mul-
tipole expansion [10,11] for heavy quarks shows that the
decays V—V +M, where V=7 or ¢ and M =1r°,71,37r,
are dominated by the FF matrix elements, to leading or-
der in the heavy-quark expansion. This then yields an
operational procedure for the measurement of quark
masses. Sufficient data do not yet exist to carry out that
measurement, so we provide a weaker estimate based on
available data. The result is slightly, but not dramatical-
ly, different from previous estimates.

II. QUARK MASSES
AND CHIRAL PERTURBATION THEORY

The fundamental fact of low-energy QCD is that the
approximate chiral symmetry (which would be exact if
m,—0) is dynamically broken with the pions, kaons, and
7 being the approximate Goldstone bosons. The interac-
tion of these bosons is best described by an effective La-
grangian, which expands low-energy matrix elements in
powers of the energy and quark masses. While there are
many ways to present and parametrize this effective La-
grangian, we will follow the notation of Gasser and
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Leutwyler [2].
Consider QCD coupled to external sources / w Y S Ps
0,

Locp=—+FLFY+9iDy—1, (s +ip)dg

— (s —ip)yh 1+ 9% pa
R L gg ™k ’
N tt (Itys) (1—ys)
zDH—taH-FgTA# +lﬂ +r# 5 , (5)
=4 _
Fl =Le,.5F " .

The sources I,7,p,s are matrices in the flavor space, and
QCD without sources is reproduced with s=m,

p=1,=r,=0, 6=0. This Lagrangian has an exact local
chiral symmetry
Y, —>L(x),, Yr—R(x)Yg (6)

with L in SU(3); and R in SU(3)g, if we also transform
the source fields

—irt t
l,—~L,—iL",L)L",
r,—R(r,—iR'3,RR", (7)
(s +ip)—>L(s+ip)R" .

The response of QCD to these sources is described by the
functional

eiZ(I,r,s,p,())
= [dydgda,

Xexp |i [d*xLocp(¥, 4,1,,7,,50,0) | . (8)

This functional can also be described in terms of the
physical particles of QCD, the hadrons. While this
description is too complicated to be useful, in general, it
simplifies at very low energy. This is because all of the
heavy particles can be “integrated out” of the theory, as
they cannot be excited at very low energy. Their effects
appear in the renormalized parameters of the low-energy
Lagrangian. Only the Goldstone bosons appear dynami-
cally and must be explicitly included in the effective La-
grangian. One then writes the functional in terms of the
sources and the low-energy particles

:deexp

iZ(l ,r

wlSp o)

ifd4xieﬁ( Ul,,r.,sp,0) |,

9)

where U is an SU(3) matrix field describing the Goldstone
bosons. For the rest of this section we will set 6=0, and
will treat 60 in Sec. IV.

The effective Lagrangian has an infinite number of
terms. However, it can be expanded in powers of the en-
ergy, E:

Lg=Lrt Lyt Lo+, (10)

where .L, produces matrix elements at order E". At low
enough energy, only the first few .L, are required. £,
yields the leading-order results, and corresponds to the

soft-pion predictions explored in the 1960’s. In the past
decade, the phenomenology at the next to leading order,
L 4, has been studied.

The effective Lagrangian must share the chiral symme-
try of Eq. (5). To lowest order this is accomplished by

__ F? +, F? + +
LZ—-TTI'(DFUD‘“U )"f‘TTI‘(X U+Uy,
iD#UEiaﬂU+l“U——UrM R (11)
XEZB()(S +lp) .

Here the matrix U has been chosen to transform as

U—LUR' (12)

under the chiral transformation. To describe the pseu-
doscalar mesons, ¢4, one expands

Ay A AgA
l-__)‘FL =1+[——L}‘F +--, A=12,...,8.
0

0

U =exp

(13)

At leading order, the unknown parameters in this La-
grangian correspond to F =Fy,=F_=92.4 MeV, and

—aL, _
Ff,BO=T()ff=—<O!1//¢|O>, (14)

where s =s°1+5 “A 4. The meson masses are

mi=(m,+my)B, ,

mf(), =(m,+m,)B, ,

mlo=(m +my)B, ,

my =(4m +2R)By=1(4mg—m?) .

Note that in the QCD Lagrangian the quark mass enters
only multiplied by ¥, i.e., m¥p. The mass itself is not a
renormalization-group invariant, nor is Y. In order to
define a mass, one must specify how one renormalizes and
defines ¥1. In the effective Lagrangian, the mass always
appears multiplied by B, and, hence, one cannot sepa-
rately identify the m; but only the product m;B,. How-
ever, in ratios, B, cancels. We will also use the short-

hand notation

M =mB, ,
M,=m,B,, (16)
etc. ,

in this paper. Note that, since B, carries mass dimension
of one, the parameters M are of dimension (meson mass)>.

At order E*, the effective Lagrangian involves more
terms whose coefficients must be determined phenomeno-
logically. The possible combinations depending on the

masses [2] are
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L=+ +L,Te(D,UD*UN) Tr(x'U + UTy)+ L Te[ D, UD*U (x U+ Ux")]
+ L[ Tr(xU T+ UxH P+ L [ Tr(x U — UxH 2+ Ly Te(x UTy U+ UxTUYD)
=+ +2L, Tre(D,UD*U") Te(M (U + U")]+ 2L, Te[D,UD*U (MU' + UM)]
+4LTr[M (U + U2 +4L, {Tr[M(U — U ]}2+4L, TeMU MUY+ MUMU) an

where L; are dimensionless constants of order 1073, Other terms, not involving masses in the general O(E 4) Lagrang-
ian, are given in Ref. [2]. These terms parametrize all of the allowed ways by which the masses can influence physics at
second order. Our general ignorance of the dynamics of low-energy QCD has been reduced to a few constants, L;.

Phenomenologically, the terms proportional to L,, L 5 influence the meson decay constants. In particular,

2
1/3 FKO

F2

Fg Ls Fy K my—m,
—=1+4—(mg—m?), F,=Fy¢ |— , I+ |—=—1||———— (18)
F” 1 4F2 (mK m‘n')) n K Fﬂ- F§+ Ffr ms—rﬁ

Formulas including one-loop quantum corrections are given in Ref. [2]. From Fg/F_,, one extracts

Li(p=m,)=(2.2£0.5)X 1073 and obtains F,/F,=1.3,F/F +=1.004.
In addition, the formulas for the meson masses exhibit the expected character of an expansion in the quark masses.
To write them, we have found it convenient to use effective masses M;* defined by

MI=M,

T T

L
+32F—;(Mu M, (M, —M,),

T

. L Ly

m T

L
+32;§(M,, —M,)(M;—M,) ,

T

M =M,

T

Here we have included one-loop chiral correction; all
coefficients L; are renormalized at a scale u, and

miz I m,-2
n—- . 0
327 FL T P (20

Hi=

These definitions are independent of the scale u, and will
be shown below to be reparametrization invariant. We
now have

Flm2=F[M;+M}],

Fpoml, =F*{[M}!+M}]+8guo(mg—m2)},

(21)
Feomgo=F*{[M}+Mf1+8cmolmg —m2)} ,
F m2=FY4M*+1M*],

where

L6 L8
1+32;2—(Mu +M, +Ms)+32FMu 3, 2u
1
Md_3#n_2ﬂ,<o_§#n—3

+32L6 M, + +32—L-8—M—2 .
1 Fz—(Mu+ d Ms) Fz s F'KO ,U.K+ 3:”’17

1 MM
3:“’7] 2 MS—M I’l’;l. #’ﬂ
1 Md_Mu ( )
M1 | P

(19)

L
+3252 (M, — M, (M, —M,) .
F

T

[

4Fgmg —3FIm? —F2m?
4FimE—Fm?)

demo=

16
= F(2L7 +Lg)mo—mg)—dp,+pg + 3ty

=—0.06 . (22)

In these expressions, we have dropped some extremely
small terms in (M, —M,)?. Writing the results in terms
of F?m?, instead of simply m}?, is useful because it re-
moves all dependence on the low-energy constants L,,Ls.
Note that Ogpo determines the combination (2L,
+Lg)=0.2X10"3 at u=m,.

