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Glueball production in high-energy collisions
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Using a nonrelativistic gluon bound-state model, we compute the subprocesses
qg~qG, qq~gG, gg~gG, and their contribution to the overall reaction pp~jet+glueball+X, as-

suming that the glueball G and the quark (gluon) jet are emitted with their transverse momenta large
( & 10 GeV), opposite, and approximately equal. We show that, for present glueball candidates and for
their possible quantum states, fairly large predictions are obtained, thus justifying future experiments of
this type that might be performed at high-energy pp or pp colliders, such as the CERN Spp S or the Fer-
milab Tevatron.

PACS number(s): 14.40.Cs, 12.40.Aa, 13.85.Ni, 13.87.Ce

I. INTRODUCTION

While the existence of glueballs is considered a crucial
test of quantum chromodynamics [1] and after a few can-
didates for such particles have emerged from various ex-
periments over the last years [2], further experimental
evidence is still needed in order 6rmly to establish their
nature and properties.

It is generally agreed that glueballs should be looked
for in reactions involving a gluon-rich environment, such
as radiative J/g decay and diFractive hadron-hadron
scattering corresponding to double Pomeron exchange
(the Pomeron being assumed to have a multigluon struc-
ture). The basic idea of this paper is that hard collisions
occurring in high-energy reactions may provide another
means of creating that kind of environment and, conse-
quently, of making glueballs.

We here consider the reaction

pp ~jet+ glueball+ X,
involving the hard-collision subprocesses (i) qg~qG, (ii)

qq~gG, and (iii) gg~gG, where G is the glueball con-
sidered. We assume the quark (gluon) jet and glueball to
be emitted at large, opposite, and approximately equal
transverse momenta. Such a reaction may be studied, in
particular, at high-energy pp colliders: the CERN SppS
or the Fermilab Tevatron.

Actually, that kind of investigation was already sug-
gested a few years ago by other authors [3], and some nu-

merical predictions were provided by them. However, in
their computations they used a model involving two col-
linear gluons, which means that implicitly they restricted
their study to the production of glueballs (digluons) with
I =0, I. being the quantum number of the orbital angu-
lar momentum.

In order to be able to treat the case of digluons with
any value of L (in particular L =0, 1, or 2), we here use
an extension of the nonrelativistic gluon bound-state
model, previously applied to the computation of 2y decay
widths of glueballs [4]. That extended model is exhibited
in Sec. II. We then apply it in Sec. III in order to predict
the transverse-momentum spectra that should be pro-

duced in the above-mentioned reaction, considering vari-
ous glueball candidates and their possible quantum states.
Section IV contains a discussion of our results and a brief
conclusion. Details of our calculation are given in two
Appendixes.

II. EXTENSION OF THE
NONRELATIVISITC BOUND-STATE MODEL

As in Ref. [4], we limit ourselves to glueballs made up
of two gluons. While in that paper only reactions of the
type ab~G were considered, the processes we are going
to study are of the type ah~cG [Fig. 1(a)]. In analogy
with the procedure outlined in Ref. [4] (which was in-

spired by a similar model used by other authors for ordi-
nary mesons, i.e., quarkonia; see, e.g. , Refs. [5,6]), the

C

FIG. I. Kinematic schemes (a) for the process ab~cG in the
center-of-mass frame of a and b (frame A) and (b) for the pro-
cess ab~cg, g2 in the center-of-mass frame of g, and g2 (frame
8).
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where M is the glueball mass; %(p) is the glueball wave
I

helicity amplitudes of that process are derived from the
corresponding amplitudes of the elementary process
ah~egg. In order to achieve that derivation, we per-
form a Lorentz transformation along the z axis of Fig.
1(a), moving from the center-of-mass frame of the ab col-
lision (hereafter called frame A) to the glueball rest
frame, i.e., the c.m. frame of the gluons g&,gz [henceforth
called frame B; see Fig. 1(b)]. As in Ref. [4], we assume
that either gluon tends to take half of the glueball mass.

