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Spinor field theory at finite temperature in the early Universe
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We consider the Dirac field on a spatially flat Robertson-Walker space-time. We find the exact ex-
pression for the Dirac propagator for an arbitrary scale factor in the real-time formulation of finite-
temperature field theory. The mode functions used in the construction satisfy uncoupled ordinary

differential equations.
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I. INTRODUCTION

For times larger than the Planck time, the Universe
can be described as an appropriate system of quantized
matter fields on the curved space-time of general relativi-
ty. Such a semiclassical system has, of course, been ex-
tensively studied in the conventional (zero-temperature)
framework of quantum field theory [1]. But the appropri-
ate setting to describe the temporal evolution of physical
quantities characterizing the early Universe requires a
real-time formulation of finite-temperature field theory.

The authors of the real-time theory [2,3] base their for-
mulations on the example of a (Higgs) scalar field on a
spatially flat Robertson-Walker metric. Of these, the one
by Semenoff and Weiss [3] has the advantage that it does
not require the continuation of the scale factor in the
metric to imaginary time. Their original formulation can
be greatly simplified [4] with respect to both the technical
problem of renormalizability and the expression for the
finite-temperature propagator of the scalar field. We then
extended the construction of the propagator to the
(Abelian) gauge field [5].

In the present Brief Report, we find the propagator of
a Dirac field in real-time finite-temperature field theory.
This construction follows in outline our earlier work on
the gauge-field propagator. While for the gauge propaga-
tor we could find its form in the radiation-dominated era,
the Dirac propagator is obtained here in terms of mode
functions for any form of the scale factor. In Sec. II we
write ordinary differential equations for the Fourier-
transformed O(3)-invariant functions into which the spi-
nor Green’s function can be decomposed. In Sec. III we
solve them with thermal boundary conditions in parallel
with that of the scalar field case. Our concluding re-
marks are contained in Sec. IV.

II. PROPAGATOR EQUATIONS

The action for the Dirac field in the presence of an
external spinor source on curved space-time is

S= [d*%*V =g [iyy*d,+ o W—MP+Fi+jp] . (1)
We use Greek and Latin letters to denote coordinate and

Lorentz indices, respectively. The vierbein ej;(x) relates
the general metric g,,, to the flat (Lorentz) metric 7,:

g (X)=el(x)eb(x),, m,,=diag(l,—1,—1,—1).

Then the matrices y* are given by y*(x)=y%/(x), where
y“ are the usual Dirac matrices satisfying {y¢,y%} =29%.
The spin connection is

ab

= é[y“,r” 1,
V. being the covariant derivative. M in (1) is a mass pa-
rameter.

Here we point out that the action describing our early
Universe is actually that of an interacting (nonabelian
gauge) field theory. The reason for not including interac-
tions (with the gauge and Higgs fields) in (1) is due to the
fact that we shall, in this Brief Report, confine ourselves
to determining the free Dirac field propagator in the
background gravitational field. But the presence of these
interactions is needed even to realize the assumptions in
this formulation. They are responsible for collisions lead-
ing to the initial thermal equilibrium of the matter in the
early Universe. Also, these interactions generate addi-
tional temperature-dependent masses for the fields, which
for the spinor field is included in M, implying the pres-
ence of a compensating quadratic counterterm in the
(omitted) interaction terms. This modification in the
mass term is needed to restore the breakdown of naive
perturbation theory at sufficiently high temperature [6].
It also plays a crucial role in defining the positive- and
negative-frequency mode functions around the initial
time in our formulation [4].

The Dirac equation is

___l_ ab_v
w,==0 € Vyep O

[iv"(3,tw, ) —M]P(x)=j(x), (2)
and the Green’s function or propagator satisfies
. o O(x —x')
[17"(8,,+a)#)—M]S(x,x )——‘/? . (3)

As in the case of gauge fields [5], the construction of the
propagator S (x,x’) is greatly simplified by analyzing Eq.
(2) for the mode functions ¥(x) and relating its com-
ponents to S'(x,x’) by

Px)= [ d*x'V=g'S (x,x")j(x") . @)

In Robertson-Walker space-time

701 ©1992 The American Physical Society



702 BRIEF REPORTS 45

ds’=dt’—a*(t)dx?, (5)

with which we shall work henceforth, (2) becomes

9 +i£+ lny-HMy

— .0
o 2 a iyixn,

P(x,t)

(6)

an overdot indicating the derivative with respect to time
t. Because the metric is spatially flat, it is convenient to
work with three-dimensional Fourier transforms of the
above quantities, denoted by a tilde; for example,

d’k

wx,n= [ me"k'*i/}(k,t) : ™

We also decompose all four-component spinors into two-
component ones,

J1
R

so that (6) breaks up, in the Dirac representation of the
gamma matrices, into the two coupled equations

d ., 3a, ok o
dt+2 a M |,(t (t)lﬁ(t) ij (1), (8a)
d 3 a . T

dt+3 ;—EM ¢2 t)+l llll(t ljz(t) . (8b)

Here and in the following, we omit the k dependence of
all Fourier transforms.