At this stage, the ambiguity mentioned in the Intro-
duction can be seen [5]. The effective Lagrangian has
been constructed using only chiral SU(3) symmetry as a
constraint. However, y and y'*, defined by

¥ M =x+Aldetx Ix(x') ", (23)

where A is an arbitrary constant, have the same symme-
try transformation property
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X——)LXR+ ,

X(M*’LXM)RT ) (24)

In terms of the quark mass matrix m or M =B,m, Eq.
(23) has the form
MM=M +2)(detM)M ~ ',
() T -1 25
m'Y=m 4+ Al(detm)m

with A=2ByA. This means that, in constructing the
effective Lagrangian, we could have used y'*’ everywhere
that we used y. Either choice is equally valid. The only
difference is that the low-energy constants L; have
different values in the two cases. This can be seen
through an identity for 3X3 matrices. Recall that the
characteristic equation for a 3 X3 matrix A4 is

det(d —AI=0=—A+A2Tr4
+%[Tr(A2)—(TrA)2]+detA. (26)

The Cayley-Hamilton theorem says that the matrix A4
also satisfies this relation, i.e.,

— A3+ A2Tr A +§[Tr(A2)—(TrA)2]+detA =0.

(27)

When applied to the matrix )(T, one has
1 1

[dety' ]y ——=[detUx Iy ——

XX XX

=vuy'ux'v—Tr(uxyHuy!
U
— 5 Trl ux'uxh—[Te(uxyh 1y, @8

where detU =1 has been used.? Thus, we have
T MU =Tr(x U = 4 (e Ux' 0= [TH(UX ]

(29)
Tr(;((*’U*):Tr(XTU)—%{Tr(XU*XUT)—[Tr(XU*)]Z; .

In the effective Lagrangian, the mass term becomes
TI(MPU+ U =T M(U+U")]
—ATHMUMU +MU'MUT)

+ S THM U - U
+%Tr[M(U+UT)]2 . (0)

The terms proportional to A are of the same structure as
some terms in .L,. Thus, the precise statement of the

2Note that this form makes it clear that the factors of )(T)( in
the denominator are harmless and do not introduce any singu-
larities as Y —0.

Kaplan-Manohar ambiguity is that any phenomenology
described by the mass matrix M and the low-energy
coefficients {L¢,L,,Lg} can be equally well described by
M™ and the coefficients {Li—A,L,—A,Lg+21} with
X=F2)\/16. Since A is an arbitrary parameter, this, in
fact, corresponds to a continuous family of equivalent La-
grangians.

The meson masses displayed above exhibit the feature
of being invariant under the reparametrization transfor-
mation, as can be readily verified with a slight algebraic
effort. In fact, we have chosen the effective masses M},
M7, and M} to each be invariant both under the
reparametrization transformation and also under a
change in scale y in the chiral logs. The combination
8sMmo also exhibits these properties. These invariant
masses M;*, which are different from the original masses,
are the combinations which enter into observables.

In order to proceed, we really should have an evalua-
tion of the electromagnetic splittings of K * and K° valid
to second order in the masses. Unfortunately, this
analysis does not yet exist. In order to illustrate the effect
of the reparametrization ambiguity, we follow Ref. [2]
and proceed by continuing to use Dashen’s theorem to es-
timate the electromagnetic contribution. This yields
s Fim? 1

M}  2FimE—Fim’:+lpouoFi(mi—mi) 37

™ 2

2,2 2 2
*_ A% _
Mf—My | Fyompo=Fpomy .

" T T =0.57 .
Md +Mu Fﬂmﬂ,

QCD

The invariant masses are fixed, but because of the
reparametrization transformation, there is a continuous
family of input quark masses which can generate a given
M. This means that several different parameter sets
may represent the data. For example, the values of Refs.
(2,7]

3

i1 m
34 m

1
my 19’

L,=—0.4X1073, Lg=1.1X10"7,

s

(32)

yields a mass matrix which differs very little from the
lowest-order ratios of Eq. (1). However, by using the
reparametrization transformation with A= —1.15, we
may obtain a set with m, =0

m, my

1
m,  om, 267

s

(33)
L,=0.2X1073%, Lg=—0.1X10"%.
Alternatively, we could increase the size of M /m; by
30% using A= —+0.6, resulting in
m, 1 myg 1

m. 22" m. 16’

N s

(34)
L,=—0.8X1073 Lg=1.9%X107%,

which might be useful in the phenomenology of the o
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term [3]. Note that the m,/m; is rather stable, but it is
easy to shift m, /mg by significant amounts.

The parameter sets defined in Eqgs. (32)-(34) are
equivalent. There is nothing intrinsic to the sets that
would suggest that one is superior to the other. Others
might be tempted to question the second set with m, =0,
arguing that a 100% shift in m, from lowest order to
second order represents a breakdown of chiral perturba-
tion theory. However, this is misleading and we would
like to explain it in some detail. It is natural that the
smallest parameter in the theory receive the largest per-
centage shift, and the shift in m, is not any larger than
could be expected. We would claim that the expected
shift from a second-order analysis of m, should be of the
size

mg

Amu =amd—A—§- y (35)
where A is some measure of the chiral scale and a is a
number of order unity. This occurs because it is a chiral
SU(3) analysis that separates m,,m, from i, and, hence,
the extracted values receive corrections of order mg /A
Since, in many applications, the expansion scale is
A~m, or A~1 GeV, and m;~2m, at lowest order, we
naturally expect Am, =(;—1)m;~0(m,). In fact, we
could make the case for the expected size of the shift in
m, more explicitly by setting L, =L, =Lz =0 in the for-
mulas for the masses and only retaining the known lowest
SU(3) breaking in Fx =1.22F . In this case we have

2 2 _ 2 2
m, 1| Fmk: (Fgmgo=Fgimys)ocp
m,+m 2 | FEm} Fim}
o | e
mg +m lowest order
2
Fi my
F Mg M4 |1owest order

where the lowest-order result is obtained by setting all
the F; equal to each other. Equation (31) corresponds to
a shift in the measurement of the up-quark mass

F§
Am,=— F — 1 [(mg)iowest order
=~ —0. 88(mu )lowest order ° (37)

A change in m, of this size is as natural as in
Fy /F_.=1.22, and, indeed, to obtain a small shift one
must adjust L,,Lg to cancel off this known effect. The
m, =0 set, in fact, has the smallest values of L,, L.

One can define a criterion that describes the natural-
ness of a given second-order analysis. The natural size of
the L, is few X 1073 For example, the largest of the
known values are L,=7.4X1073, L,;=—6.0X1073
L,=—3.06X1073, Ls=2.2X1073 If a mass matrix
m'™ was to require L¢,L;,Lg larger then these, then it
could be considered as a unnatural choice. However,
none of our examples contradict this criterion.

