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The polarization structure of the NN ~ QN transition is presented in a very compact way using
two kinds of formalisms. First, the spin-space decomposition adapted for describing Bohr's rules
is recalled. Second, the optimal formalism is applied to the transition. It is adapted for taking
into account Bohr's relations and explicitly developed in helicity and transversity frames. Tables of
transformation are given which simply relate observables defined in diR'erent formalisms.
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I. INTRODUCTION

In view of the importance of the isobaric resonance in
intermediate energy physics [1—5], a precise knowledge of
the NN ~ AN transition is more and more necessary.
Experimentally, information can be extracted from the
NN ~ NNtt reactions [6]. Furthermore, data from Ar-
gonne [7] provide us with the first set of spin observables
of the 6 production on a wide energy range. It is useful
and opportune to discuss the spin structure of this transi-
tion in order to interpret the data already obtained and to
advisedly plan future experiments in a framework appro-
priate to interface experimental and theoretical programs
aiming at the exploration of this transition.

The description of the transition matrix and observ-
ables can be given in many ways. Any formalism presents
observables in terms of bilinear combinations of ampli-
tudes ("bicoms"), on the one hand, and yields linear and
nonlinear relationships between observables, on the other
hand. However, in general the matrix connecting observ-
ables and bicoms is far from diagonal and, hence, a given
measurement depends on many bicoms and vice versa.

In this paper, we investigate two kinds of formalism.
The first one, which we proposed [3,8] a few years ago,
uses a spin-space decomposition of the transition matrix
analogous to the Wolfenstein representation in N-N elas-
tic scattering. The 16 complex spin amplitudes f;(gc, )
and g;(Hc, ) are somewhat similar to the spin-nonflip and
spin-Rip amplitudes of pion-nucleon scattering. Accord-
ing to the polarization states of the four particles involved
in the reaction, the spin observable definition is extended
for the 4 production following Bystricky, Lehar, and
Winternitz [9] for N Nelastic scattering. -The 4 spin-
space operators are constructed as an orthonormal basis
adapted for emphasizing Bohr's rules. This formalism is
convenient for studying nuclear reactions at intermediate
energy physics. Use is made of this spin-space decom-
position for tackling problems such as nucleon-nucleus
scattering [5] and nuclear 4 production [4], by eikonal
models. The iterated pion-exchange model of Kloet and

Silbar [1]gives theoretical prediction for spin amplitudes,
which are tested [10] with Argonne experimental data.
The second formalism has been developed by Golstein
and Moravcsik [11—16] during the past 15 years. It op-
timally diagonalizes the matrix connecting observables
and bicoms and consequently is well adapted to the phe-
nomenological determination of amplitudes. Each one of
these formalisms allows one to express all observables by
means of compact formulas. Note that the optimal for-
malism is in reality a multiple set of formalisms. It has
been shown [13] that parity conservation reduces the set
of optimal formalisms to those in which the orientation
of the quantization direction of each particle is either
in.the reaction plane or perpendicular to it. Among all
the possibilities for quantization directions, helicity and
transversity frames play an important role and are partic-
ularly studied in the framework of the optimal formalism.

Without constraint, the number of amplitudes needed
to describe the studied reaction is 32 and the number
of bicoms is 32 = 1024, which is also the number of
observables. %hen parity conservation is imposed, the
number of independent complex amplitudes reduces to
16 and consequently only 31 observables are needed to
determine magnitudes and relative phases of these am-
plitudes. Special emphasis is put on the search for re-
lationships between observables. Particularly, derivation
is made of linear relations due to invariance under re-
flection with respect to the scattering plane, equivalent
to the so-called "Bohr's rule" in nucleon-nucleon elastic
scattering [9].

The paper is organized as follows. Section II is devoted
to a brief summary of the spin-space decomposition de-
veloped in Refs. [3,8], specifying the properties of the
4 spin-space operators with respect to the eight Bohr's
rules of the 4-production reaction. Section III presents
the optimal formalism of Refs. [11-16] and its applica-
tions to the A production in helicity and transversity
frames, as well as in the fixed basis used in Sec. II. Sec-
tion IV gives transformations which relate the various
amplitudes of the transition matrix and explicits trans-
formations between observables.
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II. SPIN-SPACE DECOMPOSITION
AND BOHR'S RULES

Qi ——(S l)(o 2 l), Qz
—— (nz T n)(o 2 l),

3
2i

Qs —(S . rn)(a. 2 m), Q4 —— (L . T . n)(o z m, ),
3

2i
Q5 —(S n)(o 2 n), Qs — (l T m)(o 2 n),

3

Qs — [(m T m) —(n T n)].
3

Q7 = (L. T. l),

(2 3)

The S and T quantities in Eq. (2.3) are the rank 1 and
2 irreducible tensorial operators which link the nucleon
1 spin space to the 6 spin space, respectively. We recall
that using dyadic notation

A convenient spin-space decomposition of the reaction
matrix of NiNz ~ AiN& is given by [3]

8

M = ) [f;(8~)Q; + g;(0~)Q;(az . n)], (2.1)
i=1

where o2 stands for the usual Pauli operator acting on
nucleon 2, assuming nucleon 1 to undergo the transi-
tion and become the A. The unit vectors (l, m, n) of
the right-handed orthonormal basis used as the reference
frame, and common to the four particles involved in the
reaction, are defined by

k x k~l=k, n=, nx=nxl, (2 2)
~k x k~~'

where k and k~ are the initial-beam-nucleon and final-
6 center-of-mass three-momenta, respectively. For pur-
poses of implementing parity conservation, note that n
is a pseudovector, while l and vn are true polar vec-
tors. All the dynamic is contained in the 16 complex
spin amplitudes f;(0~) and g, (0~), analogous to the spin-
nonflip and spin-flip amplitudes of pion-nucleon scatter-
ing. The eight Q; in Eq. (2.1) are spin-space operators
which transform as true scalar because of parity conser-
vation. We recall them for sake of completeness

tively. The 16 A spin states are referred by symbol (I, p)
where I = 1, 2, 3, 4 and p = 0, l, m, , n.

In terms of the M transition amplitude of Eq.(2.1), the
spin observables take the form

, = 4Tr[M ~r(pP'2(~z)M»(ai)&2(o'2)],

(2.5)

where o is the differential cross section for unpolarized
particles up to phase-space factors, so that X~1 o~ooo ——1.

The 16 orthonormalized 6 spin-space operators Qr(p)
where p = 0, l, vn, n and I = 1, 2, 3, 4 satisfy

and

[fir(p)]' = 1

,'Tr[Qrt(—p)Qr.(p')] = Srr Sppl.

