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Hamiltonian model for the Higgs resonance
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Starting from a field-theoretic expression for the effective potential between two strongly interacting
longitudinal components of the vector bosons in the standard electroweak theory, we compute the full

amplitude in the two-particle sector based on a relativistic generalization of the Hamiltonian formalism.
The Higgs-resonance trajectories are studied as a function of an energy scale and a dimensionless renor-
malization parameter in the effective potential. An intriguing possibility of a narrow-width Higgs reso-
nance in the 1-TeV region cannot be ruled out from general considerations.

PACS number(s): 12.15.Cc, 11.10.Qr, 12.40.Qq, 14.80.Gt

I. INTRODUCTION

The interaction between the longitudinal components
w+, z, m of the "weak" bosons 8'+, Z, 8' through the
spontaneously broken symmetry via the Higgs boson be-
comes the dominant interaction at TeV energies; and to a
good approximation the gauge interactions may be con-
sidered to be secondary [1]. Many authors have investi-

gated the implications on the position of the Higgs reso-
nance in this framework [2]. By virtue of these strong in-

teractions the Higgs boson decays rapidly and in the pro-
cess acquires a substantial width. Methods useful for
narrow-width resonances are inadequate to deal with this
situation. A more systematic strong-coupling theory in-

volving the effects of rescattering corrections is necessary.
We construct a Hamiltonian model [3) of the two-

meson system. Since total angular momentum ("spin")
and weak isospin are constants of motion, the various
spin-isospin channels do not mix with each other. For
the two-meson system the problem thus reduces to a
single-channel problem which is easy to handle. We will

primarily be interested in the u+m and zz channels.
The weak isospins possible are I=O, 2 for the S waves
(more generally for even spin) and I= 1 for the P waves
(more generally for odd spin). The Higgs resonance
should occur in the I=0, S-wave channel.

In nonrelativistic physics an interacting two-particle
system is represented by a Hamiltonian in the center-of-
mass frame, which consists of the free-particle (reduced)
kinetic energy together with an interaction which de-
pends on the relative coordinate, and hence mixes states
with different free energies. While local potentials are
often used to describe the interaction, velocity-dependent
potentials such as the separable potential [4] can also be
used. The scattering states are labeled by the energy and
are continuum normalized.

When we consider relativistic two-particle systems, the
energy function is not an appropriate quantity to consid-
er, since it is not an invariant expression. Bakamjian and

Thomas and many other authors [5] have shown that the
natural generalization is to consider the effective mass
squared, i.e., the square of the energy in the center-of-
mass frame, as the counterpart of the nonrelativistic
Hamiltonian. The importance of the center of mass in
relativistic interactions was emphasized by Eddington [6].
Lorentz invariance of the theory is guaranteed since the
little group of the center of mass is the rotation group;
and the interaction contribution to the mass operator is
taken as a scalar. The angular momentum in the center-
of-mass frame is preserved by the modified squared mass
operator. So, we could separate out the various spin
channels and deal with them one by one.

In many ways, then, the squared mass operator serves
the role of the Hamiltonian in nonrelativistic theories;
and the problem separates into each (total) angular
momentum channel. For spinless particles the effective
spin is simply the orbital angular momentum. So the sys-
tem can be, without any loss of generality, treated in
terms of a series of "Hamiltonians" with the states la-
beled by the center-of-mass energy squared, s. The model
we will employ for this purpose will be the separable po-
tential with an interaction obtained from perturbation di-
agrams which are two-particle irreducible in the direct
channel. We choose the separable potential for two
reasons: first, the structure of the wave functions and the
scattering amplitudes is relatively simple [7] even with
the natural constraint of unitarity; second, no generality
is last by using a separable potential since any one chan-
nel scattering amplitude can be reproduced by a suitable
separable potential [8]. For a strong-coupling problem in
which the potential is "known, " this Hamiltonian model
is most appropriate; we can also perform analytic con-
tinuation of the formalism to locate the second-sheet
singularities.

II. THE HAMILTONIAN MODEL

We use the center-of-mass energy-squared variable s to
label the spin-isospin definite channel states with continu-
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um normalization. The free "Hamiltonian" is then

H(s, s') =s5(s —s') .