We would also like to argue that the reparametrization
invariance is a feature of all known physical observables
when one uses only chiral SU(3) symmetry. One might
hope that, by leaving the purely Goldstone-boson sector
and using baryons or other mesons, the quark masses
could be determined without reference to this problem.
However, as long as we only employ chiral SU(3) invari-
ance, there is an equivalent reparametrization invariance
in the other sectors also. As an example, consider 7;5-1,
mixing. The coupling of 1, and 75 is driven by the quark
mass difference and can be described by an effective La-
grangian

Loy =inlaTi[M(U—-U")
+B, Tr[M(U—UYTeM(U+U")]
+B, T MUMU —MUMUT) - - 1. (38)

Here 71, does not occur in the chiral matrix, but appears
as an unrelated matter field. We included terms at both
order E? and E*, and a, 3,53, are constants. There is also
a reparametrization invariance of £,,. associated with
the redefinition of the masses. Using previous identities
we find

Tr(MP(U - U =Tr[M (U —-U")]
+ATr(MUMU —MU'MU")
+ATIM(U—-U")]
XTr[M(U+UN] . (39)

Thus, any physics described by the mass matrix M and
the low-energy constants {a,3,,8,] can be equally well
described by M» plus the set {a,B8,+Aa,8,—Aa}]. The
7nm’ mixing element demonstrates this invariance and the
experimental 51’ mixing angle is compatible with any of
the quark mass matrices m ",

Similar discussions can be given for baryon matrix ele-
ments or for transitions involving other mesons (such as
p-o mixing). In each case, there can be derived exact
identities involving effective Lagrangian such that the
difference between using M or M* (for any A) will only
amount to a change in the coefficients of higher-order
effective Lagrangians. Unfortunately, most other systems
have been treated at lowest order only, so that informa-
tion from them is not phenomenologically useful at next
order. The lowest-order analyses are summarized in Ap-
pendix A. That lowest-order estimates are consistent
does not imply that higher-order corrections are absent,
but only that the corrections, if present, are similar in
different systems. In practice, however, the lowest-order
analyses are sufficiently varied to allow for sizable
second-order corrections.

Leutwyler [7] has attempted to resolve the quark mass
ambiguity by consideration of 77’ mixing. He uses a sum
rule of pseudoscalar bilinears together with assumptions
of single-particle saturation to argue that L, is dominat-
ed by »m’ mixing. Then the phenomenological value for
the -1’ mixing angle, analyzed with 8,=f5,=0 in Eq.
(38), suggests the numerical value for L, given in Eq.
(32). With the further input of the lowest-order elec-
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tromagnetic K *-K° mass splitting, this reproduces the
quark mass ratios quoted in Eq. (32). The assumptions of
single-particle saturation and lowest-order electromag-
netic splitting are aspects that fall into the model-
dependent category. Although not unreasonable, they
are not guaranteed to be correct. For example, all of our
experience of single-particle saturation comes from phe-
nomenology which is invariant under the reparametriza-
tion transformation. However, since L, changes under
this transformation, a new set of issues arises when one
applies single-particle saturation, such as which of the
mass bases M*) best corresponds to our experience of
7-1" mixing (with 8,=p8,=0) and whether there are new
contributions to the sum rule.

III. REPARAMETRIZATION INVARIANCE
AS A REGULARIZATION AMBIGUITY

Is the reparametrization ambiguity only an algebraic
nuisance, a curiosity of effective Lagrangians which keeps
us from getting a handle on quark masses? One cannot
doubt the algebraic fact that this ambiguity exists, but we
would like to argue that it may represent a similar ambi-
guity in the definition of renormalized mass in QCD. At
lowest order one does not need to carefully specify the re-
normalization procedure for quark masses, as any depen-
dence on it cancels in the ratio of masses. However, at
second order one must proceed more carefully, and
different methods of regularization and renormalization
can lead to different masses.

Let us motivate the result by symmetry arguments.
Consider first the limit when m,=m,=0, but m 0.
Such a theory has an exact chiral SU(2) invariance, and
although quantum effects may shift m,, they cannot
change the result m, =m,=0. The masslessness of # and
d has been protected by the chiral SU(2) symmetry.
(Similarly, in a world with m,=m_ =0, both u and s
would remain massless.) Now consider the case m, =0
but m;70, m;#0. The chiral SU(2) symmetry has been
broken by having m,#0. The vacuum fields of QCD do
not exhibit a U(1) , invariance, and hence, an up quark
moving in the QCD vacuum is not protected from acquir-
ing a mass. However, the structure of the mass is re-
stricted by the symmetries. It must vanish in the limit
myz—0 or in the limit m;— 0 because of the chiral SU(2)
invariance of those limits. Hence, a nonzero m, must
have the form

Am,=Am m, (40)

for some A. If we now generalize to all of m,,m,, m, be-
ing nonzero, we see from the permutation symmetry that,

to this order in the masses, each quark must get a mass
shift

Amy=Am,m, ,

= (41)
Am;=Am, m, .

This, of course, is of the same form as the reparametriza-

tion transformation.

We can see now that the Kim, Choi, and Sze calcula-
tion mentioned in the Introduction [9] is a specific exam-
ple of the use of quantum effects to shift the quark
masses. While we need not seriously take the specific
value of the constant A found in an instanton gas (with a
particular size cutoff), we see that the effect is more gen-
eral than the specific calculation. It appears to reflect a
form of mass renormalization allowed by the symmetries
of QCD.

This raises the issue of the dependence of the mass on
the renormalization scheme used. Even if we were able
to solve QCD, we would need a procedure for defining a
renormalized mass parameter and then expressing ob-
servables in terms of that parameter. Such a procedure is
not unique, and differing definitions of mass may emerge.
If one chooses to renormalize quark masses at a high en-
ergy (say My for example), the instanton effect of Kim,
Choi, and Sze would not be important, and one would ob-
tain the multiplicative mass renormalization of perturba-
tion theory. However, if one chose instead to renormal-
ize at a lower-energy scale, the mass-mixing effects of Eq.
(25) could be included in the renormalized mass. Other
schemes are also possible. Hence, the masses of any two
schemes would be related by a finite renormalization, e.g.,

ren — ren 4 3§ ,,,Ten ren
[mu ]scheme 27 [Zmu +Amd mg ]scheme 1
etc . (42)

In order for physical observables to remain invariant, one
also needs a corresponding change in the low-energy con-
stants calculated in the two schemes

[Lé ]scheme 2= [26L6 —}‘]scheme 1 - (43)

Note that, while a high-energy scale may seem conceptu-
ally simplest for the discussion of mass, since one would
then use QCD perturbation theory, it is not well suited
for the calculation of the low-energy constants L;. The
complete calculation requires both the renormalized
masses and the low-energy constants, and, hence, must
include low-energy effects. Note, however, that all
schemes must agree on the invariant masses M;* given in
Eq. (19).

A full calculation is specified by renormalized masses
{m,,my,m} and low-energy constants {L¢,L,,Lg} (plus
other low-energy constants for other systems). Due to
the scheme dependence, different sets of masses and low-
energy constants are possible in different regularization
and renormalization schemes. However, the underlying
chiral symmetry requires that these differences be of the
form of Eq. (19) in order to keep observables invariant.
This result is similar to that which occurs with the QCD
coupling constant, where the magnitude of the scale pa-
rameter A depends on the details of the regularization
scheme, yet physical results are invariant to a given order
in perturbation theory.

One might argue that the external-field formalism re-
moves the need for this ambiguity. One defines the exter-
nal field y(x) and varies it to probe the response of the
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system, determining L4,L,,L; and hence the masses.
However, the use of an external field does not remove the
need for a renormalization and regularization. The field
X is not a purely classical parameter. Since it couples to a
bilinear that needs to be renormalized (1), the process
of defining renormalized scalar densities can lead to
changes in the definition of y as in Eq. (23). An explicit
example is again given by the calculational procedure of
Kim, Choi, and Sze. If one considers the diagram of Fig.
1, one sees that the operators {ﬁu,gdjs} need not be
multiplicatively renormalized, with the picture describing
the mixing of 7u and dd. One needs to specify the renor-
malization procedure for #u in order to decide which
component of the matrix field y couples to @u.