(2 6)

(2.7)

= Ar(771)(o.2 m)M(rri m)(o z m), (2.8)

for I = 1, 2, 3, 4 and are called Bohr's rules in reference to
the so-called Bohr's rule in nucleon-nucleon elastic scat-
tering [9]. Equations (2.8) are verified for

nr(n) = nr(0)Z(n),
Qr(L) = Ar(0)Z(L)

Qr(nz) = Ar(0)E(m),

where Z(a) is defined by

1 1
Z(a) = —(Tsaaa)p ——(oa a),

6 5

(2 9)

(2.10)

in terms of rank-3 tensor (Tsaaa)p (Eqs. (2.11b) and
(2.13) of Ref. [8]) and rank-1 generalized Pauli spin op-
erator a ~. This magic K(a) spin-space operator satisfies
the relation

They are constructed in a way to simplify the writing of
relations obtained by invariance under reflection in the
scattering plane. These eight relations involving opera-
tors are expressed in terms of Qr(p) as

gr(0)12M Ii12 —fear(n)(o 2 n)M(o i n)(o 2 n),

Qr(L)(o.2 l)M(o i L)(rr2 . l)

( T b) = -'[(S )( b) + (S b)( )] (2 4) Z(a)Z(b) = (a b) + iZ(a x b), (2.11)
Two years ago, we developed [8] a systematic formal-

ism for the spin observables of the N N ~ AN transition,
according to the polarization states of the four baryons
involved in the reaction. The notation introduced by
Bystricky, Lehar, and Winternitz [9) in nucleon-nucleon
scattering is extended to the A transition. The spin ob-
servables are denoted X&r

&

~ where the (I, p) sym-

bol refers to the A polarization states and n indices to
nucleon polarization states, n1 standing for the beam, n2

I

for the target and n2 for the recoil nucleon. The index n
is equaI to 0 in the ease of an unpolarized initial particle
or if the polarization of final nucleon is not detected, and
is equal to l, m, n according to polarization along one of
these directions. The four corresponding P(n) nucleon

spin operators are 1, (o. l), (a m), and (o. . A.), respec-

analogous to the well-known Pauli operators relation

(o. a)(o. . b) = (a b) + i(o. . a x b) (2.12)

Bi(0) = 1, 02(0) = (n Tz . n)—,4

As(0) = [(l . T~ L) —(m T~ . m)],
4 3

1
04(0) = (Tslm&. ,)p,

2 3

(2.13)

where (a T~ . b) is the dyadic notation for rank 2 ten-

By virtue of Eq.(2.9), it is sufficient to specify the four
Qr(0) to reach a complete knowledge of the orthonormal
basis of 6 spin-space operators. We take
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sors defined in Eqs. (2.11a) and (2.12) of Ref. [8]. Note
that, under space refiection, Qr(p) operators have spec-
ified parity characters, Qr(p) being scalar for p = O, n
and pseudoscalar for p = l, rn, for all I. This is analo-

gous to nucleon case, 'P(n) being scalar for n = 0, n and

pseudoscalar for e = I,, I,.
The present formalism allows one to express all spin

observables, denoted hereafter by IFE, which stands for
"initial-frame experiments, "

by means of a compact for-
mula

) [ReCpRe(f,*fz + g,*glZ, ) + ImCpIm(f fz + g,'g&Z~, )][mrs(p)v(p)v(aq)s(n2));z
i,j=l
+[2ReCqRe(f gl) + 21mCqlm(f g~)][Ills(p)v(p)v(aq)s(nz)s(n)];z, (2.14)

for I = 1,2, 3 and, for I = 4,

8

oXl4„l —) [ReCpIm(f fz + g,'gIZ, ) —ImCpRe(f;" fz + g,'g&Z, )][Its(P)v(P)v(nq)s(cr2)];z
i,j=1
+[2ReCq Im(f gz) —21mCqRe(f gl)][I&4s(p)v(p)v(crq)s(cr2)s(n)];z. (2.15)

+(I,p)bed —+X(I p')b'q'd' ~ (2.16)

I I I I
The indices p, b, c, d are related to indices p, b, c, d by
transformations 0 ~ n and l ~ rn, respectively. The +
sign appearing in Eq.(2.16) is due to the use of Eq. (2.12)
in Bohr's rules of Eqs. (2.8).

Finally, with parity conservation and the so-called
Bohr's rules, the study of the spin observables of the
NN ~ AK transition may be reduced to 256 IFEs where
I = 1, 2, 3, 4 and p = 0, l, for example, once the polariza-
tion states of 4 are expanded on the QI(p) orthonormal
basis.

We recall that taking account of the Pauli principle
reduces the number of IFEs to 160, by relations between
observables at g~ and (z. —8~). It is still more than
enough to determine the 16 complex spin amplitudes f;
and g;, the role of quadratic and more generally nonlinear
relations being to reduce further the number of indepen-
dent IFEs.

All the quantities needed to make these equations explicit
are defined in Ref. [8]: the Cp and Cq coefficients are

I
displayed in Table II as functions of p, o.»o.~, and e~,
Z, is given by Eq. (2.16) and the IC', s and v matrices are
displayed in Appendix C of this reference. Products of s
and v matrices can be simplified by taking into account
their properties given by Eqs. (2.18) and (2.20) of the
same reference.

Each b, spin operator QI(p) carries 64 observables,
each of the three nucleons being unpolarized or polar-
ized along l, rh, or n. Then, with 16 QI(p), 1024 IFEs
can be defined. Accounting the parity invariance, this
number is reduced by a factor 2, the nonvanishing ex-

periments corresponding to an even number of l and m
I

indices among the four subscripts p, o,„o;q, and e~. Tak-
ing into account Bohr's rules divides also the number of
independent IFE by a factor 2, so we are left with 256 of
them. According to Eq. (2.8), the Bohr's relations hold
only between operators with p = 0 and n, on the one

hand, and p = I, and vn, on the other hand. They are
translated into observables by

III. OPTIMAL FORMALISM

Following Goldstein and Moravcsik et al [11.—16], let
us denote the reaction matrix of Ni Np ~ AiN& by

M = ) D(A, l A, L)b"'gbAi,
AlAL

(3.1)

where the D(A, l; A, L)'s are the amplitudes and the b"'
and bA~ the spin-momentum tensors referring to parti-
cles Aq and Ni, Nz, and N2, respectively. The indices

A, l, A, and L are the magnetic projections along the i
quantization axis of each particle, Aq, Ni, N2, and N2,
respectively. The reaction is completely described by a
set of 32 amplitudes D(A, l; A, L), each of which is a func-
tion of energy and scattering angle.