We are now going to derive the basic formula we shall

apply in this study. We start from the prescription (simi-
lar to formula (2.1) of Ref.[6])

1/2

function, defined in frame B; p ( —p) is, in that frame, the
three-momentum of either gluon. In accordance with the
nonrelativistic assumption, %(p) is nonzero only near the
value p =0 (defining p =

~ p ~
).

Note that the glueball is characterized by the following
quantum numbers: total spin J, orbital angular momen-
tum L, intrinsic spin S( 2), and in addition by A, the
component of J on the z axis.

The wave function factorizes into a radial function
times a spherical harmonic:

+*(p)=RL (p)YL'~, (O, y),

where AL is the component of L on the z axis, while 8
and y are the orbital and azimuthal angles defined in Fig.
1(b). One thus gets

' 1/2

A.,b
2 p dp

3&z RL (p) d (cosO) dp YL"A (O, p)JKabM
(3)

What remains unwritten in formula (3) is the dependence of both amplitudes JR,b,G and JR,b,g g on the total en-a cg1g2

ergy E and the scattering angle 8, both defined in frame A, and in addition on the glueball quantum numbers J,I.,S,A
as well as on the helicities A,„A,b, A,, (conveniently defined in frame B) of particles a, b, c, respectively. Finally,
JR,b, yet depends on AL, and a summation over AL is implicit on the right-hand side of Eq. (3).ab cg, g2

Introducing in addition the helicities A, „Az (defined in frame B) of the gluons g„gz, the following relation connects
the above-defined amplitude A, ,b ~cg, g2 with the corresponding helicity amplitude characterized by A, k2.

JN,b, =, (LSAI A+~LSJA)dA ~(8)e g (11k&—
Az~ llSA)Jkt, b ', (O, q&), (4)

1 2

where we have applied the usual notations of angular momentum theory [7], i.e., (j,jism, mz~ j,jzJM) for Clebsch-
Gordan coefBcients, while d~ Ais a Wigner rotation matrix element. We have called Az the component of S on the z

S
axis and A its component on the gluon emission axis in frame B; note As =A —AI, A =A, ,

—
A, z. Using the relations [8]

1/2

and combining them with (3) and (4), one gets
1/2

2d
q~~ RL(P)f d(cosO)dg X yg g (O, q')~ab ',

g g
1 2

A, b

where the angular projection function y3 3 (O, p) is given by

1/2
I.sJA(8 )

2L + 1

4
d„A(8)e ' ~(LSOA~LSJA)(11K, —A~~llSA) .

g d A 0(8)d „„(8)(LSALA-s~LSJA) =d
A „(8)(LSOA!L-SJA),

AL

(6)

(8)

On the other hand, a number of algebraic manipulations proceeding from a Fourier transformation [see formulas
(2.2) —(2.5), and (2.11) in Ref. [6)] lead to the relation

t'

f p dp LR ( )
( t) (2L+—1) d R ( ) (9)

(2 )3/2P L P 4 r=0

1 f d (cosO) dip ~ LsJA(8 )~k, ~z (8 )
L, J 4 b- g, g,J

1 2

where RI (r) is the radial wave function in configuration space. Therefrom, one is led to
1/2

2 . I (2L +1)!! d
ab~cG M L / d I L (1O)
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1 d(coso)dg ~ LSJA(g )At a b' c 1 2(g )
pL 4 ~ +~1~2 0 ab cglg2

O
P~O 1 2

1 2

(2L +1)!! d
L

bi A . L 2
ab ~cG

Here the dependence on p that appears on the right-hand side is fictitious since, because of the presence of the angu-
lar projection function that fixes L, the integral on the right-hand side is proportional to p (neglecting higher-order
powers of p, since p is bound to remain close to zero). Setting p =MP/2, where P is the velocity of either gluon in
frame B, we finally get the formula

L +1/2

At,„, =g (11K,A, '~11JA)At, b (12)

and consequently formula (11)may be replaced by

X,zb, X,A
At, b

",G' = Ro(r =0)&2aM.
(13)

Since there is no dependence any more, on the right-
hand side, on 9 and g, the whole computation may be
performed in frame A (and all helicities defined in that
frame). The formalism thus applied then becomes very
similar to the one introduced by Brodsky and Lepage [9]
for the computation of exclusive processes involving ordi-
nary (qq ) mesons with L =0.