The interaction is

H, (s,s') =+g(s)g(s'), (2)

Pr(s)=5(y —s)+ f g(s')P r(s')ds' g (s)
(4)

The integral on the right-hand side satisfies the algebraic
equation

fg(s)Pr(s)ds=g(y)+(g ( ~ )& f g(s')P~(s')ds', (5)

so that

f g(s')P (s')ds' = g(y) g(y)
I+(g'( ~ )& P(y)

'

where

p(y)=1+&g'( )&=1+f "',"'.' .
P —s +lE'

The scattering amplitude is [7)

T(s)= —m(y —s)P (s)i =+ mg (s)
p(s)

p (s) —p(s)
2i P(s)

(7)

The wave functions are complete and normalized except
for the possibility of a bound state.

Our primary interest is in the study of the Higgs parti-
cle in interaction with the "scalar" mesons w+w and
zz. We want to assure ourselves of a model in which rela-
tivistic invariance, weak isospin symmetry, and unitarity
are incorporated. Our model is defined by Eqs. (7) and
(8). We compute the effective separable potential (in the
center of mass) using the simplest field-theoretic two-
particle "direct channel irreducible" diagrams. This
effective potential is the numerator of the exact scattering
amplitude, and enters the denominator through its
dispersion integral. Given the effective potential calculat-
ed to any order in the coupling, the scattering amplitude
is computed to all orders in the effective potential. The
approximation can be improved by including higher-
order diagrams in the cross channel to compute the
effective potential.

Note that a consistent computation of the scattering
amplitude by the above method must treat the direct and
cross channel differently. All two-particle "direct chan-
nel irreducible" diagrams are computed up to some

where, without loss of generality, g (s) may be chosen real
and positive and the minus or plus signs designate the po-
tential to be, respectively, attractive or repulsive. For the
S wave, an attractive potential may lead to a resonance
while a repulsive potential does not. The continuum
wave functions Pr(s) satisfy

(y —s)Pr(s)=+g(s) fg(s')P r(s')ds', (3)

with the "in" solutions

prescribed order. Direct channel reducible diagrams
enter only by virtue of the denominator function through
dispersion integrals; and the entire set of iterations are
automatically included. This is somewhat in the spirit of
computing the wave functions and energies of the Dirac
electron in a Coulomb field. The Coulomb potential is
computed to the lowest order in the cross channel, but
then the problem is solved exactly. To the lowest order
in the potential, by setting V(s) =H, (s,s), we get

T~ Tx = [(ReT) ' i ]— (10)

In contrast, the Pade approximation starts with a per-
turbative amplitude which satisfies unitarity nontrivially
to some order and then innovates on the amplitude. For
definiteness let us take the simplest case of the (1, 1) Pade
approximant starting with the amplitude up to the
second order,

T= T)+ T2,

with unitarity satisfied to first order,

ImTi =0, ImT2 =
~ Ti ~

Then the (1,1) Pade approximant

T""=T 1—
T

(12)

(13)

is exactly unitary. In this case

ReT (1 1) T) —ReT2

1 —2Re(Tz/T, )+~Tz~ /T,

which in general, as is known, differs from

ReT= T&+ReT&

in higher-order terms.

(14)

(15)

T, (s) = —ir V(s) =+~g (s),
and this can be used to determine g (s). An attractive po-
tential corresponds to a negative V, or T& & 0; while for a
repulsive potential V&0, or T, (0. The integrals (g( ) &

may be formally divergent. In the spirit of dimensional
regularization, we will use the minimally subtracted ex-
pression for the integrals.

The present Hamiltonian model furnishes a unitary
scattering amplitude generated from a perturbatively
computed effective potential. There are other methods of
generating unitary scattering amplitudes, such as the K
matrix and the Pade approximant [2]. They give different
expressions from what we have obtained.

The essence of unitarity is that the inverse of the di-
mensionless scattering amplitude has the imaginary part
—1. The K-matrix unitarization accomplishes this by
taking the real part of the inverse K-matrix amplitude Tz
to be the inverse of the real part of the starting amplitude
T and augmenting it with an imaginary part —l. In this
approach, no change is made in the real part of the in-
verse amplitude, i.e., Re(1/Tx ) =Re(1/T) Because. of
this, the K-matrix amplitude is an unreliable approxima-
tion though it satisfies unitarity:
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In the Hamiltonian scheme

(16)

(a)

+

(b) (c)

where —
( I /a) ( V) is the dispersion integral with an

imaginary part V and a real part which is the Hilbert
transform of V. Needless to say, this amplitude is the ex-
act result for the effective potential V.