The spin observables are defined by

Z(uv Hp, UV Hr ) (~Hq, - QHq)

= Tr(Qt 'p= oMp"" 'p ~Mt)
(3.2)

where u and v characterize the spin-space matrix of parti-
cle Nq, U, and V that of Nz, (, and u being for Aq, -, and
0 for N&. Each of the two indices, for a given particle of
spin S, takes (2S+1) values from 1 to (2S+1), which are
related to magnetic projections along the quantization
axis. The H's can be either "real" (R) or "imaginary" (I),
for off-diagonal elements of the density matrix. For diag-
onal elements, H is only "real" and the label (R) may be
omitted for the sake of simplicity. The indices p, P, q, Q
are equal to+1 or —1, Hi standing for R and H i for I.
The p and Q operators, describing initial polarizations
and measured final polarizations, denote all the spin-
space operators required to generate spin observables of
the reaction. As usual, putting Eq. (3.1) into Eq. (3.2), it
is easy to see that spin observables are given by bilinear
combinations of amplitudes, called "bicoms. "

In the optimal formalism, the choice of observables and
amplitudes provides observable-bicorn relations as simple
as possible. For this, the b's in Eq. (3.1) are chosen to
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have only one nonzero element and the p and Q operators
to be "minimally Hermitian, " so that the correspond-
ing matrices have a minimal number of nonzero elements
compatible with the Hermiticity requirement. For each
particle, p and Q associated matrix elements are defined
by

(p"" ')I'I ———[(I+p)+q(I p—)] (~(~I l ~(.
lt'+P~(ull'~(nil�)

&

(3.3)

where, for a spin S particle, I and I' correspond to

+S, . . . ,
—S magnetic components along its quantization

axis. The symbol (u) is related to u index by

(u) = S(2u —1) mod (2S + I).

All spin-space matrices corresponding to the NqN2 ~
A~%2 transition are given in the Appendix. Note that
this appendix contains also relationships between p and
Q operators and Cartesian tensors, defined in the ~, y, x
basis and written with dyadic notation, analogous to the
Ql(p) operators presented in Sec. II.

Then, spin observables of Eq. (3.2) may be written

l (uvHp UVHp (~Hq 'QHq): +2Hpqpq D((() (u)'( ) (V))D ((~) (u)'(0) (U})
+pD(((},( );(=-},(V})D*(( ) ( } (fl) (U))
+~D((~) (~) (=-) (V))D'((&) (u) (~) (U))
+I VD((~} (u} (=-) (V))D*((4) (~) (~} (U))
+PD((() ( ) (=-) (U))D*(( ) ( ) (fl) (V))
+pPD(B), (u) (=-) (U))D"((~) (u};(~),(V})
+~PD((~), (~) (=-) (U))D'(u) (u) (~) (V))
+p~PD((~), (u); (=-), (U))D'(4) (~) (~) (V))] (3.5)

where the plus sign is for Q I = 0, 3, 4 and the minus sign for g I = 1, 2, Q I being number of I indices among
Hz, Hp, Hq, Hq or also number of —1 among p, q, P, Q. The symbol Hzqpq is equal to "real" or "imaginary,

" if the
product pqPQ is +1 or —1, respectively.

We recall that for spin-& particles, we have two diagonal states 11 and 22 and two oK-diagonal ones 12R and 12I.
For spin-2 particles, the possibilities are somewhat numerous. There are four diagonal states 11, 22, 33, and 44 and
twelve oK-diagonal ones 12R, 13R, 14R, 23R, 24R, and 34R and six analogous ones with I replacing R.

The 32 observables referring to diagonal arguments only are simply related to one bicorn and more particularly to
the magnitude of one amplitude by

~(uu» A =-=-) =16ID((&) (u) (=-) (U))l (3.6)

The observables referring to three, two, one, or zero diagonal arguments are related to one, two, four, or eight bicoms,
respectively (the number of these various observables being 192, 384, 320, and 96, respectively). For instance, we have

or

or

&( H, UU;A' =-=-) =16H [D((() ( } (=-), (U))D'((t.') ( ) (=-) (U))],

&( H UVH ((:-=-)=+8H [D((&) ( ) (:-) (U))D'((() ( ) (=-) (V))
+»(H) ( );(=-},(V))D'(0) ( ) (=-) (U))l

&(»Hp UVHp &~Hq:-=-) = +4Hpqp[D(A) (~) (=-) (V))D"((~) (u) (=-) (U))
+p»((&} ( ) (:-) (V))D"(( ) ( ) (=-) (U))
+~D((~) (~} (=-) (V))D'(A') (u) (=-) (U))
+ D(( } ( ) (=-} «))D'((&) ( } (=-} (U})]

(3.7)

(3.8)

(3.9)

Note that we have not said anything so far about the
quantization direction of each particle. Indeed, these di-
rections are arbitrary. Parity invariance reduces the num-
ber of independent amplitudes by a factor 2 and limits
the choices for quantization direction of each particle to
be along the normal of the scattering plane or in any
direction in the scattering plane [13]. If the quantiza-
tion direction of each particle is its own momentum (see

]

Fig. I), we obtain the helicity formalism developed by Ja-
cob and iVick [17]. For invariance under parity, helicity
amplitudes satisfy

Dh(P I. A I) ( )A+I+A+L+1Dh( P j. A I)
(3.10)

The transversity formalism presented by I&otanski [18] is
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FIG. 1. Helicity frame. FIG. 2. Transversity frame.

obtained with directions for each particle as in Fig. 2,
where the quantization direction for all particles is
the normal to the reaction plane. Another partic-
ular transversity formalism is defined with the same
fixed basis for all particles, more precisely with a com-

mon (x, y, z) basis equal to the fixed basis (I,, qn, n, ) of
Eq. (2.2). Parity invariance gives for transversity ampli-
tudes

D'(P / A I) —
( )"++A+ D (P, / A, L,), (3.11)

and set equal to zero half of these.
It is not the purpose of this paper to make relations be-

tween bicoms and helicity or transversity optimal observ-
ables explicit. But, it is interesting to show how these op-
timal formalisms become quite diA'erent from each other
when parity conservation and Bohr's rules are taken into
account.