Before closing this section, let us add a remark: A gen-

where we have explicitly introduced the helicities of all
particles involved as superscripts of the corresponding
amplitudes.

That relation is the generalization of formula (1) of
Ref. [4], which is the analogue of formula (2.12) of Ref.
[6]. Before we apply it in the next section, let us remark
that our model may be considerably simplified when
L =0. In that case one inay simply set P=O in the com-
putation of the process ab~cg&gz, which means that
both gluons are set at rest in frame B. Then, calling A. , k'
their spin components on the z axis, formula (4) may be
replaced by

eral formalism for prompt production of mesons with any
value of angular momentum has been developed by
Benayoun and Froissart [10]. With respect to that gen-
eral treatment, the specificity of the model here used is
that (i) we treat the constituent partons (in our case
gluons) as nonrelativistic (P~O) in the meson rest frame,
and (ii} we assume their masses to be equal. This allows
us to minimize the number of free parameters in our cal-
culation; eventually, we will reduce it to zero by using ra-
diative J/g decay for normalization.

III. APPLICATION
TO THE REACTION pp ~JET+GLUEBALL+X

We shall now apply our model, i.e., basically formula
(ll), to the computation of the three subprocesses con-
tributing to the reaction considered.

A. Contribution of the subprocess qg ~q'G

We here compute the Feynman graphs (1)—(7) of Fig.
2, describing the process qg~q'g, g2. The contribution
of each graph, except (7), will be doubled by exchanging

g) and g2.
Denoting all momentum four-vectors like the corre-

l] A2
sponding particles, defining c. ', c, c.2 as the polarization
four-vectors of g, g, ,g2, respectively, and u ', u' ' as the
spinors for q, q', using the notation a =a„y",we write the
corresponding helicity amplitudes as

g
, l,

g g
i Ig

I

q

.tlat
g

91

9
r ulyRIIPWOp I

(2) (4)

g
9 g,

r

g i

g2
~ QQPggggow OWW 0

q'

(7)

FIG. 2. Feynman graphs for the subprocess qg ~q'g, g2. Other graphs, providing the same contribution to the helicity amplitudes

of the subprocess qg ~q'G, are derived from those here represented (except for graph 7) by exchanging g, and g2.
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A A IA 1A2 A A I
QAp ] rl Al ] A

JR(i'i' ' ' '= ——', Tr[u 'u 'sz '(q'+gz) 'e, '(q+g) 'E '],
A. A. A, A, A, A, 4A, 2 ~

A.
~

4 A, lJR(zi' ' ' '=
—,'Tr[u 'u 'Ez '(q'+gz) ~Z '(q —g, ) 'E, '],

~(3») ' »' ' '= ——', Tr[u 'u ''E '(q' g—) ez (q g—i) ei ],

(14)

(15)

(16)

yA IA

Jl'( [4]

yA IA

e/f6[ g]

4r A, 2 rtr A I—', Tr[u 'u ''ez '(q'+g, } y" ][2(g.ei )e„' (—e 'e, ')(g+g, )„+2(g,.e ')si„'](g —gi )

itrk
1

A ilrA2 I}( 4A2—', Tr[u 'u 'y"(q —gi) Ei '][—2(gz e )Ez&'+(e ~.ez ')(g+gz)& —2(g.ez)e&'](g —gz)

—3Tr(u 'u 'y")[(gz —g(+g)„sz '+2(gi —g) Ez 'g&„+ezz'(g —gi —2gz)„]

X[(E( ' s ')(gi+g)" —2(g si ')e ' —2(gi s ')ei ' ](g —g, ) (q —q') (19)

At ' ' ' ' = 3Tr(u 'u ' y")[2( ei' E ')8 —(s e ')ez ' —(8 g.E ')s '](q —q') (20)

X [(yo y3)Ec—+ (y i i y z)Ms—],
where we define c =cose/2, s =sine/2.