(d) (e)
III. THE HIGGS RESONANCE

In the minimal standard theory, the interaction La-
grangian for the Higgs-scalar sector is given by

FIG. 2. Perturbation diagrams up to one-loop order contrib-
uting to the effective potential.

XH;ss, = ——[2w+w +z +(h+v) —v ] (17)

where the "bare" mass of the Higgs scalar is given by
m 2 2AU2

For the two-scalar-meson system with the w+w and
zz channels, the lowest-order t-channel diagrams are indi-
cated in Figs. 1(a) and (b). Together they contribute to
the Feynman amplitude:

2—2k I+
t —m

m

U t —m2 2

2m ~ t
(18)

U

We denote the sum of the two by the diagram in Fig. 1(c).
There are the corresponding u-channel and s-channel dia-
grams, respectively, proportional to u and s. The lowest-
order effective potential is therefore linear in s, t, u. When
the partial waves are projected the t and u dependences
become transmuted to s dependences.

The next-order contributions to the effective potential
come from the one-loop exchange in the t channel
(and/or the u channel) but not from the s channel. The
diagrams up to one-loop order contributing to the
effective potential are illustrated in Fig. 2.

The one-loop cross-channel diagrams shown in Figs.
2(d) and 2(e) are formally divergent. The loop contribu-
tion may be regulated, say through a cutoff, and the sub-

sequent cutoff-dependent polynomials removed through
the appropriate counterterms. Finally this one-1oop con-
tribution to the s-channel I=O, S-wave partial-wave am-
plitude is

effective potential but arises out of rescattering and mill

appear in the exact solution through a dispersion in-
tegral.

The contribution of these diagrams for the I=O, S-
wave amplitude is [9]

T, (s) =mg (s)= + „ R — ln-s s 1 7 s

16m U 64~U 4m

(20)

where v is a scale mass squared which cannot be chosen
to be 0 or infinity. The bare Higgs-boson mass m has
been taken to be infinite. We use U=0. 246 TeV as the
vacuum expectation value of the Higgs field. For large
finite bare mass m, this is modified to

2

T, (s)=
16mv (m —s)

2 4s m 1 7 s

64~v (m —s ) 4m
(21)

Both expressions satisfy the low-energy theorem [10] that
T~(s)~0 as s~0. Below we will only consider the
infinite-m case. Identifying T, (s) with —

m V, or
+~g (s), we can fix the separable potential and compute
the full scattering amplitude according to

T( )= ~g'(s)
p(s)

with

Tl loop
o-s ln —+R (19) P=l+(g'(. )) . (23)

Here v is an energy scale parameter and R ' is a renormal-
ization constant. Later on v wi11 be set to some common
scale. We will consider both cases, i.e., treating R' as a
dependent parameter and treating it as an independent
parameter. The s-channel loop is not a part of the

As noted earlier, the s-channel loop is not a part of the
effective potential. It arises out of rescattering and ap-
pears in the exact solution through a dispersion relation.
The number R will be referred to as the renormalization
constant, which is related to R '

by

1 7
2 18

(24)

{a} {b} {c}

FIG. 1. The t-channel tree diagrams.

At this stage R is a free parameter, but the requirement
of the positivity of the imaginary part of the propagator
would constrain R to be limited in its absolute value if it
is negative. (For sma11 negative values of R the width of
the Higgs resonance becomes narrower: see the discus-
sion below. )
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Now consider the effective potential at the tree level:

r, „„= „P„„=1+
16~v (4' u )

(25)

The dispersion integral (s) may be regulated by a
cutoff and the cutoff-dependent polynomial removed
through appropriate counterterms. This leads to

P= 1+ ln +R"
(4mu )

(26)

where R" is a renormalization constant associated with
the evaluation of the dispersion relation.