In the transversity frame, for the purpose of imple-
menting parity conservation, note that i is a pseudovec-
tor, while x and y are true polar vectors (see Fig. 2).
Consequently, nucleon spin-space operators p and 6 op-
erators Q have a determined parity character (see the
Appendix). Under space reflection, their transformations
may be written

tl tt Hq
( )

tl +tl tt tl H p

q(tqHq (
)('+~ q(tqHq (3.12)

( ) L (uvHp UVHp'$~Hqt AH@) (313)
with W = u+v+U+V+(+~+=+0, eliminates
half, or 512, of these observables. In addition, among
the remaining 512 even observables, 32 vanish because of
nullity of the operator product Q~ qp==Mp""p++, and
we have

l."(uu, UU;(~Hq, =-=) = 0, for (u+U+g+=) even.

(3.14)

In the helicity frame, y is a pseudovector, while x and
s are polar vectors under space reflection (see Fig. 1).
Then, most, of spin-space operators have no determined
parity character (see the Appendix). They transform
themselves following

Hence, with parity conservation, all transversity optimal
observables are either even or odd, and the relation

l (uvHp UVHpt(u)Hqt AHq)

ptl Hqp
p( )tt+5 ptttlH p

q(tqHq ( )
(+tq

q pe
Hq (3.15)

= pPqq( )L"(uv H—p, UV Hp, (~Hq, -QHq).

(3.16)

From this equation, the equality between uv and uv for 12
and between (u and (u for 14 and 23 yields 16 vanishing
observables.

For technical reasons, instead of primary observables
defined by Eq. (3.5), experimental programs of polariza-
tion measurements prefer a linear combination of them,
which are called secondary observables [14]. In these ob-
servables, the polarization state of each particle is either
averaged (i.e. , the particle is unpolarized or its polariza-
tion is not measured) or satisfies the "null-sum" crite-
rion, which requires that the sum of the coefficients of
primary arguments vanishes. Secondary observables are
labeled with secondary diagonal arguments A and 4 for
nucleons and with A, 4~, 42, @3 for 6, the oA'-diagonal
arguments being unchanged.

The definition of secondary arguments in terms of pri-
mary ones is chosen as

A = -[(11)+ (22)], 0/ = -[(11)—(22)],
1 1

(3.17)

for nucleon. For the 4 particle, we choose

& = —,K»)+ (»)+ (»)+ (44)],
1

1~ = —,[(») —(») —(»)+ (44)]

1+.=-[-(»)+(»)—(»)+(44)]
2
1~. = -[-(») —(») + (») + (44)]
2

(3.18)

The argument A, standing for averaged, is obtained by
summing over all diagonal states of the particle and corre-

where the "mirror" arguments uv are related to uv ar-
guments by uv = 22, 12 for uv = 11,12 and similarly

(u = 44, 33, 34, 24, 14, 23 for (u = 11, 22, 12, 13, 14,
23, respectively. Then, helicity optimal observables are
related by

L"(uv Hp, U V Hp, (~Hq,

=AH@�)
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sponds to unity operator. Consequently, the correspond-
ing nucleon secondary spin-space operators are

p" = 1 p' = ( )

and, similarly for the 4 particle,

(3.19)

Q"=1, Q '= —(i.T~. i),

Q ' = Z(i), Q ' = —(i T~ i)E(i).
4

(3.20)

For a spin-
&

particle, the choice of the three 4; argu-
ments is not unique, since the "null-sum" criterion is not
sufficient to fix coefficients. Here, we have an opportu-
nity to deal with observables which conform more to lab-
oratory realities or which simplify relationships between
observables. Unfortunately, this choice of secondary ob-
servables, more adapted to experiments, increases the
complexity of their relations with bicoms. The set chosen
in Ref. [16) minimizes this complexity for some observ-
ables, but not for all. The choice advocated in Eqs. (3.18)
and (3.20) is adapted for taking into account Bohr's rules
presented in Sec. 2 and developed below .

For transversity optimal secondary observables, the
constraints of parity conservation give

Z'(~, P;&, b) = (-)'v'~'(~, P;&, b),

where W' = [a]+ [P]+ [7]+ [b] with

(3.21)

0, if o, =A, @,
1, if cr = 12R, 12I, (3.22)

and similarly for [P] and [b] nucleon arguments and for
the 6 argument

(3.23)

q12R 12RM 12R 12R ~12I 12IM 12I 12I
)

Q14R 12RM 12R 12R ~14I 12IM 12I 12I
)

q23R 12RM 12R 12R ~231 12IM 12I 12I

Q34R 12R s x 12R 12R m34I 12I s + 12I 12I (3.25)

The preceding equations involving operators, except
Eqs. (3.24c) and (3.24d), connect different 4 polariza-
tion states and each equation yields 32 relationships be-
tween corresponding secondary observables. In contrast,
Eqs. (3.24c) and (3.24d) relate the same 4 polarization
state with diAerent nucleon polarization states. Each one
gives 16 relations between the 32 observables of a defined

Equation (3.21) eliminates half of secondary observables.
The eight Bohr's relations of Eq. (2.8) are written in

the transversity frame in terms of secondary spin-space
operators of Eqs. (3.20) by

(3.24a)
q@g AM A A q@p (3.24b)

Q' ( )pMpp" = Q' ( )p M—p p (324c)
Q24R(I) A M A A Q24R(I) 4 M O' 4'

(3 24d)

and

A polarization state: namely, 13R, 13I, 24R, or 24I.
These relations are translated into secondary observables
by

l (n, p; 7, b) = +L'(o.', p'; 7', b'), (3.26)

where o. , P, b and n', P', b' nucleon secondary arguments
are interchanged as

A ~ 4, 12R~12I, (3.27)

and where p and y' secondary 6 arguments are inter-
changed as

A~4&, 4& ~43,
13R(I) ~ 13R(I), 24R(I) ~ 24R(I),

12R ~ 12I, 14R ~ 14I,
23R ~ 23I, 34R ~ 34I.

(3.28)

The sign + in Eq. (3.26) is due to relations between
nucleon Pauli operators [see Eq. (2.12)]. Combining
Eqs. (3.21) and (3.26), we are left with 256 linearly inde-
pendent observables; 16 for each of the four 6 arguments
13R, 13I, 24R, 24I and 32 for each of the six 6 argu-
ments A, %i, 12R, 14R, 23R, 34R, for example. Then, 10
of the 16 polarized states of the 6 are involved in the de-
termination of the 256 linearly independent observables.