The issues raised above make it clear that the problem
of defining a mass cannot be solved through present mod-
els such as quark models or even present versions of QCD
sum rules. Masslike parameters enter these models, but
the theories lack sufficient control over the dynamics of
QCD to be able to precisely define a full regularization
scheme based on the QCD Lagrangian mass parameters.

IV. EFFECTIVE LAGRANGIANS CONTAINING
6 AND U(1) , TRANSFORMATIONS

The discussion thus far ignores the possibility of using
axial U(1) symmetry in the determination of quark
masses. Recall that U(1) , is an approximate symmetry
of the classical Lagrangian which has an anomaly [12]
and which is not a symmetry of the vacuum state of QCD
[13]. There are, however, anomalous Ward identities
which involve the quark masses [14]. In particular, there
is no strong CP violation if, in some definition, m, van-
ishes [8,15]. In this section, we explore the content of the
anomalous Ward identities and will argue that the strong
CP-violating sector of the theory allows one, in principle,
to identify a special mass matrix out of the set m *’ which
deserves to be called “the” mass matrix of QCD.

The U(1) ; Noether current is not conserved even for
vanishing quark mass, i.e.,

3a, _ -
i) = o, FF+2m,aysu+2mdysd+2msys .
(44)
However, because FF is a total divergence,
FF=3,k",
(45)
K, =2 A5 |Ff, —£Fatas |
there is a gauge-variant current
F. =70 _
Jsu=J5,—K, , (46)

which would be conserved if quark masses vanished. It is
this current which would generate U(l), symmetry
transformations in the chiral limit. Because K* is related
to the topological charge, a chiral rotation with the
charge Qs will shift the 8 vacuum of QCD with

"% 10)=0—6a) . 47)

One can always then shift to the 6=0 vacuum by such a
rotation, but if the quark masses are nonzero, the rota-
tion will generate a CP-violating phase in the quark mass
matrix.

In order to probe the behavior of the chiral Lagrangian
under U(1) , transformations, we include a 6 source term
in the QCD Lagrangian

O -
L=Lgep+ o FLF" . (48)

In the basis where the quark mass matrix is diagonal,
QCD without sources is characterized by vacuum angle
6(x)=0. The method for adding 6 to the chiral Lagrang-
ian at order E2, both with and without an extra singlet
field ¢, in the chiral matrix U, has been given by Gasser
and Leutwyler [2]. Including only the eight Goldstone
fields, they obtain
2
£,=E

2
T, Up U+ LT pu T+ Uy

+H°D 0D"6 4
Dy . (49)

Here the new ingredients are contained in the definitions

5= 110/3
X=xe'""”,

D#9=8F0+2Tra# R

(50)

and H, is a constant. Aside from the contact term
D#GD“B, which has no meson matrix elements, the 6
dependence is entirely contained in the source term Y,
which is invariant under global U(1) , transformations
x—e'%xe', 6—0—6a . (51)

If the external sources are set equal to zero, we recover
the mass term of QCD

¥—2Byme'?3 . (52)

Variation of this Lagrangian with respect to 6 reproduces
the anomalous Ward identities involving the Goldstone
fields. The Lagrangian of Gasser and Leutwyler contain-
ing an SU(3) singlet field is given in Appendix B, where it
is also generalized to order E*. Below we concentrate on
the generalization of Eq. (49) since the inclusion of the
singlet field is not needed for our purposes.

The order-E* Lagrangian containing 6 will involve two
distinct classes of operators

L,=LP+ PO (53)

In LY are the operators of the usual chiral Lagrangian,
governed by the low-energy constants L, ..., L,,, writ-
ten with Y in place of y. New operators involving deriva-
tives of 0 are contained in £{”?. We find that these are
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LPO=iL D, D*OTr(Y'U—U'Y)+iL,sD,0 Tr[(D*Y U —(D*{)U"1+L (D ,6D*0 Tr(D , UD*U")

+L,,D,0D,0 Te(D*UD*U")+L 4D ,6D*6 Tr(YU + UY' )+ H,(D,6D"0) . (54)

The numbering scheme starts at L, to accommodate re-
cent work on the chiral energy-momentum tensor [17]
which introduced operators characterized by low-energy
constants L,,L,,L;. Factors involving derivatives of
6 are automatically invariant under global U(1) , trans-
formations. Note that when 6=80=const, these new
terms disappear. When Yy =2Bm, only the first operator
listed is linear in 6, and this one will be relevant in our
analysis.

The original reparametrization transformation is not
an invariance of £L{¥. This is because the reparametriza-
tion transformation does not respect the anomalous
U(1) , behavior of the theory. Therefore, the 6 depen-
dence may be used to probe the quark masses in a way
that overcomes the reparametrization ambiguity. We
will utilize this in the next section. Another way to see
this is to note that there exists a modified, reparametriza-
tion transformation

X-»)(-Fk[det)(*])(—%—e*ie (55)
XX

with L ; 4 transforming as before.

Despite the fact that there is a modified reparametriza-
tion transformation, there is a way to single out a special
quark mass matrix. The transformation of Eq. (55) in-
volves the complex phase e‘®. For nonzero 6, if one
starts with a real mass matrix M, the resulting M) will
be complex. Thus, while there exists a set of parameters
with A70 to reproduce experimental results, one does so
only at the expense of a complex mass matrix. One can
pick out “the” mass matrix of QCD as the only member
of the family M'» which is purely real.

The 6 dependence then provides a means to determine
the correct mass matrix, at least in principle, since the
terms proportional to 6 are not invariant any more. The
effective Lagrangian can be expanded in terms of 0, i.e.,
L=L,+6(3.L/30)+ - --. Here the first term, without
any factors of 6, has the original reparametrization in-
variance, but the 6-dependent terms are not invariant. If
one is studying strong CP violation, one measures accu-
rately a large number of CP-violating and CP-conserving
processes and finds that they can be fit with a real mass
matrix only for a given set of parameters. Of course, this
program is impractical. In the next section, we will pro-
vide a more realistic alternative treating 6 as an external
source field.

The instanton-gas calculation of Kim, Choi, and Sze,
in fact, already suggests that when 650, the reparametri-
zation transformation is that of Eq. (55). The e ~i9 factor
arose because the mass-generation mechanism involved
an instanton connecting topological sectors in the 6 vacu-
um. The agreement of that result with the effective-
Lagrangian analysis is striking, but, of course, not
surprising.

The possibility of defining a unique mass matrix
governing U(1) , transformations does not invalidate the
various mass matrices discussed in Sec. II. More than
one definition of mass is possible. The 6 dependence
probes what might be called “U(1) , current masses,” the
vanishing of which allows the removal of effects of 6.
However, the family m ‘" could all be called good “SU(3)
current masses,” as they all equally well govern the chiral
SU(3) currents. They clearly are current masses in the
usual sense, but may be generated by U(l), violating
fields in the QCD vacuum, leading to a difference from
the U(1) 4 current masses.

V. USING THE ANOMALY
TO MEASURE QUARK MASSES

The parameter 6 in the effective Lagrangian can be
used in two different ways. If the true ground state of
QCD is specified by some =070, there will be strong
CP violation. CP odd matrix elements can be found by
setting =0 in the Lagrangian, finding the ground-state
solution, and calculating the amplitudes containing odd
powers of 0. On the other hand, even if 6=0, one can
use 6 as an external source which lets one calculate ma-
trix elements of FF, using

oL a; _
QCD =§;F:VFAW ] (56)

Thus, in this usage, matrix elements of FF are found from
the 6 dependence of the effective Lagrangian. We can
probe the U(1) , behavior through matrix elements of FF.
In this section we will calculate the low-energy theorems
for FF to order E* and show how they can be used to
measure the quark mass in ¢’ —J /¢ +7%n°,37).