For the theory defined in Eq. (17), it is natural to relate
R" in Eq. (26) to R ' of Eq. (19), since both constants ori-
ginated from the same loop integ rais evaluated in
different channels. In particular, notice that for
V—

T& ««, in Eq. (16), the quantity which is second order
in the expansion of V, —n. V( V), is the s-channel loop
contribution to the S-wave partial-wave amplitude. The

parameter R", which appears as a subtraction constant
in the dispersion relation, may also be identified as the re-
normalization constant in the evaluation of this s-channel
loop diagram. It is natural that the same renormalization
constant should also appear in the evaluation of the t-
channel loop of Fig. 2(d) and the u-channel loop in Fig.
2(e). In other words, in the full amplitude, the logarithm
factors which arise from loop integrals in different chan-
nels should take the form

ln( —s/v)+R ",
ln( t/v)+—R",
ln( —u /v)+R " .

The t-channel and the u-channel loop contributions to
the I=0 amplitude may be determined through the ap-
plication of the present renormalization condition to the
general form of the I =0 amplitude given in the Appen-
dix. For the present case, the sum of the t-channel and
the u-channel loop contributions is given by

1
Tl loop(s, t, u )=-

(4m.v )

3t2 u2 —s2

2 6

2 2 2—t R„+ 3u t —s
V 2 6

ln +R"
V

(27)

The corresponding S-wave partial-wave amplitude is (4u.v )

1 s 7 s „11
Ti )oop(s) = —

~ ln —+R

Comparing Eqs. (19) and (28), we have

(28)
P„„=1 ——+ ln

s s
(4u.v )

(30)

42 (29)

So here R ' and R" should be counted as one independent

parameter. Incidentally, as a consistency check, using
Eqs. (24) and (29), one sees that the loop contribution to
Eq. (28) is the same as that given in Eq. (20).

On the other hand, on general grounds, the renormal-
ization constant associated with a direct channel disper-
sion relation need not be correlated with specific parame-
ters in the effective potential. In the Appendix we show
that in the effective chiral Lagrangian theory the renor-
malization constant associated with the s-loop contribut-
ing to the I=O amplitude, and that associated with the
cross-channel loop, are related to different combinations
of coe%cients in the Lagrangian; i.e., they are indepen-
dent parameters.

For the sake of generality, we will continue to treat R"
and R' as independent parameters, and at appropriate
points we will discuss the implication when they are re-
lated through Eq. (29).

The positivity of. T& „„implies that the corresponding
effective potential is attractive [see Eq. (9)]. Therefore a
resonance may be expected. We choose the scale parame-
ter v such that the resonance occurs "near" s=v (i.e.,
when narrow-width approximation is valid). More
specifically, we assume that at s=v, Rep„„=0, which
gives

Re(s ) s ln—
(31)

$ S SRe s ln —~—ln-
v 2

Notice that, in principle, the scaling squared mass in the
various integrals could be different; and changing them to
a common scale could introduce additional terms accord-
ing to

s s v
ln —~ln —,+ln —.

V V V
(32)

We have taken the position that all of these integrals
have the same common scale v. No additional parame-
ters are then introduced.

Consequently,

We proceed to evaluate the remainder of the dispersion
integral in the denominator function p(s). We assume
that the real (dispersive) part of each of the remainder
contributions to p(s) continues to vanish at s=v. This
implies
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s 1
P(s }= I ——+ ~ s In

(4trv )

2—s +Rs
4v

7 s
36 4~v

2

sn2

with ln( —s/v)=ln(s/v) —
iver F.or the case where R' is

related to R ", from Eqs. (24), (29), and (30),

14 v 1 11
9 v (4tr)2 27

(34)

IV. NUMERICAL RESULTS

We rewrite the two-parameter expression of (33) as

z = I+oz ln( —z)+4m R(crz) In( —z)

We are interested in the s value where the resonance
occurs. At this point the denominator function vanishes.
A real zero of the denominator function can occur only
outside of the spectrutn of the free Hamiltonian [7]. In
the narrow-width approximation we could locate the ap-
proximate position of this zero by looking for the zero of
the real part of )0(s), which occurs at s =v. However, for
the present problem where a large width is involved, we
directly search for the complex zero of P(s) in the second
sheet by means of a numerical method.

3

I = m res

16~v

This is reminiscent of the expression obtained by Brown
and Goble [12] for the ntr system.

We now turn to the results, based on Eq. (35), where
the e6'ective potential is computed up to the one-loop lev-
el.