In the helicity frame, when secondary observables are
concerned, nucleon spin-space operators have a deter-
mined parity character, p being scalar and p@ pseu-
doscalar. For 6, Q" and Q@' are scalar whereas Q
and Q ' are pseudoscalar (see the Appendix). Parity
conservation for secondary helicity observables yields

gh( p. b) ( )w'gh( p. —
b) (3.29)

if n = A) 12I)
1, if ~=@,12R, (3.30)

and similarly for [P] and [b] nucleon arguments and, for
the 6 argument,

(3.31)

Secondary 4 arguments y and p are equal for A, 4'i,
4 3 14R, 14I, 23R, 23I or are related as p = 34R;

34I, 24R, 24I for p = 12R, 12I, 13R, 131, respectively.
Equation (3.29) makes secondary observables vanish for
which y is equal to y and W' is odd.

The eight Bohr's rules are written in the helicity frame

qA AM A A (ql4I Q23I) 12IM 12I 12I

q@g AM A A (q14I + Q23I) 12IM 12I 12I

(3.32)

where ~' 13 always equal to [n]+ [p]+ [7]+ [b] but with,
for the nucleon argument,
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(Q13R + q24R) AM A A

(q12R q34R) A M A A

(q12I + q34I)
12IM 12I 12I l:"(a, P; 12I, b) = &

' kl:"(a', P', 13R, b'),
if [a] + [P]+ [b) even,

kl' "(n', P', 13I, b'),
, if [a]+ [P]+ [b] odd,

(3.36)

( Q13I + Q24I) 12IM 12I 12I
where n, P, b and a', P', b' interchange as

A~12I, 4 ~12R, (3.37)

and

q@2 s'Mp4 0
( q14R q23R) 12RM 12R 12R

Q@3/1@MPC'PC' ( q14R + Q23R) 12RM 12R 12R

(3.33)

and where [a), [P], [b] are given by Eq. (3.30).
Then, we may choose 256 linearly independent observ-

ables, for example, among only 6 of the 16 initial 6 po-
larization states, namely, 32 observables for each of the
four 4 argument A, 4~, 4~, 43, and 64 for 12R and for
12I.

(q13R q24R)

(Q12R + Q34R) 12RM 12R 12R

IV. AMPLITUDE AND OBSERVABLE
TRAN SFORMATIONS

(Q12I q34I)

( Q13I Q24I) 12RM 12R 12R

Note that if the nondiagonal 6 spin-space operators
Q12R(I) q34R(I) q13R(I) and Q24R(I)

mined parity character, it is not the case for combinations
of them, which appear in Bohr's rules; some are scalar,
some are pseudoscalar. More explicitly in Eqs. (3.32), the
quantities (Q12R Q34R) (Q12I + Q34I) (Q13R + Q24R)

and (—Q13I + Q24/) are scalar; in Eqs. (3.33), (Q +
Q34R) (Q12I Q34I) (Q13R Q2 R) and (—q13I Q24I)
are pseudoscalar. These Bohr's rules correspond to rela-
tionships between 3 or 4 helicity secondary observables.
Therefore, by mixing Eqs. (3.32) and (3.33) with (3.29),
relationships between 4 observables are simplified and
one finally obtains

l', "(a, P; A, b) = +[l:"(n', P'; 14I, b')

/ "(n', P'; 23I—, b')],

l:"(a,P; 41, b) = 6[l:"(n', P'; 14I, b')

+Z" (a', P', 23I, b')],

L"(a, P; 0'2, b) = 6[ l:"(a',P'; 14R, b')

+L"(a', P'; 23R, b')),

The 16 complex spin amplitudes f; and g; defined in

Eq. (2.1) correspond to the spin-space transition opera-
tors Q; and Q;(o 2 n) for i = 1, . . . , 8 and depend on the

orthonormal (I, m, n) fixed basis which is the same for
all particles involved in the reaction.

On the other hand, transversity amplitudes
D'(A, I;A, L) are defined with coordinates for each par-
ticle as shown in Fig. 1, where the i quantization direc-
tion of each particle is the normal to the scattering plane,
while x is along the momentum for particles Nq and 6q
but opposite to the momentum for N~ and N&. Then, for
initial particles, (I, m, n) is simply tranformed to (x, y,
z). In addition, for final particles, a ga angle rotation
with respect to i axis is needed.

Finally, transversity amplitudes defined by Kotanski
[18] (see Fig. 2) are equal to zero for (4+ I+ A+ L) odd
[see Eq. (3.11)] and are given in terms of f, and g;, for
(A + I + A + L) even, by

D1($ I. A I) el(A+A)s~ ) c [f + ( ) / —I
]

(4.1)

where i runs from 1 to 4 for A = L[(A+ I) being—even],
and from 5 to 8 for A = L [(A+ I) being odd]. The c;
coeKcients are given in Table I in terms of A and A.

Particular transversity amplitudes defined with the
same (I, na, n) fixed basis for all particles are denoted
D/(A, I; A, L) and given by Eq. (4.1) putting the overall

l (a P 43 b) —6[8 (n', P'; 14R, b')
L"(a', P'; 23R, b')], —(3.34) TABLE I. Coefficients c, defined 1n Eq. (4.I).

and

and

' +l:"(a', P'; 13I,b'),
if [a] + [P] + [b] even,

l:"(n,P; 12R, b) = &

+L"(n', P'; 13R, b'),
, if [a] + [P] + [b] odd,

(3.35)

C1 = C7

Cg = —Cs

C3

C5

C6

/A/ = 3/2

~3
( )1/2 —A

1
( )1/2 —A

P3
( )1/2 —A

1
( )1/2 —A

0
)1/2+A

I&l = I/2
1

( )1/2 —A

Q3( )1/2 —A

1
( )1/2-A

~3( )1/2 —A
2

)
1/2-A

0
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e'~A+A~ ~ phase factor equal to unity.
The helicity amplitudes are defined with coordinates

for each particle as shown in Fig. 1, where the s quanti-
zation direction of each particle is along its own momen-
tum while y is normal to the scattering plane. Note that
standard phases for the helicity states put the y axis par-

allel to n for Nq and A~ but antiparallel for N2 and N2.
Then, the rotation operator transforming the transver-
sity state into an helicity state is R(0, 77/2, 77/2) for NI
and EI particles and R(0, —77/2, 7r/2) for N2 and N2
Therefore, helicity amplitudes are related to transversity
ones via

D" (A', I', A', L') = e'&" + ' &'/ ) D'(A, I; A, L)r„„,(7r/2)r„, (71/2)r~~, ( 7r/—2)rzz, (—7r/2).
A, l, A, L

(4.2)