Before describing the technical details, we would like
to comment on why this procedure can overcome the
reparametrization ambiguity. The basic point is that,
while the mass term ¥m 1 can be renormalized by the in-
stanton effects, the operator FF is not itself modified. It
remains the operator which probes the 6 dependence of
the theory. There can be various definitions of the quark
mass parameters which enter phenomenology, but the 6
dependence probes the fundamental definition of mass.
The matrix element of FF measures the U(1), depen-
dence, for which the reparametrization transformation is
not valid.

Let us first calculate the 7° and 1° matrix elements of
FF at low energy. We define the shorthand notation
aY

FF=

o FibF (57)

From Egs. (11), (17), and (60), the effective-Lagrangian
realization of this operator is
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2
FF=i FTTr(XU"-Ux*)+L4Tr(DMUD"U*)Tr(xU*—UX*)+L5Tr[D#UDﬂU*(xU*—UXT)]
+2(Lg+L,) Tr(xU T+ Uy' f— Uyt tyut—uytuyt
6T L7 X x")Tr(yU'—Ux")+2L Tr(yU'xU'—Ux Uyx")

—L, OTr(xU' = Ux"—L ;3 Te(D x'U-UD 1) | . (58)

When y =2B,m, the last term will not contribute and may be dropped.

In calculating quantum corrections at one loop, there is a slight subtlety. In the loop diagrams, one should use the

particles of definite mass in order to have a diagonal propagator [2]. In chiral perturbation theory only, £, is used in
one-loop diagrams. The appropriate basis including 7-7° mixing is

0 — 43 8
T =¢ ted®,

Na=¢—ed*, (59)

V3

£e=—

4

M—M,

Mu —Md ]

The subscript (2) indicates that these are only field definitions appropriate to .£,, and that further mixing will take place
at O(E*). From this starting point, the quantum corrections are straightforward. We drop effects of order (M, —M,)*.
After wave-function and mass renormalization, the one-loop effective Lagrangian for the 7° and % mesons is

L=13,70)>+ H3,m,)*+ Z ., 0um 30— tm il —iminty—m2 alm+ (A 7l + AV o+ - - - (60)

with

— Ko M, +
Z,,=V3(M,~M,) Hgk " Hr Pk K

A

M,—M M;—M,

M, — Hg+THgo -
2 _ M d | 32 K K Kz Hk
= ==(Lg+3L - — — —p,)— —— ,
m, 73 —r(Ls M —M,)—Bp,—2ux —p,)— 24 MM,  fi-n,
2 L (61)
3 F 32 32 Ly _ .
49 —-EE'(M“ —M,;) [1+F(L6+L7)(2IQ+MS)+—3—'F—2(5M+MS)—2(M,,+-‘;-;LK +5uy)
N K Sl SO (Spr—2ug —3u,)
3V ™M, M, T4 @i-m, ’
2F2 A~ 32 A~ 32[‘8 ~ (3[.1—1,._2#1(—[1 )
0= 22 (M—M,) |1+=S(L¢+L;)2M+M,)+ (M+M,)— 4y —4u,—M - &
T V3F, * F? P ’ w M—M,
This is diagonalized by a further field redefinition
=1y F5,70) »
- 0
= —S. T »
N="N2) " SyT(2) 62)
_miy—Zymy
T i emy

n
2 2
m‘lTT] Zn-rrmrr

2
n

s —
K mi—m

For these fields, the anomaly matrix elements are
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oy 3 Fr o 32 N 64Ly . 4L,
(O|FF|# >~2 F (M, —M,) 1+;2—(L6+M7)(2M+Ms)+ = = m?2
2L, . (B, —2ug —u,)
(M—M,)—B3p, +2ug+-iu,)—M = i,
F%_ N lJ‘K 3.”“7] M_MS
(63)
- b) LN 32 N 32Lg . 4L,,
(O|FF|qgY=—"—(M—M,) |1+—(Ls+L,)2M+M, )+ (M+M,)+ m?
Vi3F, ’ F? o FL Fr 7
~ OGp,—2pg —py)
—dpg— i, —M—— !
Mk 2:“‘17 M_Mv
[
Most of the higher-order corrections are the same in both (7" 7 7°|FF|0) _ 2 24(2L,+Ls)
the matrix elements, such that the ratio is (#°|FF|0) - 9F3, + F%r P+P-
(O|FF|7x°) 32L,
Vo = ———————— (mz_mZ)
FE (0|FF|y) F2(mkTms
_ _ +L,+Lyg)
3V3 | my—m, F,] 32 . 96(L ¢ 7 8 5
= | | —L 1-—-—- —_ + T
4 m,—m | F, FZ(M: ML+ L) F}
4L
4L, 214 (s—m2)|, (66)
Fmy) F
FZ n

(64)

—Op,—2pug —py)

As expected, these results are not reparametrization in-
variant because the matrix element is related to the 6
dependence. The first term in this matrix element ratio
was originally calculated in Ref. [18]. We have therefore
extended the results to O(E*).

There is a set of amplitudes which will yield
(mg—m,)/(myz+m,) in an almost parameter-free
manner. This emerges from a combination of Egs. (21),
(22), and (64). Remarkably, all of the chiral logarithms
disappear, as does all but one of the low-energy con-
stants, and we find

mg—m, m+m _ 4Fgmg—Fim?) F. (0|FF|7°)

3V3F2m?:  F, (O|FF|n)

mgtm, m,—m

4L 14
FZ

T

X[1—8gmo] |1+ (m2—m?)

n

(65)

valid to O(E*) in the chiral expansion.

The presence of the new low-energy constant L,
prevents this from being completely determined. Howev-
er, this parameter can, in principle, be extracted from the
37 matrix element of FF. We find that

where s =(p . +p_ +p,)>. The s dependence of this ma-
trix element is governed by L,,. Equivalently, the result

1 d/ _+_ - _opr
(7T 7 #° FF|0) E“T 7 mIFFI0)

P4 p_ =const

4L
= —F—Z’“ (67)
can be used to extract L,,. Note that chiral logs have not
been included in Egs. (66) and (67).

How can one measure these matrix elements experi-
mentally? The answer is found in a surprising set of reac-
tions, i.e., ¥'— VM, where V=7 and M is 7°, no, or 3.
The heavy-quarkonium system forms a compact, color-
neutral system. For soft hadronic emission, where the
heavy quarks do not annihilate, the transitions can be an-
alyzed in terms of a multipole expansion [10,11]. The in-
teraction is due to gluonic couplings to the heavy quark,
and the transitions to light hadrons are then governed by
matrix elements of gluonic fields. The multipole method
amounts to a systematic expansion in inverse powers of
the heavy-quark mass. For pseudoscalars, the expansion
starts with two gluon fields, as in Fig. 2. Voloshin and
Zakharov [11] have shown that the leading pseudoscalar
operator is E4-B“ « FF. Thus, they obtain

2 3

Px
3 b

Py

where p . (p,) is the momentum of the 7 (). Similarly,

V' —v+°)

_ | O|FF|n°)
TV —Vn)

(O|FF|n)

(68)
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I

FIG. 2. A two-gluon transition amplitude in the heavy-quark
multipole expansion.

for pseudoscalar 37 emission one can extract the 37 am-
plitude of FF. (We hope to return to a more detailed pre-
sentation of the phenomenology of this mode, as well as a
calculation of the chiral loops for its amplitude, in the fu-
ture.) The use of Y —>YM (M =7°%°37) would, of
course, be the most reliable from the standpoint of the
heavy-quark expansion. Comparison with results of
' —J /YM could allow an experimental determination of
the accuracy of the multipole expansion. Unfortunately,
data on all of these reactions does not yet exist. Only
' —J /¢7° and ' —J /¥m° have been measured.

