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Multiplicity dependence of intermittent behavior
and clustering production of hadrons
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The multiplicity dependence of intermittency phenomena is discussed in connection with cluster-
ing production of hadrons. It is shown that the decrease of intermittency indices with increasing
multiplicity is due to statistical fluctuation of such clusters.
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In recent years particle density fluctuations in small
phase space have been extensively studied [1]. To study
the intermittency in multiparticle production processes,
Bialas and Peschanski [2] proposed that one should mea-
sure the scaled factorial moments. For an event with n
hadrons in a rapidity interval AY the qth order of these
is defined by

1 )M. M k (k —1) (k —q+ 1)
M n(n —1) . (n —q+ 1)m=1

Fq oc (by) (2)

are observed not only in heavy ion and cosmic ray exper-
iments, but also in hadronic and leptonic collisions [3].
It is interesting that the intermittency index p& is the
largest in e+e annihilation and the smallest in nucleus—
nucleus collision. Since the average multiplicity in e+e
annihilation is lower than that in nucleus —nucleus colli-
sion, one would like to know how the intermittent behav-
ior depends on the multiplicity.

In fact, the UA1 Collaboration [4] has studied the in-
termittent behavior in different multiplicity intervals in
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In Eq. (1) the rapidity interval AY is divided into M bins
of size by = b,YjM. Here k is the number of particles
in the mth bin. This method was originally proposed
to study the fluctuations of hadrons in high multiplic-
ity events (e.g. , in high-energy heavy ion and cosmic ray
experiments). In practice, however, it is necessary to
average over an ensemble of events with different mul-

tiplicities. Experimentally it is observed that the scaled
factorial moments F& averaged over an ensemble of events
increase with decreasing bin size. In the region of small
bin size, e.g. , in rapidity region 0.1 & by & 1.0 power
laws

pp collision at c.m. energy 630 GeV and found that the
effects are stronger in sample of events with lower mul-
tiplicities. This observation can not be explained by the
commonly used Monte Carlo codes or models which are
tuned to account for the general features of multiparticle
production (see Ref. [4]). Some of these models predict
that the effects should be stronger in a higher multiplicity
sample which is qualitatively in disagreement with exper-
imental data.

Several approaches were made to understand this strik-
ing feature recently. Some authors [5] explained such de-
pendence with a random superposition of uncorrelated
samples. It was also claimed that the origin of this de-
pendence lies in the existence of a multitude of indepen-
dent multiplicity distributions over the impact parameter
plane in a geometrical picture [6]. For others [7] it is an
indication for the local parton —hadron duality. These dis-
cussions are, however, only qualitative, serniqualitative,
or by analogy. In this paper we present a quantitative
calculation in the picture of clustering production.

The concept of hadronic clusters was proposed in the
early 1970s in connection with short-range correlations
[8] and rapidity-gap distributions [9]. However, little
about cluster properties is understood.

In recent papers [10] we proposed a set of sum rules for
such clusters to establish the links between clusters and
directly measurable quantities, e.g. , the charged multi-
plicity distribution. In this paper we will show that the
intermittency phenomenon is related to the clustering
production of hadrons and demonstrate how information
on clusters can be obtained by studying the intermittency
in different multiplicity intervals.

We note that the method proposed by Bialas and
Peschanski [2] is not only useful in studying fluctuations,
but also very useful in investigating clustering behavior
of hadron production, because fluctuations (described by
factorial moments F&) and correlations [correlation func-
tions C(yq, yz, . . . , ys)] are directly related to each other
[11].

It should be emphasized here that the cluster notion
we discuss here should not be identified with ordinary
hadronic resonances. A cluster is a group of correlated
hadrons which are independent from other hadrons pro-
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C

N =) N. (iIN).
1=0

(4)

It should be noticed here that the number of charged
hadrons n~ changes with the bin size, while the number
of cluster N is independent of the bin.

Let n (I) be the average probability for the produc-
tion of one of the N (IIN) clusters which contributes I
charged hadrons in the bin 6y, and P(N) be the probabil-
ity for producing N clusters in AY; then the probability
for observing n charged hadrons in the bin is given by
the sum of weighted multinomial distributions [10]:

duced in the same process. It could be a clan, a string,
a chain [12], or an intermittency source [13], whatever
produces correlated hadrons.