(21)

Here we have left aside coupling constants, as well as a
color factor 1/(4V2)A, '&, where A.'& are elements of the
Gell-Mann matrices [11],a being the color index of the
incident gluon and j,l those of the quarks q, q'. Let us
note that, taking massless quarks, "helicity conservation"
as defined by Brodsky and Lepage [9] entails A,

»
=A, ».. In

addition, we may restrict ourselves to the case
A, =A, .=+—' since we know that, because of angular

q q'

momentum and parity conservation, once we have de-
rived the helicity amplitudes of the two-body process

qg —+q'G, reversing all helicities always leads to the same
expression of the amplitude (apart from the sign}. The
spinor product that appears in formulas (14)—(20) is then
expressed (in frame 8) by

2 2 1/2
i/2 —I i/2 —(E —M ) (I + )0 Q Y5

Our calculation is considerably simplified by introduc-
ing the parameter ri=M/E and noting that, under realis-
tic conditions of a high-energy experiment (i.e., assuming
a transverse momentum of at least 10 GeV for the glue-
ball and the quark jet), rl remains small ( &0.1), so that
we may make a series expansion in powers of g and keep
only the lowest-order term.

Computing the amplitudes (14)—(20) while using that
simplification, summing up those amplitudes, and then
applying formula (11),we are led to the expressions of the

A, A, , A, ,A
helicity amplitudes JR»g' '» G that are given in Appendix
A for the glueball quantum states we are considering (the
same states as in Ref. [4]). We may remark that, at
lowest order in ri (i.e., at order rI ), those helicity ampli-
tudes are —1/E, in agreement with the prediction of di-
mensional counting rules.

From the amplitudes thus obtained, one derives the
transverse-momentum spectrum for the subprocess con-
sidered, taking account of kinematic factors (also restrict-
ed to order rl ), coupling constants, and the color factor:

'G 2 3

dpr 24E (E 4pr)—
e g'

(22)

where, in the expressions of the said amplitudes, cose is to be replaced by (1 4pr /E )'—
The transverse-momentum spectrum for the overall reaction pp —+qGX (see diagram (a) of Fig. 3) is then obtained by

convoluting the spectrum given by formula (22) with the distribution functions of the quark and the gluon as follows:

pp ~q'GX
1

(s,pT)=2+ f dx f dx'[f / (x, "Q ")+f
/ (x, "Q ")]f / (x', "Q "} (E,pT), (23)

where s is the total energy squared in the c.m. frame of
the pp collision and where we have used the equalitiesf / =f /, f / =f /, and f / =f / . The summation
is over quark flavors q =u, d, s, and possibly c; actually
we use (both for the quark and gluon distributions) the
parametrization of Duke and Owens [12] that contains
indeed a small contribution of c quarks. For the scale
"Q ", we choose "Qz"=M . We note that Ez=xx's,
and thus

I
Xmin =

2Emin X=
XS

2
Emin

with E~;n=4pT- (24)

In order to eliminate from our results the unknown (or
at least theoretically not well determined) parameters,
i.e., the glueballs radial wave functions (their derivatives)
at the origin in configuration space, we proceed again as
in Ref. [4]: We normalize those results with the help of
the radiative decay widths of the J/g for the same glue-
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j'2 (1720)
do. /dpr(L =0)

=5.8X10 '-

do Idpr(L =m)

TABLE I. Proportionality coefficients for various quantum
states of fz{1720}and X{2220), other than those considered in

Figs. 7—10. These coefficients are, at order g, the same for the
contributions of the different subprocesses and, of course, for
their sum. The states called "L =2" and "L =m" for fz(1720}
are the mixtures defined in Refs. [4,15].

the helicity amplitudes for the Feynman graphs corre-
sponding to this subprocess. However, we are able to
proceed in a much simpler way, once we note that the
subprocesses qg~q'G and qq~gG are connected by
crossing symmetry. Consequently, we may apply the
"substitution law" well known from quantum electro-
dynamics [14], which allows us to derive directly the dy-
namic factor

X(2220)

do /dpr(L =2)
=6.9 X10-'

dcr Idpr(L =m)

do/dpr(J=O L =0) =3.3 X10-'
do. /dpr(J =4,L =2)

from the analytic expression obtained in Sec. III A for

do. /dpr(J =2,L =0) =1.9 X10-'
do/dpr(J =4,L =2)

