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When can identical particles collide?

M. Bourdeau*
Department of Physics, Brandeis University, Waltham, Massachusetts 02254

R. D. Sorkin®
Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
(Received 26 August 1991)

It is customary, when discussing configuration spaces of identical particles in two or more dimensions,
to discard the configurations where two or more particles overlap, the justification being that the
configuration space ceases to be a manifold at those points, and also to allow for nonbosonic statistics.
We show that there is in general a loss of physical information in discarding these points by studying the
simple system of two free particles moving in the plane and requiring that the Hamiltonian be self-
adjoint. We find that the Hamiltonian for fermions is unique, but that in all other cases (i.e., for particles
obeying properly fractional or Bose statistics) there is a one-parameter family of possible self-adjoint ex-
tensions. We show how a plausible limiting procedure selects a unique extension from each family, the
favored extension being the one for which the wave function remains finite at the points of overlap. We
also test our procedure by applying it to the known case of the hydrogen atom.

PACS number(s): 03.65.Nk, 02.40.+m, 03.65.Ca

I. INTRODUCTION

The question posed in the title of this paper arises in
connection with particle statistics, and specifically in con-
nection with what might be called “intrinsic” or “topo-
logical”” formulations of this fundamental trait of quan-
tum particles. In formulations of this sort, the mutual in-
distinguishability of the particles is coded into the topolo-
gy of configuration space itself, and the different statisti-
cal types then correspond to different choices of bound-
ary conditions on the wave function ¥, or—more gen-
erally and more invariantly—to different choices of the
underlying vector bundle of which ¥ is a section. (In a
path-integral formulation the different bundles or bound-
ary conditions would correspond to different possible glo-
bal phase factors, or their generalization.)

In comparison with older formulations in which the
configuration space is topologically trivial and statistics is
defined in terms of the behavior of ¥ under “exchange of
labels,” the intrinsic approach is more natural in that it
avoids the introduction of “gauge variables” (the labels)
which only have to be eliminated at a later stage by im-
posing symmetry conditions on W. It is also more gen-
eral, in that it allows particle statistics to be understood
as a kind of “force” in essence similar to other interac-
tions with a topological character, like the interaction be-
tween an electric and magnetic charge in three spatial di-
mensions, or the type of interaction in two dimensions
which is responsible for the Bohm-Aharonov effect and
fractional statistics (“anyons”) [1,2]. Indeed all these ex-
amples appear as part of a much broader range of situa-
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tions in which the topology of an appropriate
configuration space manifests itself in the possibility of
nontrivial quantum bundles over that space, whose struc-
ture captures qualitatively important aspects of the dy-
namics. Such situations include, for example, the “6-
vacuum” phenomenon of non-Abelian gauge theories and
the possibility of spin } in pure quantum gravity [3] or in
SU(N)-chiral models (Skyrmions) [4], as well as a whole
range of other phenomena of “Berry-phase” type, such as
the fact that the nonrelativistic wave function cannot
transform as a scalar under Galilean transformations [5].

Although the “intrinsic” or “topological” approach to
particle statistics has clarified many issues and unified
many phenomena, it has also introduced a technical com-
plication which is absent in the older, more limited ap-
proach, namely, the introduction of configuration spaces
which are not (smooth) manifolds. In the older ap-
proach, the configuration space for two identical spinless
particles in three dimensions, for example, would be
R3XR3, on which a free Hamiltonian V%—I—V% can unam-
biguously be defined. The intrinsic attitude, however,
identifies (x,y)ER*XR?® with (y,x), leading to a
configuration space Q which has a (n orbifold-type) singu-
larity at each ‘“‘diagonal” configuration (x,x). At such
singular points of Q it is not obvious how to introduce the
mathematical objects in terms of which a Hamiltonian is
normally defined (gradient operator). What is worse, the
presence of these singular points might even seem to des-
troy the possibility of nontrivial statistics altogether, be-
cause, for example, the configuration space for two iden-
tical particles no longer possesses nontrivial (i.e., noncon-
tractible) loops if the diagonal points are included in Q
(cf. [6]).

Now this last difficulty is only apparent (only an incon-
venience) because the physical meaning of statistics re-
sides in processes of exchange of identical partners (more
precisely in the correlative interference effects), and such
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exchange necessarily refers to paths in Q which avoid the
diagonal, it being no longer possible to say which particle
is which, once they have coincided. Hence a specification
of the dynamics away from the points of overlap already
defines the statistics, independently of what may occur
when two or more particles coincide.! Therefore, if in-
cluding the diagonal in Q renders an exchange-loop trivi-
al, this can only mean that the most straightforward to-
pological definition of the statistical phase factors breaks
down at points of coincidence; it cannot of itself imply
that nontrivial statistics is no longer possible. Indeed, it
is not at all obvious just what the inclusion of the diago-
nal points entails for the dynamics, because the singulari-
ty of Q there prevents the Schrédinger equation from be-
ing unambiguously meaningful there, as we have already
emphasized.