To begin with, let us consider an event with N clusters
in the rapidity interval LY and assume that every cluster
may decay into 0, 1, 2, . . . , c charged hadrons distributed
in AY'. Let N (IIN) be the number of clusters, each of
which contributes 1 charged hadrons to a rapidity bin of
size by (or a rapidity window) in the N-cluster event.
Then, the number of charged hadrons n in the bin by
(the subscript ur stands for window or bin) is given by

C

n = ) IN (IIN).
1=0

By definition, the following equation should also be sat-
is6ed:

C

(n„) = (N) ) In (I) .
1=1

(10)

The following relations between the scaled factorial mo-
ments F& and P& can be also readily shown from Eq. (5):

F4 ——T4

Ap'
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(N) (N)' (N)' ' (13)

In the bin of size by the average hadron multiplicity (n )
is defined by

P n„P„(n„)
P P„(n„)

and the scaled factorial moments of hadrons F& by

(n (n —1) . . (n —
q + 1))

(n„)~
Pn (n —1) (n —q+ 1)P (n )

[Qn P (n„)]'
From Eq. (5) we see that the average multiplicity of

cluster (N) and that of hadrons (n, ) is related in the
following way:

P (n )=) ) P(N) N!
N

~ ~ ~
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1.6-

(i)N (I!N)
h ~

2=0

where the sum is first taken over N (IIN). The prime on
the summation sign indicates that the conditions given
in Eqs. (3) and (4) should be satisfied.

The average probability n (I) for having a cluster
which contributes l charged hadrons in the given bin is a
useful quantity. On the one hand, it is closely related to
the intrinsic properties of the clusters and, on the other
hand, it reflects the relative importance of different kinds
of clusters contributing to the given bin. Equation (5)
connects the hadronic clusters and the experimentally
directly measurable multiplicities. Because the cluster
multiplicity distribution P(N) and the cluster parame-
ters rr (I) are unknown, similar to the discussion in [10]
we solve Eq. (5) with successive approximations. Before
we do this, let us define the moments for both clusters in
the rapidity interval and hadrons in the bin.

In the rapidity interval AY the average cluster number

(N) is defined by

L!
U
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and the scaled factorial moments of clusters T& by
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FIG. 1. logrsI'& vs brl The data are taken f.rom Ref. [4j
and the solid curves are the fitting results.



PAN JI-CAI

0.)5-

0.05-

O. QO

OP 02

FIG ~ & Atter c(
O lI1 SlZ

P rgllieter -(~)» inn, (;,„,

4S

(14)

C

A; — =g t(t —1) . (t i+ 1)~„(1)
(2;, ( .(());

ote that th

factoria~ I " o the b;»,
ents for cl„ ter

&&
and the

p(n($5

&oa,+5+ 2y +
10A3+1ggg

+4~~+ 1o~,g,
(x)3 &~+ (&)'

siIM/ar e
h&ghee oqd ~

qn@tions (q@11 d
r

&
@ng y,

e sum rii[es

s&ccessjye @
Q

are ln&o&peg

n ~hlc

I I roxima4io
the b~

E»en in E«6
'on Here ghe (~

"«& the

defined h
& (7), and (g)

& +q and F
, respective& "e&; are

0.5" 0.5"

0. g. . 16 (n (3p

-0. 4

0. 7..

020' 0.'g 0 -8 1 -0. 4 0 0 0. 4 ~ 0

0.5..

0. 4, .

0. 4..

0. g. .

0.2, .

U

-0.4 p 0 0 060-.8 j

-n'og„(5&)

q=2

0.2 0 '4 0. 6 0

FIG 3

-~og «(s~)

The )o 1O~Q- JO „$$~0 f/ P/ot s crept mu]ti ]P &lty llutter~ )



MULTIPLICITY DEPENDENCE OF INTERMITTENT BEHAVIOR. . . 837

TABLE I. The average multiplicity (N) aud scaled facto-
rial moments Tq of clusters in dependence of diR'erent multi-

plicity intervals.

n&15
16 & n & 30
n) 31

(N)
3.21
10.1
17.7

y2
1.09
0.94
0.97

y3
1.16
0.84
0.94

P4
1.07
0.71
0.90

X5
0.79
0.57
0.88

average cluster number (N) do not, because they are de-

fined in the rapidity interval AY. However, according to
Eqs. (6) and (7) E& and the (N) depend on the multi-

plicity intervals from which the events are selected.
To carry out the successive approximation, let us, first

of all, consider a simple case. We assume that every clus-
ter decays into only one charged hadron; i.e. , the charged
hadrons are produced independently. From Eq. (15) we

see that all A; disappear. From Eqs. (11)—(14) we get
Fz ——F&. Since the Fz are independent of bin size, all

the intermittency indices yq equal zero. That is, there is

no intermittency in this case, as it should be, because the
pure statistical fluctuations of hadrons are eliminated by
the scaled factorial moments [2].

We assume now that in the rapidity interval AY each
cluster decays into two charged hadrons. This ansatz is

based on the fact that there are indications that charged
hadrons are produced via neutral clusters which decay
into a pair of oppositely charged hadrons [14]. In this
approximation, the (N) and scaled factorial moments for
clusters T; can be readily calculated from the multiplicity
distribution in the rapidity interval AY. The results for
different multiplicity samples are listed in Table I. By
adjusting the cluster parameters n~(i) which depend on
the bin size by, power laws of F& given in Eq. (2) can be
obtained. In Fig. 1 we show the fitted F& as a function
of pseudorapidity bin size brI together with UA1 data [4].