Comments on these results, as well as on those of the
following subsections, will be presented in Sec. IV. E2 3+coseE ~ — (1—cos8), cos8~—

2 1 —cose
(27)

by making the substitution s, t, u~t, s, u (calling s, t, u

the Mandelstam variables of either subprocess). More
precisely, that means making the following substitutions
(at order vP):

B. Contribution of the subprocess qq ~gGX
In addition, the overall sign of the dynamic factor is to be

We might here apply a procedure completely analo- changed. Therefore, taking account of kinematic factors,
gous to that of Sec. III A, starting from the expressions of coupling constants, and the color factor, one gets

qq ~gG
(E,pr)=

dPT

7T CX

q'

(28)

where cos8 is to be replaced by (1 4pr /E )'—
The next step is deriving the transverse-momentum spectrum for the contribution of the subprocess considered to the

overall reaction pp~gGX [see diagram (b) of Fig. 3] by performing the convolution

d~pp
(s,pT )

dPT

1 cc 2s& t cc 2s& d ~qq-gG=g f dx f dx'[f
& (x, "Q ")f

&
(x', "Q2")+f (x, "Q~")f (x', "Q2")] (Epr) .

q
mill min

q p q p dp
(29)

PJ/g~y G)B (G ~xy . )

I (J/1(j~yG)dPT
qqqq

using the same conventions as defined after formula (28).
The corresponding results are shown in Figs. 4—9 (curves labeled "qq ') for the two machine energies considered and

the quantum states retained. Proportionality coefficients for other quantum states are, at order g, the same as for the
subprocess qg ~q'G and are thus to be found as well in Table I.

Here again we choose "Q "=M and use the parametrization of Ref. [12] for the distribution functions. The limits of
integration are again given by (27). The last step consists in normalizing our results as in Sec. III A:

d g pp~gGX pP gGX
B (G~xy ) = (30)

PT

C. Contribution of the subprocess gg'~g "g I g &

Here we compute the graphs (1)—(12) of Fig. 10. The contribution of each graph, except for (9), (10), and (12), is dou-
bled when we take account of the exchange g, ~g2. Here again we call all four-momenta like the corresponding parti-
cles, i.e., g, y', g",g, ,gz, and we associate with those particles their respective polarization four-vectors c

t

c',c,c& ', c2'. In the following expressions of the helicity amplitudes for the individual graphs, we leave aside the
coupling constants, as well as a common color factor I/(2&2)f, b, (where f,l„are the antisymmetric structure con-
stants of the group of Gell-Mann matrices [11],calling a, b, c the color indices of the gluons g, g', g"). We get
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FIG. 10. Feynman graphs for the subprocess gg'~g "g&g2. Other graphs, providing the same contribution to the helicity ampli-
tudes of the subprocess gg'~g "6,are derived from those here represented (except for graphs 8, 9, and 12) by exchanging g, and g2.

A, 'A, "A, A,] 2 — 3[(E9]..E
99k. )(g +g ) 2(g.E

99]9 )~A, 2(g .~3.)~ 9997
]

A. A,
"

X[~] '(g —g"+g]}"—2(g —g").~] 'g" +(g —g"—2g])"~] ']

X[2(g, .c')c,„'+2(g' ~, ')e„'" —(~'~ E2 ')(g'+g3)„].(g —g") '(g' —g2) ',
A.ill,

'
A, "A, A.

X[c"' "(g+g"—g])'—2(g —g]) E"" g""+(g —2g" —g])"c"" "]
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X[2(g' cz ')c' —2(c' cz ')(g'+g2)„+2(g2. 8' )cz„'] (g"+g, ) (g' —g2)
AA 7A, A )AP

Jg(4) (g~g 7E ~E 7g]~g29E] ~E2 )

—'[(E c] )c —(E .c, )E ][2(g c }c +2(g .c )E "—(c .E ')(g'+g )"].(g' —g )

A, A, ', A,"A, |A,~ A.

jg(6) (g~g 9E ~E 9g ]~g29 8] ~E2 )

—3[(E"' E )(g+g")„—2(g s"* )s„—2(g" E )c&* ]