It is easy to obtain uncoupled, second-order equations
for ¢, and ¢, from (8a) and (8b). Apply (d/dt
+3a /a—iM) on (8a) and use (8b) to eliminate ¥, and get

d? ad | . d 2 |+
L1422 4y iMltc+ t
dt2+ 2 tMa ¢ to® | (1)
__ 0K~ . d ii_ ¥
2t Ja(t)—i —dt+2 . iM |j,(2), (9a)

where c¢=3{d/a+%(a/a?}] and o*=0X()=M1)
+k?%/a%(t). Similarly, we eliminate 9, to get

d? a d . ~
dt2+4a ar zM +c +w? |P,(2)
_ ok~ .l d ii . o
= a(t)jl(t)-H —dt+2 a+lM Jo(2) . (9b)

Next, it simplifies things to get rid of the first deriva-
tive on the right-hand side of (9a) and (9b) by a
redefinition of the amplitudes and sources:

)71,2:“21;1,2’ 71,2:‘1271,2 . (10)

Equations (9a) and (9b) become

2 .
j—z—i ML +d +0? [T,
dt ’
ok + _.ld 1 a__ -
£ 2 T OF i |k S FM AT ), (D)

with d =—1d /a +1(a/a )2. Here and below the upper
(lower) sign corresponds to the first (second) subscript on
the amplitudes and sources. We also need the original
coupled equations (8a) and (8b) in the following. With
the new amplitudes, they become

FiJy (1) .

iM X, ,()+ Xz (=

(t)

(12)

We next turn to the propagator and Eq. (4) relating it
to 1. the propagator may be decomposed,

S(k,t,t')=A+By°+Cy-k+Dy°yk, (13)

into amplitudes 4, B, C, and D, invariant under parity
and O(3) transformations, each of which is a function of
t,t' as well as of k. In two-component notation, (4) be-
comes

= [dr' a*(t[(A£B)], (') H(C£D)o Ky, (1] .

(14)

We express it in terms of ¥, , and J, , and also redefine
the invariant Green’s functions to get rid of the scale fac-
tor, obtaining

o= [ar |, (6,007, ()27, (1,1 (k)JZI( |,
(15)

with
U, (ht)y=aXDa(t'(ALB)1,t'"), (16a)
Vit t)=aX(t)a*(t'(CED)(1,t') . (16b)

We are now in a position to obtain uncoupled equa-
tions for the invariant Green’s functions. First, set

J(1)=0, J,(t)=8(t—1t")¢(t"), 17

§(¢) being an arbitrary two-component spinor. Equation
(15) then yields simple algebraic relations among the ¥
amplitudes and invariant Green’s functions,

TO=P,(1,1) (',‘)g(t'),
_ _ (18)
X(8)=U,(t,t")5(¢t") ,
and Egs. (11) and (12) with the upper sign immediately
give the desired equations
d? _
7+ M—+d +o? [V, (t,t')=8(t—1'), (19a)
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d 1a, . |o. .
. 2a+zM]V1(t,t). (19b)

a(t)
a(t')

U,(t,t')=i

Note that the other two equations [(11) and (12) with the
lower sign] are not convenient to determine the remain-
ing amplitudes ¥, and U,. To determine the latter ones,
we put

Jy(1)=0, J()=8(t—1")&(t’), (20)

&(2) being again an arbitrary spinor. As before, we get

d? a -

dt2—iM;+d+co2 V,(6,t")=8(t—1t"), (21a)
O tey=—; 28 |4 _1 & _,lp

U,(t,t") e a2 e iM | V,(t,t') . (21b)

Thus the construction of the propagator for the Dirac
field reduces to solving the ordinary differential equations
for V,,V,, the invariant Green’s functions, subject to ap-
propriate boundary conditions.

III. FINITE TEMPERATURE

Equations (19a) and (21a) as well as the physics of the
problem are similar to that of the scalar field case, treated
in detail in Ref. [4]. It thus suffices to describe the finite-
temperature formalism for the spinor case in outline only.

Consider a sufficiently small region of the early
Universe so as to be well within the causal horizon. As-
sume that around time ¢ the collision rates among parti-
cles far exceed the expansion rate, so as to obtain an
effective thermal equilibrium. Let the temperature be
T,=1/pB, at time t;,. Now consider the ensemble average
of any operator or product of operators, for example, the
time-ordered product of two ¥ fields,

e Py nPx, 1) 22)

which is of interest to us here, H(¢,) being the Hamil-
tonian of the system at time ¢#,.