Expliciting the &- and &-spin rotation matrices, one gets

D"(A' I'A' L') = — '( + ' ) / ) D'(1 I A L)
8

A, A, l, L

((~[2[,3/2+ ~~~[A[, I/2) [~A,3/2+ (-) '
b2, , -3/2] + (&~b[A[,3/2

—b[2[,I/2) [bA, -I/2+ (—)" ~2, , 1/2])

[~l', I/2 + ( ) ~l', —1/2][( ) ~A', I/2 + 4', —1/2][( ) ~L', I/2 + '4', —1/2] ~

Then, helicity amplitudes are given in terms of f; and g, by

D (2, I;A, A) = -e'( )
~

cos E3/2(I, A)+i sin E3/2( I, —A)—
~

1 , , 6 38 . . 38

4 q 2 2 )
/' 8~ . . 8~+~3

~

cos EI/2(l, A) —i sin EI/2( I, —A) ~—

(4.3)

(4.4)

and

D (——,I;A, A) = —e'& / & / ~3 cos E3/2(I, A)+isin E3/2( I, —A) ~—h 1 . 1
~ —12 l~2 38~ . . 30~

( 8~ . . 8~—
~

cos EI/2(l, A) —i si11 EI/2( —I, —A) (4.5)

where E3/2(l, A) and EI/2(l, A) are listed as functions
of f, and g; amplitudes in Table II. Both of the last
two equations define eight helicity amplitudes. The
eight other independent amplitudes D"(2, I; A, —A) and
D"(—2, !;A, —A) are obtained from Eqs. (4.4) and (4.5),
respectively, by exchanging f; and g; in E3/2 and EI/2
and multiplying the right-hand side of the equations by
the phase factor e'A . The 16 nonindependent helicity
amplitudes are related by Eq. (3.10) to the preceding de-

fined amplitudes. Note that the normalization of these

various amplitudes yields

) ~D'(A, l;A, L)[ = ) ~D"(A, I;A, L)~'
A, i, A, L A,i,A, L

= 4) .(If I'+ lg I') (4 6)

To explicit optimal observables in terms of f, and g;
amplitudes, Eq. (4.1) for transversity, Eqs. (4.4) and

TABLE II. Coeflicients E3/2(l, A) and EI/2(l, A) defined in Eqs. (4.4) and (4.5).

l=-' A2)
l =-', A

l= ——12'
l= ——1

2'

1
2

1
2
1
2

1
2

E3/2(l, A)
6l~ 8~

cos (~3g3 + g4 —2gs) + i sin (—~3f3 —f4 —2fs)
dl~ h~

cos 2 ( +3g3 g4 2gs ) + i sin 2 (~3f3 + f4 —2f8 )
cos 2 (—~3fI —f2 —V 3f7 + fs)+»» 2 (V3gI + g2 —u&g7+ gs)

(v 3fI + f2 —V 3f7 + fs) + i»n, (—V&gI —g2 Ag7+ gs)

l=-', A

l= — A2'
l= ——,1

2'
l= ——12)

1
2

1
2

A=—1
2

A= ——1
2

E,/2(l, A)
e~ e~

cos (g3 —~3g4 + 2gs) + i sin (—f3 + ~3f4 + 2fs)
e~

cos (—g3 + ~3g4 + 2gs) + i sin 2 (f3 —~3f4 + 2fs)
cos 2 (fI —~3f2 + f7 + +3fs) +i sin 2 (—gI + V 3g2+ g7 + V&gs)

cos 2 (—fI + ~3f2+ f7 + ~3fs) + i sin 2 (gI —~3g2+ g7 + V 3gs)
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TABLE III. Relations between frame unit vectors.

Particle Nq

Particle N2

Fixed frame

m
n
l

Helicity frame Transversity frame

Particle Aq

Particle N~

n
l

n
l

m
n

z cos8~ —x sin 8~
kcos8~ + ssin8~

y
—z cos 8~ —x sin 8~
x cos 8~ —s sin 8~

—y

2 cos 8~ —y sin 8~
ycos8~+ xsin8~

z
2 cos 8~ —y sin 8~
y cos 8~ + 2 sin 8~

z

(4.5) for helicity may be used, this procedure leading to
straightforward but tedious calculations. A simpler pro-
cedure is to connect directly various observables among
themselves, taking advantage of dyadic notation for 6
spin-space operators. For this, relations between l, rn, n
unit vectors of the fixed basis and helicity or transversity
frame unit vectors are presented in Table III for each par-
ticle. For example, assuming a 6 polarization state with

(I,p) symbol equal to (3, 0), the corresponding spin-space
operator Qs(0) of Eq. (2.13) becomes

1

4 3
(cos 28' [(x Ta x) —(y Ta y)]

—2 sin 28~(x T~ y)), (4.7)

in the transversity frame by using Table III. Finally, from

the Appendix, one gets

Qs(0) = cos28~(Q +Q )—sin28~(Q +Q ).
(4 8)

A transcription of this equality in terms of arguments
characterizing observables may be written

(3, 0) ~ cos 28'(13R + 24R) —sin 28'(13I + 24I).

(4 9)

The same procedure for Qs(0) gives, in the helicity frame,

1

4 3
(cos 28' [(s T~ z) —(x T~ x)]

—2 sin 28~(x T~ s)), (4.10)

TABLE IV. Argument transcriptions from Sec. II to optimal transversity notations.

Particle

Ng, N2

Section II

0
l

m
n
0
l

m

(1, O)

(2, 0)
(3, O)

(4, 0)
(1,-)
(2, n)
(3, n)
(4, n)
(1, I)
(2, I)
(3 0
(4, l)

(1, m)
(2, m)
(3, m)
(4, m)

Trans versity

A
i2R
12I

A
cos 8~ (12R) —sin 8~ (12I)
cos 8~ (12I) + sin 8~(12R)

A

cos 28~(13R+ 24R) —sin 28~(13I + 24I)
—cos 28~ (13I—24I) —sin 28~ (13R —24R)

—cos 28~ (13R —24R) + sin 28~(13I —24I)
cos 28~(13I + 24I) + sin 28~(13R+ 24R)

—cos 38~(14R) + sin 38~(14I) —cos 8~(23R) + sin 8~(23I)
—cos 38~(14R) + sin 38~(14I) + cos 8~(23R) —sin 8~(23I)

—cos8~(12R+ 34R) + sin 8~(12I + 34I)
cos8~(12I —34I) + sin 8~(12R —34R)

cos 38~ (14I) + sin 38~ (14R) —cos 8~ (23I) —sin 8~ (23R)
cos 38~(14I)+ sin 38~(14R) + cos 8~(23I) + sin 8~(23R)

cos8~(12I + 34I) + sin 8~(12R+ 34R)
cos 8~ (12R —34R) —sin 8~ (12I —34I)
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TABLE V. Argument transcriptions from transversity to helicity optimal notations.