In this section, we have described a method to mea-
sure, in principle, ratios of quark masses in a way which
is free from the ambiguity of the reparametrization trans-
formation. The heavy-quark multipole expansion is a
rigorous approximation scheme in QCD (much like the
chiral expansion itself). Its validity can, in principle, be
checked experimentally, such that extraction of the FF
matrix elements would constitute a true measurement in
eur.sense..of the.word. .Theorstically . .the. kev..new..in-
gredient is the use of a U(1) , probe which is not invari-
ant under reparametrization.

VI. ESTIMATE OF QUARK MASSES
AT SECOND ORDER

Our full measurement scheme is not yet practical. The
available data come from 3’ decays, in particular, the ra-
tio

’ 0
Ly “’J/‘/”L"O) =(3.6+0.9)X1072 . (69)
LY —J /p+1°)
From this we extract
) =10
rF~=—<M%—>-=O.O4SOiO.OOSS : (70)
(O|FF|n°)

We would like to use this to obtain the quark mass ratio.
The presence of the unmeasured constant L, in Eq.
(65) prevents us from obtaining completely model-
independent results. However, experience with other
low-energy constants [19,20] allows us to give an estimate
of L,,. The parameter L, describes the energy depen-
dence of FF matrix elements,
(O|FFIM(p)) <1+ 4L2“
FTT

pr+ - (71)

This energy dependence is governed by the physical inter-
mediate states (besides the Goldstone modes) that couple
to FF. A check of the data tables reveals that the lightest
such state is 77’ at 960 MeV, and that other pseudoscalars
and multibody states lie above 1.4 GeV. We then expect
that

(72)

This same result can be expressed more formally by writ-
ing a sum rule (see Refs. [7,19]) involving L 4,

[ =& pprts)= 2,
s _pszF 2

4L,
FZ

p2+"'], (73)

where
pre(s)=i [ d*x e®*=Y(0|Py sp(x)FF(»)0) .

Single-particle saturation then also yields Eq. (72). The
main point is that the sum rule receives contributions
from fairly high values of s and, hence, the parameter L,
is expected to be small.

Collecting the experimental ingredients needed to
evaluate Eq. (65), we obtain

myg—m, m,+m
—=0.59+0.07+0.08 , (74)
mgtm, m —m

where the first uncertainty is experimental and the second
is theoretical, corresponding to

F? F?
Ly,= et

= (75)
a2 " 8m?

This theoretical uncertainty should be understood rather
as a range than as a 63% confidence limit of a Gaussian
distributed fluctuation.

Because #i/m;<<1, this ratio is sensitive only to
m, /my. Solving for this quantity, we obtain

m,

=0.30+0.05+0.05 , (76)
my

somewhat below the lowest-order measurement, or the

estimate of Eq. (32). It seems securely away from the

point m, =0, thus again disfavoring this option to solve

the strong CP problem.

Previous estimates of the above combination of masses
have relied on the K%K mass difference, where the
electromagnetic effects need to be subtracted off in order
to reveal the u-d quark mass difference. As originally
calculated by Gasser and Leutwyler, the effects of quark
masses are given by

2 02 2
mlz( (mKO mK+)QM _ mg—m, ms+rﬁ
2 2__ 12 -
mo mg—mz,

A

md+mu m;—m

]{1+2Am},

(77)

where
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F} 32L,
Amzl———z— GMO—?(’"%_’"%)
L7
=-—0.43—0.82 = (78)
10

At lowest order, Dashen’s theorem yields 0.29 for the
left-hand side of Eq. (77), while a direct calculation of the
electromagnetic mass difference using pseudoscalar and
vector intermediate states of the electromagnetic mass
difference [21] yields a value of 0.41. When combined
with our value of the quark mass ratio, Eq. (74), these es-
timates correspond to

A, =—0.25, L,=—0.22X10"3
and
A, =—0.15, L,=—0.34X107 %,

respectively. These are close to the value of
L,=—0.4X10"3 suggested by Leutwyler [7].

Our determination of the quark mass ratio has crucial-
ly relied on the work of Voloshin and Zakharov which
uses the heavy-quark expansion to relate ¥ —J /¢7%(7)
to matrix elements of FF. Without this knowledge, the
' —J /P7°%(n) amplitudes would have been parametrized
as a general pseudoscalar effective Lagrangian using only
SU(3) symmetry, as in Eq. (38) (the 770 would be replaced
by a bilinear of ¢ and ¢’). This would then have exhibit-
ed the SU(3) reparametrization invariance. However, the
extra input that the important operator is FF removes the
reparametrization invariance and singles out particular
forms for the matrix elements, those of Eq. (64). How
well should this procedure be expected to work? Sub-
leading operators in the heavy-quark multipole expansion
will enter at the level of (u/m_) where p is a typical ha-
dronic scale. [Perhaps (m,/m,;)~0.25 is a reasonable
estimate of this suppression.] However, all operators in
the multipole expansion yield the same ratios in Eq. (64)
to first order in the masses [22]; the first-order analysis is
universal. The effect of subleading operators in the mul-
tipole expansion only influences the chiral coefficients
determined at order E* (i.e., M(Z, ). Within chiral SU(3),
effects at order E* are typically suppressed compared to
order E? by a factor of 30%. Thus, the subleading mul-
tipole corrections to the ratio of matrix elements would
be expected to enter at the level of 30% X(u/m.)
[=7%]. Since the present experimental uncertainty in
the amplitude ratio is 13%, the subleading corrections
are probably smaller than the experimental error bars.
We note, however, that if the ratio can be measured in
upsilon decay, we will be able to confirm experimentally
the absence or presence of subleading heavy-quark mass
effects.

VII. CONCLUSIONS

The analysis of quark masses at next to leading order
in the chiral expansion has proven to be subtle. If the ex-
perimental analysis is restricted to chiral SU(3), as has
been the case up to the present work, there is a continu-

ous family of quark mass matrices that leads to identical
physics. We have shown how U(l), transformations
may single out a unique mass matrix. By using chiral
symmetry and the heavy-quark multipole expansion
[10,11] for transitions of b,c quarks, we have been able to
give a procedure for a model-independent measurement
of the light-quark mass ratio.

Although present data do not allow a complete mea-
surement, the remaining model dependence, contained in
the unknown (but measurable) parameter L 4, is estimat-
ed to be small. By bounding this constant, we have been
able to extract the quark mass ratio given in Eq. (74).
This value differs somewhat from previous estimates, but
is not consistent with m, =0. An important considera-
tion is that the present estimate is the first which arises
from experimental observables which do not have the
reparametrization ambiguity.

Some directions for further work are indicated. Exper-
imental measurements of Y’'— Y 7%7°) would remove un-
certainties due to the heavy-quark expansion. Theoreti-
cal and experimental studies of the 37 transition would
remove the last remaining source of model dependence.
Next-to-leading-order calculations of electromagnetic
contributions to the K T-K ~ mass difference are needed.
These developments could help considerably in the ex-
traction of quark masses.
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APPENDIX A: SURVEY
OF FIRST-ORDER MEASUREMENTS
OF QUARK MASSES

Our information on quark masses comes from several
sources of varying quality. In this appendix we take a
tour through these measurements under the common as-
sumption that we are working to first order in the mass.
Recall our distinction between ‘“‘measurement” and
“model” given in the Introduction. In this division, there
are only three true sources of measurements: (1) 7,K,7n
masses [/ /m, and (my;—m,)/m;], 2) ¢ —J /7%(n°)
[((my—m,)/(m;—m)], and (3) n—37 decay [(m,
—m, )/m,], where there is reason to suspect the utility of
the third of these. In addition, there are more model-
dependent sources: (4) 7No term (# /m,), (5) other had-
ron masses [(m,;—m,)/m;], and (6) p-o splitting
[(m;—m,)/m,]. These results are summarized in Table
I, but in some cases the caveats discussed below may be
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TABLE 1. Lowest-order measures of quark masses. See the
text for a fuller discussion.