We can set up a path-integral representation for a
quantity such as (22) using the complex time contour of
Fig. 1 [7]. The two segments C, and C, of this contour
are along the real-time axis [8], C; running forward and
C, backward in time. The last segment C; runs parallel
to the imaginary-time axis, where the scale factor a(t) is
fixed at time ¢ =¢,. The field ¥ and other functions are
thus extended to the complex time variable 7. On the
segments C; and C,, 7=¢, while on C;, we set 7=¢,—it.
Clearly, there is no discontinuity in the mode functions
or any of its derivatives at the junction of C, and C,.
The mode functions turn out to be continuous also at the
junction of C, and Cj, by virtue of the requirement that
the geometry be stationary at t =ty [d(ty)=d(ty)=0],
which was originally invoked to remove a difficulty with
the renormalizability of the theory.

As is well known [9], the trace in (22) implies an-
tiperiodic boundary conditions on the classical anticom-
muting (fermionic) ¥ fields at the two ends of the contour
of Fig. 1, in contrast with periodic boundary conditions

Tr

. Cy
to X > ————— t
C
Cs 2
to'i’o

FIG. 1. Complex time contour.

for the classical commuting bosonic fields. Equations (12)
then imply antiperiodic boundary conditions for the first
derivative of the fields as well. It is then easy to see that
the expression (22) is equal to the Green’s function
defined by (3) or equivalently by (13), (19), and (21) to-
gether with antiperiodic boundary conditions on these
functions and their first derivatives.

Consider the construction of ¥,(z,t') obeying (19a),
subject to the antiperiodic boundary conditions stated
above. As in the scalar field case, we define real-time (on
C, and C,) mode functions f*(z,¢') by the differential
equation

d* . . a 2 | ptyy—
— tiM—+d +o” [fH(1)=0, (23)
dt a

and the boundary conditions f¥(¢y)=1, f i(to)= Fiwyg,
where w,=[M(ty)+k%/a%(ty)]'/?. These modes are
then extended to functions defined on the entire complex
time contour C by setting

fE(1t) onC, and C, ,

Fat 4)
e (O

)=
4 n C; .

The boundary conditions fix the coefficients of the homo-
genous pieces in V,(7,7'), and we obtain

[71(7',7")=%{[O(T—T')—F]f"'(‘r)f‘(f)
Do

+[6(7'—7)—F1f T()f (1)}, (25)

where

F=—— . (26)
e 041

An exactly similar construction holds for ¥, (r,7') with
fE(1), in (24) replaced by f T *(z), the asterisk denoting
complex conjugation. From (13), (16), (19), and (21), we
get, for the expression for the propagator,

d3k

Sx—x;t1)= [ -5
T

e =S (Kt t') 27)

where
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g 1 1a -k

Slk,t,ty=—————— 1 |ip? | =—— == _Y +M
2a(1)a(1") l Y'lat 2a | a

This completes our determination of the finite-

temperature Dirac propagator in the spatially flat
Robertson-Walker space-time geometry. For several
forms of the scale factor a (t), the mode functions can ac-
tually be solved in terms of known functions (see Ref.
[10)).

In the radiation-dominated era, the requirement that
thermal equilibrium be established around the initial time
t, leads to the condition that the effective mass M be
large compared to the curvature terms d in (19), (21), and
(23) [4,5]. With such an adiabatic condition, the equa-
tions for ¥, and ¥, coincide and the Minkowski mode
functions f*(¢) become simply
172
Do

w(?) exp

Fif dr o | 29)

The propagator (28) then reduces to

1

S(k,t,t")y==—"-—
a(ta*t')

(iy"3,+MV (1,t'),  (30)

which is effectively the expression on flat space-time.

(~V1 + VZ )_yo

0

0 | —=

. d
y E

As the system leaves the radiation-dominated era, we
have to reexamine the different conditions. In general,
the mode functions in (28) have to be determined again
by solving (23) with the new scale factor and requiring
their continuity with the earlier ones in the transition re-
gion. If, however, the thermal equilibrium is maintained
and the adiabatic condition also realized, then the form
(30) for S is still valid with ¢, referring to the initial time
in the new era.

IV. CONCLUSION

Earlier we studied [4] a scalar Higgs field in an expand-
ing Robertson-Walker geometry using a simplified form
of the real-time formulation of the finite-temperature field
theory originally proposed by Semenoff and Weiss. We
obtained a much simpler expression for the thermal prop-
agator for the scalar field. We also discussed, in particu-
lar, the physical notions associated with this formulation.
We now discuss the construction of a thermal propagator
for the Dirac field in the same framework. Thus the
present work, together with that of Ref. [5], where we ob-
tained the thermal gauge-field propagator, extends our
earlier formulation for the scalar field to any gauge-field
theory.
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