X[(E' E] '}E2 '+(E' Ep ')E] ' —2(&] '
E3 ')8 ](g

(32)

(33)

(34)

(35)

(36)

(37)

(38)
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A, A, , k A, k A.A, , A, A, k
(9) ((() (39)

Jg ' I 2 — 9 [(/~~el, .E
( )(g g

tt
) +2(glt s ( )E&&eh, 2(g s&&eA, )E (][(eA, E 2)E&il. (s&A. s 2)Ek ](gl&+g )

2

(40)

X[2(g E' )c,,—(E' s )(g —g'), ,
—2(g' E )e,' ] (g"+g, ) (g+g')

ggAA, , A, A IA2 r eA i eA2 //gg gg 4A2 eAI //gg
Jkr((2) 3[2(E( 'E2 )Ep (E 'E )E(p (E 'E( )E2p ]

X[2(g E' )E "—(E E' )(g —g')"—2(g' E )e' ](g+g')

(41)

(42)

Summing up those amplitudes and applying formula (11),we are led to the helicity amplitudes A "'
g G that are given

in Appendix B for the various glueball quantum states considered. Therefrom, taking account of kinematic factors,
coupling constants, and the color factor, we get

3

4Pr )' u. ', x"~
(43)

where cose is to be replaced by (1 4pz /E —)'

The next step is computing the contribution of that subprocess to the overall reaction pgr ~gG [see Fig. 3(c)] by con-
voluting the above transverse-momentum spectrum with the gluon distribution functions:

d a~~ 1

(spr) = J dx J, dx'f i (x, "Q ")fgz (x', "Q ") (Epr),
p 7 gg

min min pT
(44)

where again we use the parametrization of Ref. [12], taking "Q "=M . The limits of integration are again given by
(24). Once more we normalize our results with the help of the data and analytic results regarding radiative J/1( decay:

pT

do~~8(G~xy )=
. Rg

d
I (J/P yG)B(G~xy )

I (J/g yG)
(45)

and using the same conventions as in Sec. III A, we thus
obtain the pr spectra shown in Figs. 4—9 (curves labeled
"gg") for the two machine energies considered and the
quantum states retained. Proportionality coefficients for
other quantum states are again the same as for the previ-
ous subprocesses and are thus to be found in Table I.

D. Total result

We assume that, from an experimental point of view, it
might be difficult to differentiate between quark and
gluon jets; therefore, we sum up the contributions of all
three subprocesses in order to evaluate the pz- spectra for
the overall reaction pp ~jet+ glueball+X. Those spectra
are shown in Figs. 4—9 for the two rnachine energies con-
sidered and for the quantum states selected; for other
quantum states, the proportionality coefficients to be used
are, again, those given in Table I. All comments are left
for Sec. IV.

IV. DISCUSSION AND CONCLUSION

Before we analyze our results, let us remark that there
are various sources of uncertainty to be considered (apart
from the fact that the validity of our model, as of any
other phenomenological model, may be questioned).

(i) We have checked the validity of the approximation
used, i.e, keeping only the lowest-order term in the series
expansion in powers of g=M/E, by including in our
computations the next-order correction, i.e., terms up to
order q in the differential cross section d(r/dpr; the
modification thus induced in our results does not exceed
10%.

(ii) Some doubt may arise as regards the parametriza-
tion used for the quark and gluon distribution functions
because of the fact that very small values of the scaling
variables are involved. Indeed, one notes that
x;„=x';„=10 at p&=10 GeV and s =4X10 GeV
and that this value goes down to 10 at pz-=10 GeV
and s =4X10 GeV ~ It is well known that in that range
the distribution functions have not been accurately
checked by experimental measurements until now. Let
us simply mention that, in addition to the parametriza-
tion of Ref. [12], we have tried an alternative one [16]
and the latter gives rise systematically to somewhat
higher predictions (by a factor of about 3 —4).

(iii) The choice of the scale "Q "=M in the expres-
sions of the distribution functions may appear question-
able. Therefore, we have performed, alternatively, a cal-
culation with "Q "=pz.,' we noted that, while our predic-
tions would thus be systematically increased, they would
not change by more than 30%.
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(iv) Restricting ourselves to computing lowest-order
Feynrnan diagrams in QCD should not entail too large an
error, since a, is relatively small with respect to 1 (with
our choice, a, =0.3—0.35).