Particle

N2, N2

Trans versity

A
12R
12I

A

12R
12I

43
13R+ 24R
13I + 24I
13R —24R
13I —24I
12R+ 34R
12I + 34I

12R —34R
12I —34I

14R
14I
23R
23I

Helicity

A

12R
12I
A.

12R
-12I

——,'@, —~(13R+ 24R)
14I —23I

—-' (14I + 23I) —~ (12I + 34I )
~3 4 &

——,'(13R+ 24R)
12R —34R

—+(14I+ 23I) + 2(12I + 34I)
13I —24I

—P C, ——,'(13R —24R)
—~~(14R —23R) + 2 (12R+ 34R)

12I —34I
13I+ 24I

+ 4 3 (13R —24R)
—

~ (14R) —
~ (23R) + +(12R + 34R)

2 42 4 4 3 +,' (13R —24R)
—,'(14R) + —,'(23R) y P(12R+ 34R)

TABLE VI. Argument transcriptions from optimal transversity to Sec. II notations.

Particle

Eg, N2

Transversity

A
12R
12I

A
12R
12I

A

12R+ 34R
12' —34R
12I + 34I
12I —34I
13R+ 24R
13R —24R
13I+ 24I
13I —24I

14R
14I
23R
23I

Section II

0

cos8~(l) + sin8~(m)
cos 8~ (m) + sin 8~ (l)

(1 o)
(2, 0)
(1, n)
(2, n)

—cos 8~ (3, l) + sin 8~ (3, m)
cos8~(4, m) + sin8~(4, l)
cos8~(3, m) + sin8~(3, l)
cos 8~(4, 1) —sin 8~(4, m)

cos 28~(3, 0) + sin 28~ (4, n)
—cos 28~(3, n) —sin 28~(4, 0)
cos 28~ (4, n) —sin 28~ (3, 0)

—cos 28~ (4, 0) + sin 28~ (3, n)
—-' cos 38~ [(1,I) + (2, l)] + -' sin 38~ [(1,m) + (2, m)]
—cos 38~[(1,m) + (2, m)] + —sin 38~[(1,l) + (2, 1)]
——' cos 8~ [(1,I) —(2, l)] ——sin 8~ [(1,m) —(2, m)]
——cos 8~ [(1,m) —(2, m)] + -' sin 8~ [(1,1) —(2, l)]
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which leads to the argument transcription
1

(3, 0) ~ —cos 28~ [~3@i—(13R+24R)]
2
—sin 20~(12R —34R). (4.11)

The systematic exploitation of this method is shown in
Tables IV and V for the four particles. Argument tran-
scriptions are presented in Table IV from Sec. II notation
to optimal transversity notation and in Table V from

I

transversity to helicity frame notation. By combining
Tables IV and V, a transcription from Sec. II to the
optimal helicity formalism is obtained.

Finally, using the argument transcription of Tables IV
and V for the four particles involved in the 4 produc-
tion reaction, an observable transformation is achieved.
Taking into account normalization, an example of the
X(3 p)pf observable is developed, which gives, using
Table IV,

X(so)oi ——[1/L'(A, A;A, A)]( cos28~[l (12R, 12I;13R,A)+ l (12R, 12I;24R, A)]
—»»8~ [l."(12R,12I; 13I,A) + l (12R, 12I;24I, A)]],

and, using Table V in addition and Eq. (3.29),

(4.12)

TABLE VII. Argument transcriptions from optimal helicity to Sec. II notations.

Particle Helicity

A

12R
12I
A

12R
12I
A

12R
12I
A

12R+ 34R

12R —34R
12I + 34I
12I —34I
13R+ 24R
13R —24R

13I+ 24I
13I —24I

14R

14I
23I

Section II

0
-(I)

m
-(n)

0
—cos 8~ (I) —sin 8~ (m)
cos 8n (m) —sin 8& (I)

-(n)
(1,0)

-'[—(2, 0) + icos 28' (3, 0) + ~3 sin 28~ (4, n)]
2 [(cos 38~ + cos 8~)(1,1) + (cos 38~ —cos 8~)(2, I)

—(sin 38~ —sin 8~)(1,m) —(sin 38~ + sin 8~)(2, m)]
—

~ [(cos 38~ —cos 8~)(1, I) + (cos 38' + cos 8~)(2, I)
—(sin 38~ + sin 8~)(1,m) —(sin 38~ —sin 8~)(2, m)]

+~z [cos 8~(3, I) —sin 8~ (3, m)]~[(cos 38m, —cos 8~)(1,m) + (cos 38~ + cos 8~)(2, m)
+(sin 38~ + sin 8~)(1, I) + (sin 38~ —sin 8~)(2, I))

+2[cos8~(3, m) + sin 8~(3, I)]
cos 28~ (4, n ) —sin 28~ (3, 0)

—~ (2, n) —
~ [cos 28~ (3, n) + sin 28~ (4, 0)]

cos 8n (4, m) + sin 8~ (4, I)
—

2 [~3(2,0) + cos 28~ (3, 0) + sin 28~ (4, n)]
~[(cos 38~ —cos 8~)(1, I) + (cos 38~ + cos 8~)(2, 1)
—(sin 38~ + sin 8~)(1,m) —(sin 38~ —sin 8~)(2, m)]

+-'[cos 8~(3, I) —sin 8~(3, m)]
cos 8~ (4, I) —sin 8~ (4, m)

—cos 28~ (4, 0) + sin 28~ (3, n)
—

s [(cos 38~ + 3 cos 8~)(1,m) + (cos 38~ —3 cos 8~)(2, m)
+(sin 38~ —3 sin 8~)(1, I) + (sin 38~ + 3 sin 8~)(2, I)]

—~[cos8~(3, m) + sin 8~(3, I)]
——[(3cos 38~ + cos 8z )(1, m) + (3 cos 38~ —cos 8~)(2, m)

+(3 sin 38~ —sin 8~)(1, I) + (3 sin 38~ + sin 8~)(2, I)]
+~4[cos 8~(3, m) + sin 8~(3, I)]

—(1,n) ——(2, n) + ~ [cos 28~ (3, n) + sin 28~ (4, 0)]
—

2 (1,n) —
4 (2, n) + +[cos 28~ (3, n) + sin 28~ (4, 0)]
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X(3 0)QI~
——[1jZ"(A, A; A, A)j cos 20& 8"(4, 12R; 11'1, A) —2"(11', 12R; 13R, A)

—2 sin 20~ 8"(11', 12R; 12R, A) (4.13)

For sake of completeness, inversion of Tables IV and V
is performed, which is presented in Tables VI and VII.

