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Fermion fields in 11-g spacetime are discussed. By the path-integral formulation of quantum field

theory, we show that the (zero-temperature) Green's functions for Dirac fields on the Euclidean section

in ri-g spacetime are equal to the imaginary-time thermal Green s functions in Minkowski spacetime,

and that the (zero-temperature) Green s functions on the Lorentzian section in 11-g spacetime correspond

to the real-time thermal Green s functions in Minkowski spacetime. The antiperiodicity of fermion

fields in rl-g spacetime originates from Lorentz transformation properties of the fields.
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In our previous paper [1] (hereafter referred to as I), a
new spacetime, called 21-g spacetime, was constructed.
The scalar quantum field in ri-g spacetime was discussed.
The main conclusion was that the quantum fields in ri-g
spacetime relate closely to quantum field theory at finite
temperature in Minkowski spacetime and (zero-
temperature) quantum field theory in ri-g spacetime cor-
responds to field theory at finite temperature in Min-
kowski spacetime. The geometrical origin of this connec-
tion is that 21-g spacetime can be regarded as, as pointed
out by Wald [2], a maximal complex analytic extension of
S'XR . In I it was shown that the vacuum state of sca-
lar fields in rl-g spacetime is a thermal state for an inertial
observer in Minkowski spacetime, and the vacuum
Green's functions in rl-g spacetime are the thermal
Green's functions in Minkowski spacetime. To complete
our argument, we must generalize this discussion to fer-
mion fields in ri-g spacetime, and show how the an-
tiperiodic boundary conditions on fermion fields in
thermal equilibrium can be satisfied in Euclidean ri-g
spacetime and how to express the thermal Green's func-
tions as the vacuum Green's functions in ri-g spacetime.

Now we consider the fermion fields in q gspacetime. -

Let us start from the covariant form of the action for the
Dirac fields on the Lorentzian section in ri-g spacetime,

I"=Jdridgdy dz& —g P(iy'7, —m)g, (1)

which is a scalar under local changes in the vierbein, as
well as under general coordinate transformations, where

I

y' (a =0, 1,2, 3) are the Dirac matrices, and the covari-
ant derivative is defined by

V, =e,"(a„+r„), I„=—,'X'b~, „
the spin connection to,b„ is defined by [3]

tuabp 2 a ( bv, p bp, v' I b ' av, p ap, v)
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Now the action (1) can be written as

(4)

here e, are the vierbeins, X'" are the generators of
Lorentz transformation on the spinor. (Greek indices are
referred to 21-g coordinates, and Latin indices are referred
to the local Lorentz frame. ) As usual, we have

e,"eb„=ri,b =(—1, 1, 1, 1)

and

gjtl p b 'q g: le pl

It is convenient to choose the vierbein components e,"
and e,&

in ri-g coordinates as shown in Table I. The local
frames are oriented so that the axes are parallel to the
coordinate axes ri, g, y, and z. The nonvanishing ele-
ments of the connection I „ in all of regions I,II, and
III,IV are

T

Iu= J d2)dgdx
1

q
.
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(5)
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where s= 1( —1) for regions I and III (II and IV), x2
denotes y,z coordinates. Introduce the transformation
(21,$)~(A, ,X), where A, and X defined by

If restricting the integral domain in (9) only to region I,
we obtain the action for Dirac fields in Minkowski space-
time:

I =f d x p(x)(iy 13 —m)g(x) . (10)

The action (5) becomes

where

—m — X'
2

X =y cosh( eaA, ) —y' si nh( san, ),
X'= —y sinh(EaA, )+y' cosh(san),

d X=@,di, dXdy dz

I~= fd Xf iX +iX' +iy V2a(a) ' ax

(7)

We shall see below that the transformation (8) plays a
critical role for getting thermal properties. In order to
make the sense of the transformation (8) clear, we now go
through another way to get Eq. (9) starting from the vier-
bein form (1). Using the coordinate A, and X in (1) and
choosing the new vierbeins e, , which are parallel to the
coordinate axes eA, ,X,y, z, we get Eq. (9) immediately. It
shows that Eq. (9) is the expression of the action (1) on
the vierbeins e,".

Note that the vierbeins e "relate e,"by Lorentz boost

coshcak sinhcak
0

sinhc, aA, coshcaA.

P~(cosh 21 san,—yy—' sinh —2'saA, )l(1,

1i/~f(cosh —'2Eka, +y y' sinh —2'san, ) .

Then Eq. (7) has the form

(8)

I"=fd Xg iy +iy' +iy V2 m—
=f d Xp(iy D —m)1(1 . (9)

and the integral fd X runs over the whole ri-g space-
time, i.e., over all of regions I, II, III, and IV.

It is useful to make a change of spinor

so that

caA,=cosh
2

—y y sinho r caX
2

(13)

which leads to the transformation (8). That is, the trans-
formation (8) is necessary if we transform vierbeins from

e "=L 'e,",a a

where we have omitted the y, z coordinates, which are
trivial here. The corresponding matrix of the transfor-
mation of spinor is given by

M =exp( —,
' as', y y')

TABLE I. (a) Vierbein components e," for 2)-g coordinates. The local frames are oriented so that
the axes are parallel to the coordinate axes. The upper signs refer to regions I,III while the lower signs
refer to regions II,IV. (b) Vierbein components e,„for 2)-g coordinates. The sign conventions are the
same as for (a).