(v) Finally, the largest possible source of error proceeds
from our choice of the value of a, . A different choice,
e.g., a, =0.2, might result in decreasing our results sub-
stantially, but not by more than one order of magnitude.

This being said, the analysis of our results leads us to
the following conclusions.

(a) Roughly speaking, the pr spectra obtained tend to
decrease like pz:, in agreement with the prediction of di-
mensional counting rules; actually, the decrease is gen-
erally somewhat faster because of logarithmic factors ap-
pearing when one passes from the parton to the hadron
cross section (more precisely when one integrates the par-
ton cross section, convoluted with the parton distribution
functions, over x,x').

(b} Correspondingly, it is only through those logarith-
mic factors (of the type ins/(4pz. ) [ln s/(4pz )]) that the
pz- spectra depend on s, i.e., on the machine energy; it re-
sults that there is a slight increase, accompanied by a flat-
tening of the curves, when one passes from SppS to Tevat-
ron energy.

(c) It appears from Figs. 4—9 and Table I that, for a
given machine energy and hard-collision subprocess, all
curves obtained for different glueball candidates and
quantum states considered [except in some cases for the
pseudoscalar g(1440)] are parallel or almost parallel to

.each other. Obviously, this is mainly due to the fact that
we are allowed to keep only terms of order vP (see the ex-
pressions of the helicity amplitudes in the Appendixes).

(d} The contribution of the reaction mechanism qq is
systematically negligible (it therefrom results that the to-
tal result would practically be the same for a pp instead of
a pp collider). As regards the two other subprocesses, the
contribution of gg~gG is dominating, for the f2(1720)
and the X(2220), over that of qg ~qG; on the other hand,
the inverse is true for the g(1440).

(e) If one integrates the spectra obtained over pz, as-
surning pz- =10 GeV and an ideal experimental situa-

min

tion where there are no other acceptance cuts, the in-
tegrated cross sections predicted are (taking into account
the above-made remarks regarding uncertainties of our
results) of the order of 10 —10 cm, depending on
the glueball candidate and quantum state considered.

We thus conclude that one may expect an abundant
production of glueball candidates in high-energy hadron-
ic collisions to be performed with presently available col-
liders. The main problem, however, will be the separa-
tion of this signal from the background due to production
of two jets (mainly gluon jets), with one of them involving
low particle multiplicity. A study performed by Lutz
[17],using the data collected by the DELPHI Collabora-
tion at the CERN e+e collider LEP in 1990, regarding
multiplicity and invariant-mass distributions of gluon jets
emitted at large transverse momentum (in particular in
the range 10 GeV/c &pr & 20 GeV/c), allows us to draw
some rough conclusions as to the signal/background ra-
tio to be expected. Assuming our results shown in Figs.

4—9 to be valid, considering the most favorable decay
channel for each glueball candidate [i.e., K+K m for
g(1440) and E+E for both fz(1720) and X(2220)], and
assuming in addition that the three- or two-particle in-
variant mass is measured with a precision of +100 MeV,
we conclude that the signal/background ratio should be
relatively large (=10) for f2(1720), slightly smaller for
X(2220), and somewhat less than 1 for q(1440). Actually,
these ratios might be improved by about one order of
magnitude if a good experimental discrimination is per-
formed between charged kaons and pions.

However, these conclusions should not be taken at face
value, given our uncertainty regarding the quantum state
of the candidates f2(1720) and X(2220) and, in addition,
various factors of uncertainty mentioned in the beginning
of this section. Moreover, our implicit assumption that
gluon jets in a given pz- range are fragmenting in the same
way whatever their origin (pp or e+e collisions) might
not be absolutely valid.