V. CONCLUSION

particles, one obtains two p"" diagonal matrices,

0') „ &0 0~
ol p lo (Al)

The present work is devoted to a detailed study of
the spin observables in the NN ~ AN transition. Two
kinds of formalisms allowing one to express all observ-
ables by means of compact formulas are investigated.
The first, using a spin-space decomposition of the transi-
tion matrix analogous to the Wolfenstein representation
in NN ~ NN elastic scattering is convenient for study-
ing nuclear reactions at intermediate-energy physics. The
structure of the 4 spin-space operator basis is adapted to
reflect relations analogous to the so-called "Bohr's rule"
in NN ~ NN elastic scattering. The second formalism
which optimally diagonalizes the matrix connecting ob-
servables and bilinear combinations of transition ampli-
tudes (bicoms) is well adapted to the phenomenological
amplitude determination.

In the optimal formalism, as far as "primary ob-
servables" are concerned, polarization structure analysis
yields bicorn-observable relations in a particularly simple
form. Yet, it is much simpler t;o perform experiments in
which some particles are unpolarized that correspond to
averaged spin states, which lead to a redefinition of the
observables in terms of "secondary observables. " Un-

fortunately, the choice of "secondary observables, " more
adapted to experiment, increases the complexity of their
relations with bicoms. The choice proposed in this work
is adapted for taking into account Bohr's rules. The op-
timal formalism is explicitly developed in helicity and
transversity frames.

The advantages of each formalism are clearly un-

derlined and transformations between them are shown

to be useful for a transition amplitude analysis. Ta-

bles are given which perform such transformations. A

complete determination of all the transition amplitudes,

namely, the determination of 16 magnitudes and 15 rel-

ative phases (the overall phase being irrelevant) is of im-

portance in intermediate-energy physics. The discussion
concerning the explicit choice of a set of experiments re-
alizing a partial or complete phenomenological analysis
is postponed to a future work.
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APPENDIX

and two p"" ~ off-diagonal matrices,

12R—(o
1

1»2I ( 0 i')-
()

I p =
I ()

(A2)

(2
Q11

0
&0

(0
qss 0

0
E. o

0 0) (0 0 0 0)
0 0 2g 0 2 0 0
o o 'q =

o o o o
o o) &0 o o o)
0 0) (0 0 0 0)
0 0 44 0 0 0 0
2 0 ' Q 0 0 0 0
0 0) (0 0 0 2)

(A3)

six Qt R off-diagonal matrices,

('0 1 0 0) (0
Q12R 1 0 0 0 Q13R

0 0 0 0 ' 1
L, o o o o) &0

(0 0 0 1) (0
Q14R 0 0 0 0 Q2sR 0

0 0 0 0 ' 0
El 0 0 0) (0
(0 0 0 Oi (0

Q24R 0 0 0 1 Q34R
0 0 0 0 ' 0

(0 1 0 0)

0 0 0
o o o)
0 0 0)
0 1 0
1 0 0
oo o)

o o o)
0 0 1
0 1 0)

(A4)

and six

Q12I

14I

q241

Qt I off-diagonal

(0 i 0 0~—
i 0 0 0
0 0 0 0)

(0 0 0
0 0 0 0
0 0 0 0

o o o)
(0 0 0 0)

0 0 0 —i
0 0 0 0

&0 i 0 o)

matrices,

(0
Q13I

&0

(0
Q2sI 0

) 0
&0

(0
Q34 I

) 0
(0

0 —i Oq
0 0 0
0 0 0
o o o)
0 0 0)
0 —i 0
i 0 0
o o o)
0 0 0 )
0 0 0
0 0
o i o)

(A5)

For spin-2 particles, one obtains four Q~t diagonal ma-

trices,

In the optimal formalism, initial and final spin-space
matrix elements are defined by Eq. (3.3). For spin-2 For nucleons, relations between Pauli operators and
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p"" ~ operators are written as

12R

(~ y) = p'"

pseudoscalar in transversity,
pseudoscalar in helicity,

pseudoscalar in transversity,
scalar in helicity. (A6)

For the 4 particle, relations are given which connect
Q~ H~ operators and Cartesian tensors, defined in the
x, y, k basis and written with dyadic notation, analo-
gous to the QI(p) operators presented in Sec. II. Four
operators are scalar, which follow

(qll + q22 + Q33 + Q44) QA
1

2
1- - 1(i T i) (ql1 Q22 Q33 + Q44) QC z

4 2

4 3
K* Ta &) —(y T~ y)l = Q""+Q""

2 3
(T

- "") Q13I+ q24I (A7)

The four following operators are scalar in transversity
and pseudoscalar in helicity:

g(i) ( q1 1 + Q22 Q33 + Q44) Q@Q
1

2

111 = —(p '+ p ) = p, scalar,
2

1 11 22 + scalar in transversity,(o. . zi = -(p
pseudoscalar in helicity,

4+3
[(* T~ *)—(y T~ y))~(*) = —Q""—Q"",

2 3
(T

- - -) p(
-

) Q12I Q34I (A9)

Finally, the four following operators are pseudoscalar in
transversity and scalar in helicity:

g(
"
) Q14I Q23I

1- ql4I + q23I

4 3
[(* T~ *)—(y Ta y))~(y) =Q'"+Q"',

3 0(T
-" -) g(-) Q12R Q34R (A10)

We recall that the rank-2 and -3 tensorial operators sat-
isfy the trace conditions

Four operators are pseudoscalar in transversity and he-
licity, which are written

g(
-

) q14R q23R

1-
4

-
)g(

-
) q14R + Q23R

(" T ")g(") ( qll q22 + Q33 + q44)
4 2

(i Tti. i)+(y. Tti. y)+(i Tti i) =0

and

(A11)

(Tsaxz)o + (Tsayy)o + (Tsaii)o ——0, (A12)

(A8)

4 3
[(* T~ *)—(y T~ y)l~(i) =-Q""+Q""

13I
2

(T - - -) g(-) qlsI + Q24I
for a = i;, y or s. Useful tensorial relations can be found
in Ref. [8], in particular in Appendix A.
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