V’f\l mg—m,
mg m;— r?z
MEASUREMENTS
1 1
m,K,n masses 26 3
1
’ 0
Y —-J/Y+m(n) 3044
n—atr 7® (i) strict lowest order %
e . . 1
(i1) with final-state interactions 3945
MODELS
o term =(1—=p)
Hadron masses 6‘—7—>2L0

more important than the numerical values.

(1) m,K,n masses. This method is surveyed in the main
text. It yields our only true measurement of A /m;. The
measurement of (m,—m,)/m  uses Dashen’s theorem
(23] to subtract out the electromagnetic contribution to
the K°-K* mass difference. In an effective-Lagrangian
framework, Dashen’s theorem follows from the
(8,,15)+(1,,8;) transformation property of the elec-
tromagnetic current. The only symmetry-allowed La-
grangian which does not vanish in the chiral limit is then

L =ac, Tr(QUQU") . (A1)
Because of the factors of Q, the effective Lagrangian does
not involve the neutral mesons at all, and the 7+ and K
matrix elements are identical, leading to Dashen’s
theorem. Corrections to this result would occur through
operators at next order in the energy expansion, such that

EL’ _ ac 2 u +
=" THQR,UFV"), (A2)

whose matrix elements would be of order am? or am?.

The effects of such next-order corrections have not yet
been analyzed in chiral perturbation theory.

Q) ¢ —J /Y7°, ¥ —J /Ym°. Since both ¥’ and J /4 are
isoscalar and SU(3) scalar, these two decays violate iso-
spin and SU(3) symmetry, respectively. Their ratio is
then a measure of (my;—m,)/(m;—#m ). When working
to first order, we do not need to involve the QCD mul-
tipole expansion described in the text. Rather, the result
is a prediction of the symmetry alone [22] and the ratio
follows directly from degenerate perturbation theory

3
_ Iy ¥ 0 _ my;—m, -
R= ( ,——>J/ 7T))__£ d L , (A3)
LW —J/Yy 16 | m—am | |p,

where p . (p,) is the pion (eta) momentum.

There exists the possibility of electromagnetic contri-
butions to this transition. However, it can be shown
rigorously to be suppressed. There is no chiral operator
of order E° (E is energy) with the right symmetry proper-
ties. Equivalently, the matrix element vanishes in the
soft-pion limit using the soft-pion theorems because the
axial charge Q3 commutes with the electromagnetic
current. One might worry that the presence of the heavy
charmed quark mass might make corrections to the soft-
pion limit more important than usual. However, if any-
thing, it seems to suppress any correction [23-25].
Modifications on the pion side, as in Fig. 3(a), are similar
to corrections to Dashen’s theorem in meson masses. Of
the diagrams which feel the presence of the charmed
quark, Fig. 3(b) is forbidden by the pion quark numbers,
Fig. 3(c) is forbidden by color, Fig. 3(d) is forbidden by C
invariance, leaving Fig. 3(e) as the leading correction of
this class. However, it can be shown to be suppressed by
the QCD multipole expansion. The diagram of Fig. 3(e)
vanishes with respect to Fig. 2 as m.— o, and has a
nominal suppression of order a,(m,)/(u/m,), where pu is
a typical hadronic scale. In summary, we expect the elec-
tromagnetic effects to be as suppressed here as they are in
the meson masses, and, hence, the measurement here is
on the same footing as the more familiar measurement
fromm o—m, ;.

The experimental measurement

R =0.036%0.009 (A4)
implies a mass value
my—m,
——=0.033+0.004 . (AS5)
m,—m

This is somewhat larger than Eq. (1), but with a
difference which can be attributed to the presence of
higher-order effects.

(3) y— 37 decay. This decay is forbidden in the SU(2)
limit, and, hence, can only take place through quark mass

J
N Iy Iy

(a)

(b) ©)

<

I i
(@ ©
FIG. 3. Possible electromagnetic corrections in 3’'—
J /¢7%(n°). As described in the text, most of these diagrams
vanish.
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differences and electromagnetism. However, the effect of
electromagnetism vanishes at lowest order in the chiral
expansion as originally shown by Sutherland. In an
effective Lagrangian framework, this again follows from a
calculation using Eq. (11). Thus, the decay provides a
technically valid first-order measurement of m,—m
The amplitude is

u-

(my—m,)B, 3(s —sg)
tr %)= = +
Mn—7"7"7) % 1 m%—mf, (A6)

with s =(p, —po)* and s0=(mf7 +3m2)/3. This leads to
a decay rate at lowest order

2
m;—m,

Iy=125 keV (A7)

~
mg—m

From the experimental decay rate, [ =0.028+0.03 keV,
we extract

my—m,

=0.047= (A8)

1
my—m e
However, there are known final-state interactions in the
various 77 subchannels which have been neglected
above. These can lead to an enhancement of the rate, and
it is perhaps not quite fair to neglect these. An alternate
procedure could be to calculate the effect of final-state in-
teractions, and also 7-%' mixing, using chiral perturba-
tion theory to next order, while at the same time continu-
ing to treat (m, —m,) as a first-order parameter. This
can be done using the result of Ref. [2], with the result
m,—my

[ =(300£95) keV , (A9)

A
mg—m

where the error is an estimate of the uncertainty in the
theoretical evaluation. This results in

mg;—m,
—4 % =0.031£0.005=

m;—m

1
3245

(A10)

We feel that this latter value is a more realistic estimate
than is Eq. (A8), but the difference between the two indi-
cates the sizable uncertainties in this evaluation.

(4) The sigma term. In 7N scattering at very low ener-

me.—my +tm,—m,+m_ —m_=0

=0.410.6 MeV (expt) .

For the quark masses this follows from the SU(3)-octet
property of mass differences, while for electromagnetism
it can be simply obtained from the U-spin singlet charac-
ter of the interaction.

Unfortunately, we cannot use a symmetry argument to
isolate the quark mass differences. There is the first-order
relation

gy, one can use chiral symmetry plus dispersion tech-
niques to extract the matrix element

o={P|m(au +dd)|P)

=~45 MeV , (A11)
where the numerical value corresponds to the most re-
cent evaluation of Ref. [26]. In addition, hyperon masses,
when treated to first order, yield the following matrix ele-
ment:

(Pl(m,—m)(au +dd —255)|P)=3(mz—my) . (Al2)

Although the operators in (A11) and (A12) are not identi-
cal, we can form the measure of mass

A~

m 20

— — 1 .
where
2{ P|3s|P)
= Plau+adp) (A14)
d (Plau +dd|P)

Because of the dependence on the 55 matrix element (i.e.,
y), this is not a full first-order measurement of the mass
ratio. However, for modest values of y and if first order
is sufficient, we have

y=0, 0.2, 0.4,
. (A15)
m
m

=1 1

152 18?2

N
&

5

which indicates a reasonable range for this mass ratio.