Case 1. One independent parameter v. For this case,
R ' is related to R", and the renormalization constant R
is completely determined by the parameter v [see Eq.
(34)]. The resonance location as a function of v is shown
in Fig. 4 as the solid curve. Notice that the trend of this
solid curve is similar to that of the dashed curve, and at
each v value, the resonance width of the solid curve is
persistently larger than that of the dashed curve.

Case 2. Two independent parameters v and R. This is
the case where R ' and R" are not correlated, i.e., v and R
are two independent parameters. The resonance trajec-
tories as a function of v for the di6'erent values of R are
shown as the solid curves in Fig. 5. They are to be com-

,7, (crz)—[ln (
—z)+tr ], (35)

where o =cv, c = I /(4trv ), z =s/v. The second term on
the right-hand side is the dispersion contribution of the
lowest-order diagrams. The last two terms are from the
cross-channel loops.

To lowest order 2-
z = I+oz In( —z) . (36)

This can be rewritten in the form

1 1+ln(cv)= —+ In(cs) —irr=tc .
CV cs

If s = re ', this implies

cosg +ln(cr) =t~,
cr

sing =g —~.
cr

So

tr= f(0)=(0—tr) cot0+ln sinO

0—~

(37)

(38)

(39)

(4O)

4-

I 1 I

-30 -60 -90 -120 -150

the function f(0) is displayed in Fig. 3(a}. The relation
between tc and cv is displayed in Fig. 3(b).

In Fig. 4, the dashed curve shows the solution for the
lowest-order equation (36) in the W plane, where
W=&s, as a function of the square-energy scale v.
[Compare the resonance trajectory of Einhorn [11],
which was obtained in the I/N expansion of the O(2N)
model. ]

In the narrow-width approximation, the resonance
width, defined by W„,=m„,—i I /2, is given by

K 2-

CV

FIG. 3. (a) The 0 dependence of the f(0) function. Point A
is at f(0)= 1. (b) The v dependence of w. Point A is at c v = l.
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0.4 0.6
I

Re W (TeV)
0.8

I

1.0 1.2

-0 1—

Im W

(TeV)

0 3

-0.5—

c%

4W

ey

FIG. 4. Resonance trajectories in the complex 8'plane as a
function of the scale v. The dashed trajectory is for the tree-
level efFective potential. The solid trajectory is for the loop-level
effective potential. For the definition of R see Eq. (34). v=0. 6,
0.8, 1.0, and 1.2 correspond to o.=cv=0.06, 0.08, 0. 11, and
0.13. Points a through e will be referred to in Fig. 6.

respectively.
The fact that a Higgs particle could appear with a rela-

tively narrow width in the TeV region is surprising. We
arrive at this possibility only when v and R are taken to

0.4 0.6
Re W (TeV)

0.8 1.0 1.2

pared with the tree-level prediction, the dashed curve,
which is the same as that shown in Fig. 4.

We note that the R =0 curve differs little from the
dashed curve. This shows that the last term in Eq. (35)
makes only insignificant modification. From the curves
with various values of R, one may discern some trends.
For fixed Im W as R decreases Re W increases. For fixed
Re W, as R decreases Im W increases. Note that as R be-
comes more and more negative the magnitude of the
imaginary part tends to become smaller. For example, at
Re 8'= 1 TeV for R =0, —0.05, —0. 1, and —0.2,

Im W = —0.20, —0. 15, —0. 11, and 0.03 TeV,

be independent parameters. Still, we believe such a possi-
bility should not be ruled out. Of course there is a re-
striction on how negative R can be. As mentioned ear-
lier, from general considerations R must take on a value
which leads to a positive-definite width. It is particularly
interesting that with negative R there is the reduction of
ImW, that is, the width of the Higgs resonance. This
may make it easier to detect this resonance experimental-
ly.

V. CONCLUSIONS

In this work we propose a model for the strongly in-
teracting longitudinal vector bosons in the two-boson sec-
tor at high energy. We start from an effective potential
and compute the exact scattering amplitude that corre-
sponds to this potential. The potential is obtained from
the two-particle "s-channel irreducible" diagrams up to
one-loop order in the perturbation theory. It has one in-
dependent parameter, which can be either the dimension-
less renormalization parameter R, or the scale v.