Loren
inde
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index

e,"

+a(g2 ~2)1/2
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+&(~2 g2)1/2

III,IV
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2 (2) I/2
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e,"to e " (in fact, the vierbeins e "are equivalent to Min-

kowski coordinates t, x).
Now we shall show that the Euclidean generating func-

tional in rI-g spacetime is proportional to the partition
function at temperature T =Q/2m in Minkowski space-

l

time. The Euclidean generating functional for Dirac
fields in g-g spacetime has the form (the shorthand where
the normalization factor is suppressed will often be used
in the following}

Z= fDQDpexp —fdodgdx, z z z p a(g'+a')'" y'& +~y'& +~y V.j m— + 2, , »,

(14)

Under the transformation

(15)

with the change of spinor corresponding to (8),

Q7 . 0 ] . Q7 — — Q7 . 0 ~ . QS
cos iy y sin— P, g~g cos +iy y sin

2 2 2 2
(16)

Eq. (14) becomes

Z =f DQDgexp —f dr fd x f y +iy' +iy~ Vz m-P3 — OB. (B
P &=0)= —f(~=P) 0 Br Bx

(17)

Q(r=0) = Q(r=l3) . — (18}

Equation (17) is the gath-integral expression of the par-
tition function Tr(e ) in Minkowski spacetime. The
thermal properties of fermion fields in (17) are character-
ized by the antiperiodic boundary condition (18), which
comes from the transformation property (8) of spinor un-
der Lorentz transformation (11). Note that the vierbeins

e, are, in fact, Minkowski coordinates x,t, and the spi-

nors f in (9) and (17) are defined with respect to the vier-
beins e,", so the thermal properties in (17) are measured

only by a static observer in Minkowski spacetime.
We are now in the position to calculate the Green's

functions. It is well known [4] that for thermal Green's
functions, its imaginary-time form is characterized by the
imaginary-time periodicity (antiperiodicity) for boson

where we have used the following facts.
(1) If we want the transformation (15) to be single

valued, we must have 0 ar~2n, or O~r 2n'la= P. It-
determines the integral domain for r in (17).

(2) The transformation (16) leads to the antiperiodic
boundary condition for Dirac fields in (17):

(fermion) fields, and its real-time form is characterized by
the doubling of the degrees of freedom. In the rI-g formu-
lation, the structure of the Euclidean section in g-g
spacetime will automatically provide periodicity for
imaginary time r, the imaginary-time periodicity (an-
tiperiodicity) of Green's functions for boson (fermion)
fields on the Euclidean section in r)-g spacetime will be
given by Lorentz transformation properties of the fields.
On the Lorentzian section in rI-g spacetime, the existence
of "horizons" will lead to the doubling of the degrees of
freedom, corresponding to the fields in regions I and II.
It is the character of real-time thermal Green's functions.
Now we shall show that the (zero-temperature) Green's
functions for Dirac fields on the Euclidean section in rI-g
spacetime are equal to the imaginary-time thermal
Green's functions in Minkowski spacetime, and the
(zero-temperature) Green's functions on the Lorentzian
section in rI-g spacetime correspond to the real-time
thermal Green's functions in Minkowski spacetime.

References [5] and [6] have told us how to express a
temperature Green's function for Dirac fields by the
path-integral formulation

Q2
Gy(x„r„'x~, r~) =Z

5J(x~, rq)5I(x), r, )

X f DQDfexp —f drf d x P y +iy' +iy Vz mg+jg+—gJ
+~=0)= —P~=P) 0 O'T Bx J=J=O

(19)

Using the change (15) of integration variables on the exponential in (19) and the inverse transformation of (16), we ob-
tain



BRIEF REPORTS 45

Gp(xl& r1&x2& 2 } Z — P((iso 1~ f2~ o2 }
I 6'Z [j,J']

fiJ(42 a2}~J(kl ol) 1=I=0

where

(20)

Z[j,j ]=fDQDgexp —fdo dgdxt g a(g +o }' y +iy' +iy V~' a'(g'+o') ao ag

ia iy cr —y'g
((2+ 2)1/2 (21)

(iy D —m)S&(X —Y)=5 (X —Y) (24}

we can write Eq. (23}as

Z[J,J]=exp i f d Xd Y[J(X)S),(X, Y)J(Y)] . (25)

The integral f d X d Y runs over all of regions I, II, III,
and IV, in which the regions III and IV are spacelike for
time A, . We can drop these spacelike regions by letting
J(X)=J( Y)=0 if X, YE III or IV, while noting that the

with

J(g, cr)=e "j(g,o ), J(g, cr)=e 'j (g, cr),
(22)

j(g', cr)=e "J(x,r), j(g, o )=e J(x,r) .

The right-hand side Gg of Eq. (20} is just the Euclidean
(zero-temperature) Green's function for Dirac fields in

ri-g spacetime.
The generating functional on Lorentzian section in ri-g

spacetime has the form

Z[J,J]=fDQDgexp i I"+fd4X(JQ+gJ)

(23)

where In is given by (9). By taking the transformation

P(X)~f(X) fd Y Sg—(X —Y)J ( Y),

Q(X)~Q(X)—f d YJ(Y)Sg(Y —X),

where

where a, b =1,2 and

J,(x)=J(X), XEI,
Jz(x) = —J(X), XIII,
Sg'(x —y) =S~(X—Y), X, YEI,
Sz'(» —y) =S„(X—Y}, X, YE II,
S&"(x —y)= —S„(X—Y), XEI, Yell,
Sz' (x —y) = —S~(X—Y), XEII, YC I .

(26)

(27)

Equation (26) is the generating functional for the real-
time thermal Green's functions [7], in which the thermal
propagator is a 2 X 2 matrix. In order to get Eq. (26), we
let J(X) and J( Y) in regions III and IV be zero here. If
we keep J(X) and J( Y) in regions III and IV not zero, we
will get, similar to the Rindler case [8], the real-time
thermal Green's functions with 4X4 matrix.
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I

regions I and II are spacelike disjoint, Eq. (25) then be-
comes

Z[J,J]=exp i f—d x d y J,(x)S' (x —y)J&(y)
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