(5) Other hadron masses. There are a limited number
of results on hadron mass splittings which can be derived
from symmetry considerations alone. For example, to
first order the I =2 splitting

my. +mz_—2m20=1.7i—9.1 MeV ,
(A16)
mp+ —mp(,: —0.3%+2.2 MeV ,

are due to electromagnetism alone. In addition, both
electromagnetism and quark masses satisfy the Coleman-
Glashow relation

(A17)
[
mg—m (m,—m,)
d Au — n p’'QM ) (A18)
m,—m mz—ms
where (m, —m,)qy is the quark mass contribution to the

n-p mass difference,

m”—mpz(mn—mp)QM+(mn—mp)EM. (Alg)
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Unlike in the 7,K system, the electromagnetic effect can-
not be subtracted using symmetry. There is a method for
calculating the electromagnetic splitting which is, in prin-
ciple, rigorous, using the Cottingham formula [26,27].
An interesting feature emerges from this calculation.
The electromagnetic shift diverges, due to self-energy dia-
grams, and this divergence needs to be absorbed into re-
normalized values of m;—m,. This is to be expected,
but a similar renormalization was not needed in the
mesons at lowest order. This raises the possibility that
different meanings of masses may occur in mesons and
baryons. The precise value of the quark mass depends on
the renormalization prescription used to specify the
remaining finite renormalization in the Cottingham for-
mula (see the first reference in Ref. [3]). If one disregards
the high-energy contributions, the Born contribution to
the Cottingham result yields (m, —m, )g\= —0.76£0.30
MeV and thus

(m, —m o =2.05+0.30 ,
noTeeM (A20)

my—m, 1

Md M .01740.03= —1— |

m;—m 5749

A similar estimate can be obtained in a quark model if
the effect of photon exchange is represented by

Q,.QjC—Fg—"gj—HS,--Sj

(A21)
MM,

Hegy=3
i#j

representing the Coulomb energy (C) and hyperfine in-
teraction (H). Independent of the values of the parame-
ters C, H, one has
-1
(m” —mp )EM=—3"(mz+ +m

s —-2m20)

=—0.57£0.03 MeV (A22)

consistent with the Cottingham estimate. This yields

mg—m,y,

= (A23)

m,—m
instead of Eq. (A20). However, the model dependence
becomes evident if one uses the same model on the
K*%-K** mass difference. Neglecting the constituent
mass difference in the hyperfine portion, one has

(mK*o'—mK*+)EM=—%(mP+_mpo):O.zil.S MCV ,
( ) (A24)
m,—m me o™ M_x+)oMm
e K K O .05340.016= ——
mg— i (me«—m,) 19+8

which is not at all consistent. We conclude that, al-
though hadron masses contain information on m,—m,,
one must become more confident about the models used
to extract the electromagnetic contribution.

(6) p-» mixing. Because o is a mixture of SU(3) singlet
and octet, SU(3) cannot be used to analyze the mixing of
p and o. Rather, quark model/Okuba-Zweig-lizuka
(OZD rule motivations must be used. The quark mass
contribution to the mixing is driven by

907

M,,={plm,au+m,ddlo)
(m,—my) -
2—2——d~(plﬁu —dd|w) ,

while mass splittings are governed by

(A25)

M, «—m,=(K*|\m,iu +mydd +m5s|K*)
—{plm au +m dd +ms|p)
(m,—m

) -
=——3———[(K*|17u +dd —25s|K*)

—{plau +dd —25slp)] .
(A26)

The quark model says that the matrix elements are relat-
ed such that

-M
L= L. (A27)
ms_rh\ MK*_mP

m;—m

There can be electromagnetic contributions to M,,. One
known contribution is due to p<>y<>®, which contributes
0.4 MeV to M,,. Substracting this off [27], analysis of
w-p mixing would yield

M,,=—2.6 MeV,

(A28)
m m
4 =0.023=1
m,—m

APPENDIX B: U(1) , TRANSFORMATION
WITH A SINGLET FIELD

In this appendix we review and generalize the con-
struction due to Gasser and Leutwyler of the Lagrangian
containing an SU(3)-singlet pseudoscalar field ¢,. The
goal is to verify that the couplings of the singlet field do
not contain new information that might allow one to
overcome the reparametrization ambiguity without using
the 6 dependence. We need to allow U(1) transforma-
tions in the matrix U. For this we add a singlet coordi-
nate ¢,

ity
3

U=exp il-i

7 [XP (B1)

=U exp

idy
3

Note that we need not identify ¢, with a single meson
field, such as 7’. In practice, we will integrate out ¢, be-
fore applying the resulting Lagrangian. The important
feature is the transformation of the fields under chiral ro-
tations, i.e.,
U—~LOR", (B2)
where now L and R may include U(1) , transformations.
In particular, for a pure U(1) , rotation of Eq. (47), we

have
U—eeUeie | (B3)

which amounts to
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do— ¢yt 6 . (B4) The effective Lagrangian is the most general invariant
. . . combination of the fields 8,, U, and QCD parameters
At the same time, 6 will be modified to {08,m;}. There is now the possibility of a Lagrangian at
0—6—6a . (B5) order E i,
These rules lead to the crucial observation that Loy=—V(0+¢,) , (B7)
0+do=6—i TrinT (B6) wherej VO'(0+¢0) is an arbitraryzfunction of the invari.ant
combination 8+¢,. At order E-, we have the generaliza-
is not modified by a chiral U(1) ; transformation. tion of £,, i.e.,
J
_F? WD i 5t s oot
Lz—TV1(6+¢O)Tr(D#UD U )+T[ Vo(0+¢,) Tr(xU ")+ V3(0+6,) Tr(Ux")]

+1V3(0+ 603,603+ LV (0 +0)3,0040+ LV (6+$4)3 863D, ,

(B8)

where V,(0+¢,) are again arbitrary functions. This construction was first given by Gasser and Leutwyler [2]. Finally,

the generalization of .L, is given by

L,=K\[Tr(D,UD*U " *+K, Tr(D,UD,0 ") Te(D*UDU U ") +K, Tr(D*TUD,U 'D*UD,U ")

+[K, Tr(x'O)+K ¥ Tr(xU ) Te(D,UD*0 "+ K Te(D,UD*U "Ux" )+ K ¥ Te(DpUD U YT )
+K T OO T O+ K Tr(xU D Te(x U H+K, Te(xU H Tr(UxH + K, Tr(x 'O O)+ K Te(x U YT 1)

—iKyTr(L, D*UD U ")—iK§ Tr(R,,D*UD*U ") +K,, Tr(U 'L, UR ) ,

plus terms with derivatives of 6. Here K; =K;(6+¢,),
and K, K,, K3, K7, and K|, are real. If one identifies ¢,
with the 7’ field, the dependence on 6+ ¢, is equivalent to
the “soft 1" theorems of Witten [16] where the %' matrix
elements are related to derivatives of the vacuum energy
with respect to 6.

At this stage we can explore the reparametrization
transformation of Sec. II. We find that it exists in a
modified form, i.e., Eq. (23) is replaced by

X—»x+k[detxt]x+e —io
xx | (B10)
M—->MP=M+21detMM ~'e "¢

The use of the Cayley-Hamilton relation then allows one
to maintain the same physical observables as long as we
modify

K6(0+¢0)—>K6(9+¢0)—%V2(6+¢0)e7”9+%) ,

(B11)

K8(0+¢0)—~>K8(9+¢0)+%V2(9+¢O)e‘i(9+¢0) .

(B9)

f

If we neglect 6 and ¢, this is just the previous
reparametrization change. However, in the presence of 0
and @, it is a nontrivial extension, preserving the general
form of the Lagrangian. The argument about the invari-
ance of the resulting physics is similar to that of Sec. II.
The parameters in V;,K; are arbitrary and must be deter-
mined phenomenologically. One can start with a mass
matrix M and determine the V;,K;, or one may use MM
and find a different set of parameters [related to the origi-
nal basis by Eq. (B11)], resulting in the same observables
if 8 is not involved.

We can see from this construction that, if 6 =0, matrix
elements involving ¢, do not help in resolving the quark
mass ambiguity. With 6=0, the previous transformation
is fully present in all matrix elements. In practice, there-
fore, we have gained nothing for our purpose by includ-
ing ¢,. In addition, all singlet fields are too heavy for the
reliable use of the chiral energy expansion. Therefore, it
is preferable to integrate ¢, out of the theory and concen-
trate on the low-energy particles. This is accomplished
by defining a new field §,=60+ ¢, and integrating out &,
It is easy to verify that this leads to a Lagrangian of the
form described in Sec. IV.
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