In the Hamiltonian model based on this potential, the
full scattering amplitude is evaluated exactly. The reso-
nance position is determined by the complex zero of the
denominator function P(s). We consider two cases, one
with one parameter and the other with two parameters.
Our results for the one-parameter case are displayed in
Fig. 4 and for the two-parameter case in Fig. 5. We point
out that the intriguing possibility of narrow-width Higgs
resonance cannot be ruled out a priori for the latter case.

Finally we turn to the search for the Higgs resonance.
We began from the fact that in the minimal standard
model, the bare mass of the Higgs boson is a priori a free
parameter. We are interested in the scenario where the
bare mass is very large and the coupling is strong.
Within our approach the Higgs resonance is present over
a wide range of parameter values. The position of the
Higgs pole on the second sheet is governed by one or two
parameters. Each choice of parameter(s) corresponds to
a definite line shape in the cross section. Figure 6 shows
sample line shapes for the tree-level case, where the
square of the normalized partial-wave amplitude is plot-
ted versus s.

-01-
1.0

Im W

(TeV)
-0 3—

0.8-

0.6-
ITl

0 4
-0 5-

FIG. 5. A family of resonance trajectories in the complex 8'
plane for various values of the renormalization parameter R.
The dashed trajectory is for the first-order effective potential.
The solid curves are for the effective potential computed up to
the second order. v=0. 6, 0.8, 1.0, and 1.2 correspond to
o.=cv=0.06, 0.08, 0. 11, and 0.13.

0.2—

o.o '

0

s(Tev )

FIG. 6. Line shapes for those points along the dashed curve
indicated in Fig. 4.
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Our model may be used as a phenomenological guide
in the search for the Higgs boson in sub-TeV and TeV re-
gions. An optimistic scenario would be as follows.
Through the interplay between model prediction and
measurements, the data confirms one specific line shape
of our model. This implies the discovery of the Higgs
resonance and at the same time it predicts the resonance
pole position on the second sheet.
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stant associated with the s-channel loop and that associ-
ated with the cross-channel loops, are two independent
parameters. Following the basic notation of Dobado
et al. [2], consider the effective chiral Lagrangian

L=L,+L, ,

where

(A 1)

(A2)

and

X,= —,', Etr [ [(a„U ) U', (a,U ) U'] ]

+—'6[tr(B„U 8"U )] (A3)

with U(x) =exp[iw(x) trlu] and tr being the Pauli ma-
trices. The coefficients E and 6 are the two independent
parameters. The scattering amplitude for m;m. ~uk m&

can be written as

APPENDIX

We show below that in the effective chiral Lagrangian
theory, for the I =0 amplitude, the renormalization con-

T, ki= 3(s, t, u)5, 5kt+ A(t, s, u)5k5 I

+A(u, t, s)5;t5k .

To one-loop level, the scattering amplitude is

(A4)

1.. s ER(v} 2 2 2
GR(v)

2A"'~(s, t, u)= —z+ ( 2s +t —+u )+ 4 s
v' 4v4 v

1 1
(3t +u —s ) ln

(4n. ) v

1+ (3u +t —s )ln
v 12

Q S 2

+—ln
v 2

(A5)

where the renormalization constants defined at s =vo are given by

1 v 1 v
Ez(v)=E+(vo) — ln —and Gz(v)=Gtt(vo} — ln-

12m vo 16m vo
(A6)

There are two independent renormalization constants defined at the scale vo. As expected the amplitude A " is in-

dependent of the renormalization point v.
The I=0 amplitude is defined by

A(I=O)=33(s, t, u)+ A(t, s, u)+ A(u, t, s) .

From Eqs. (A5) and (A7}, the I=0 amplitude up to the one-loop level can be written as

A'"t'(I =0)= + B„(v)— 2
ln

2s 2s2 1

U U (4n)

(A7)

3t2 u2 —s2
C„(v) — ln

1

(4~)

3u2 t2 —s2

v4 2 6
C~ (v) — ln

1

(4m )
(A8)

where

B„(v)=,'E~(v)+ —,'G~(v) and C„—(v)=3, E~(v)+ 3G~(v) .

A glance at (A8) reveals that Bz ' and Cz'"' are the re-
normalization constants defined at s =v for, respectively,
the s-loop and the crossed-channel loops. Since E and 6,

or equivalently Ez(v) and G~(v), are independent pa-
rameters, so Bz(v) and Cz(v) are also independent pa-
rameters.
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