It should also be emphasized that, given the different

pr behavior of the signal (pr ) and the background
(pr ), their ratio critically depends on the minimal value
of the transverse momentum measured; i.e, a smaller

pz will improve the chances of identifying glueball can-
min

didates in the process here studied, while a larger p~min

might jeopardize them.
The model here used may allow one, in the future, to

provide theoretical predictions as well for other processes
that may be studied experimentally in the same context,
e.g., pp~GGX or pp~GMX, where M is an ordinary
(qq) meson. More generally, we think that this model,
which is fit to be applied to quarkonia as well as gluonia,
might provide an efficient tool for studies in meson spec-
troscopy.

Incidentally, let us mention that we have applied our
model, in addition, to reactions of the type pe ~qGX(e)
(taking place via the subprocess qy~q'G) and pp ~yGX
(involving the subprocess qq~yG), but the integrated
cross sections obtained in both cases (10 —10 and
10 ' —10 cm, respectively) appear too small to justi-
fy an experimental measurement.

The computer program REDUCE has been used exten-
sively for our analytic computations.
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APPENDIX A: HELICITY AMPLITUDES
FOR THE PROCESS qg ~q'G

We shall here present the expressions of the helicity
amplitudes Af ' ~' ' [18]obtained in our model (see Sec.
III A) for the process qg~q'G at order vP. We shall fix
A, =A, ' =+—,', since those amplitudes are zero (for mass-
less quarks) when A,~PA.

' and since, on the other hand,
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2 i. .A. A
TABLE II. Expressions of the helicity amplitudes AL, with A,~ =k~ =+ 2, of the subprocess

qg ~q'G at order g (see Appendix A for the definition of X and BL ). All other helicity amplitudes, for
the quantum states (J,L,S) considered, are vanishing at that order.

J=O, L =S=l
A, =1

——' i (8—16c'+35c )B1

k = —1g

—2i (8—7c +8~c)c B,

J=L =S=O

A=O

J=S=2, L =0
A= —2A,g

v'2
—XB0

3&3

1

3&3
——XB0

2&2
0

v'2
—Xc Bo

3&3

—Xc Bo
1

3&3

2&2

J=L =2=S=0
A= —2A,g

4&10
2

16&5
3

4&10

16&5

A=O
J=L =S=2
A= —2A, g

A=O

J=4, L =S=2
A = —2A,g

—( —")'"XB,
7

4&5
2

4&6
~7 '

16&5
~21

'

(
3o )1/2Xc2
7

X B
3~7

"
4&6

16&5
~21

"

TABLE III. Expressions of the helicity amplitudes At ', with A, =+1, of the subprocess
gg'~g"6 at order g (see Appendix 8 for the definition of Y and CL ). All other helicity amplitudes,
for the quantum states (J,L,S) considered, are vanishing at that order.

J=O, L =S=1

J=L =S=0

J=S=2, L =0
A=2k"

J=L=2, S=O
A =2k,"

A=O
J=L =S=2
A = 2A.

"

J=4, L =S=2
A = 2A.

"

6YCo

&3YC,

—12&30YC2

(
30 )1/2 Y(
7

0

36( 6 )1/

—6&2 YC0

48&5 YC2

12( s )1/2 YC
7
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7

—24is 2c'C1
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7
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one derives them for the case A, =A, ' = —
—,
' by applying

the relation
—A —A —jL —A J+L A 1

kAkA
v s

It results that the only helicity parameters on which
those amplitudes depend are A, and A.

It is convenient to set

APPENDIX B: HELICITY AMPLITUDES
FOR THE PROCESS gg'~g "G

We shall here give the expressions of the helicity am-
plitudes JR""' obtained in our model (see Sec. III C)
for the process gg'~g"G at order g . We shall fix
k=+1, since one can derive the amplitudes for A, = —1

by applying the relation

and

' 1/2
1BL

1

~L +1/2

L
d Z, (r)
dT „—pE$ c Thus the only helicity parameters on which those ampli-

tudes depend are A. ', A.", and A.
It is convenient to set

X =4+c +4c
1/2

1

~L + 1/2
d
dT

L

—3—3r=ps c

recalling c =cos8/2, s =sin8/2.
For the various quantum states considered, all ampli-

tudes that are not vanishing at order g are given in
Table II.

and Y=1—c2+c4.
For the various quantum states considered, all helicity

amplitudes that are not vanishing at order q are given in
Table III.
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