In Fig. 2 we show the fitted parameter n (I) as a func-

tion of bin size brI in the region of 0.1 ( bg ( 1.0 where
the linear fits will be made. In this approximation n (2)
will increase to 1 at brI = AY = 3.0, while other n (I)'s
will become zero. For simplicity, all the n (i) with i ) 4
were taken to be zero in all rapidity bin sizes. The reasons
for this are twofold. First, only large clusters contribute
to the A; with large i [see Eq. (15)] whose contribution to
Fq is very much suppressed by the large average cluster
number (N) [see Eqs. (11)—(14)]. Second, numerical cal-
culation (see Fig. 2) shows the higher the I, the smaller
the a~(l). One expects, therefore, the probability for
the occurrence of large clusters is small. This guarantees
also the stability of the results. The decrease of n~(l)
with decreasing bg can be most easily understood from
Eq. (10) which is always satisfied in fitting F&. Because
the (n ) decreases with brI and the (N) is independent
of brI the sum of n~(i) must decrease with brI.

It should be mentioned that once n~(l) is known in
fitting data of a specific multiplicity sample, such as one
with no cut on multiplicity shown above, Fq for other
multiplicity samples are then uniquely determined by
(N) and X& which depend on the sample (see Table 1).
In other words, if n (I) is known one can predict the
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FIG. 4. The multiplicity dependence of intermittency in-
dices rpv The solid .circles are the UA1 data [4] aud the crosses
are the calculated results in the region 0.1 & bg ( 1.0. The
yq is the prediction.

multiplicity dependence of Fq.
To compare with data we made the same cuts on n as

UA1 did. By using the values for (N) and 9'~ listed in
Table I we calculated the corresponding Fq as functions
of bg. The results for different multiplicity intervals are
compared in Fig. 3. Similar to the case where no cuts
on n are applied, intermittency is observed for different
n cuts in small bin size 0.1 & bg & 1.0.

In Fig. 4 the intermittency indices fitted in the re-
gion 0.1 & bg & 1.0 for different multiplicity intervals
are shown together with data [4]. The calculated results
are in good agreement with the data. From the experi-
mental data on the average multiplicity and the factorial
moments [4] in AY the multiplicity distribution can be
parametrized with a certain distribution, with the help
of which higher factorial moments can be calculated. We
did this with a negative binomial which is widely used
to describe the multiplicity distributions in restricted ra-
pidity regions [15]. As an example we predicted p5 by
using T5 obtained from the negative binomial distribu-
tion. This is also shown in Fig. 4.

As mentioned above, the n (I) does not depend on
n cuts; the multiplicity dependence of Fq is described
completely by Xz and (N) of clusters given in Eqs.
(6)—(15). When one compares the results for different
n intervals shown in Fig. 3, one finds that Fq decreases
systematically with increasing n interval, which results in
the decrease of intermittency indices. From Eqs. (11)—
(14) and Table I we see that there are two reasons for
this.

One reason is that due to the truncation of multiplicity,
the fiuctuation of N becomes smaller. So F& is lowered
systematically. As listed in Table I, some Fq are even
smaller than 1. In the interval 16 & n & 30, two sides
of the distribution are truncated; the fluctuations are ex-
pected to be the smallest. Indeed, one sees there is a dip
in Fq for this interval in Table 1.
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The other reason is the fast increase of cluster num-
ber with hadron numbers. The large number of clusters
N not only lowers the I"& overall, but also suppress the
slopes strongly.

Based on these results the following conclusions and
remarks can be made.

(A) Our quantitative study suggests that the multiplic-
ity dependence of intermittency phenomena in hadron-
hadron collisions is due to the statistical fluctuations of
hadronic clusters. Because, in general, the production
mechanism(s) and the properties of clusters are different
in different kinds of collisions at different energies, it does
not mean that the energy dependence of y& and its de-
pendence on kinds of collisions can be described by the

multiplicity dependence of pq as expected in [5].
(B) The intermittency phenomena can emerge in high-

energy multiparticle production processes, even if the
fluctuation of clusters is purely statistical. This dif-

fers from the statistical fluctuation of hadrons where, as
aforementioned, there is no intermittency.

(C) From present experiment we could not get infor-

mation on large clusters. To study large clusters and
their contribution to intermittency phenomena, the in-

vestigation of scaled factorial moments as functions of
multiplicity in smaller rapidity intervals should be very
useful.

The author is indebted to A. Bialas, I. Dremin, T.C.
Meng, I. Sarcevic, and Z.N. Zhou for helpful discussions.
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