It is this ambiguity in the dynamics at the points of
coincidence that represents the genuine incompleteness in
what we have called the intrinsic formulations of the
quantum mechanics of identical particles. Until ap-
propriate dynamical rules have been specified at these
singular points the effects of actual collisions remain un-
determined, even if the particles’ statistical type has al-
ready been defined. A similar incompleteness pertains to
the (nonrelativistic) hydrogen atom, where the overlap of
a point proton and a point electron is a singular
configuration, not for reasons of particle identity, but be-
cause the electrostatic potential becomes infinite there.

The appropriate mathematical setting for studying
these dynamical ambiguities would seem to depend on
the framework adopted for quantum mechanics in gen-
eral. Here we will take the Hamiltonian operator as basic
(as opposed to the path amplitudes of the sum over his-
tories) in order to take advantage of the extensive body of
results available concerning the mathematics of linear
operators in Hilbert space. In this setting our question
about the boundary conditions for the Schrédinger equa-
tion appears as a question about self-adjoint extensions:
we know how to define a Hamiltonian H, away from the
diagonal of Q and we wish to extend it to a self-adjoint?
operator H, for all of L%(Q).

In what follows we examine this problem in the rela-
tively simple case of a pair of identical, structureless, free

1A possible exception to these remarks might occur, in the
path-integral framework, if one were dealing with differentiable
paths; for them it would sometimes be possible to still recognize
which particle was which after a collision occurred. Another
possible exception might be for particles moving on a line,
where exchange without collision is impossible (unlike on the
circle, or in more highly ramified one-dimensional networks
[7]). In that situation the only remnant of statistics which can
be defined refers to boundary conditions at the diagonal points,
which now constitute a boundary of Q.

2Self-adjointness is needed in order that one can exponentiate
H to get a unitary operator of time evolution. In certain situa-
tions this “conservation of probability”’ might not be appropri-
ate (e.g., if the particles could annihilate on contact), but we will
restrict ourselves here to situations for which it is appropriate.

particles moving in two spatial dimensions. We will see
that the answer to our title question depends on the value
of the phase angle 6 defining the “fractional statistics” of
the particles.® In the fermionic case (6=1) collision is
strictly forbidden, the self-adjoint extension being unique;
but in all other cases a U(1)’s worth of Hamiltonians is
conceivable, most of which allow collisions (in the sense
that W need not vanish on the diagonal of Q), but some of
which do not. However, we can try to remove this ambi-
guity in the dynamics by means of a suitable regulariza-
tion at the points of overlap. Doing so in a natural way,
and taking the limit as the regularization is removed, will
lead us to a unique choice of Hamiltonian for each value
of 0 in the range of ambiguity —7 <60 <m. With respect
to this unique choice we will find that collisions are al-
lowed only in the bosonic case (§=0); in all other cases
the particles avoid each other. In every case, moreover,
the self-adjoint extension picked out is the unique one for
which ¥ remains finite at the points of overlap. In this
way, we will have remedied the incompleteness in the in-
trinsic formulation of statistics.

As a check on our procedure we examine in the Ap-
pendix the known example of the nonrelativistic hydro-
gen atom, where there is an analogous problem of extend-
ing the Hamiltonian to the singular configuration where
proton and electron overlap. Again it turns out that a
unique extension is selected, and in this case it is the one
known by experiment to be correct.

II. CONFIGURATION SPACE FOR TWO IDENTICAL
PARTICLES

The configuration space of two identical structureless
particles in two space dimensions is, in the center-of-mass
coordinate system, a plane with diametrically opposite
points with respect to the origin identified. This is
equivalent to a cone of half-angle 30° (defect angle 180°),
the vertex of the cone corresponding to the overlap of the
two particles [1]. A trajectory in configuration space
which exchanges the two particles corresponds to a
closed loop on the cone encircling the vertex. Exchang-
ing the particles twice gives a curve encircling the vertex
twice and this curve also cannot be continuously de-
formed to a point if we exclude the vertex as a possible
configuration. The “punctured” configuration space Q is
thus infinitely connected. This means that, unlike in
three or higher space dimensions, the wave function of
the system may acquire a phase after the exchange of the
two particles which does not square to one. The particles
are said to obey fractional statistics characterized by the
angle O acquired in the phase after (counter-clockwise)
exchange. This angle can take any value and one recov-
ers Fermi (6=m) or Bose (6=0) statistics for particular
values of 6.

A more abstract description of the meaning of 0 is in

o

terms of the fundamental group 7,(Q) of Q. It is known

3Notice, incidentally, that for 80, 7 the points of overlap are
singular even in the traditional setting of labeled particles.
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[6,8,9] that there is an inequivalent quantum theory on a
given configuration space Q for each distinct unitary irre-
ducible representation (UIR) of m,(Q). Since 7rl(Q)—
here, its UIR’s are given by pgn—e™® and possible
quantum theories are labeled by the angle 6(mod2w)
which parametrizes the UIR.

A still more general description of the same system can
be had in terms of a bundle [8,9]. If the particles obeying
fractional statistics do not overlap, and moreover if they
are “free,” then their dynamics can be globally described
in terms of a U(1) bundle over Q with a locally flat con-
nection. Now suppose that we remove the restriction on
overlapping by restoring the origin to Q, obtaining there-
by an enlarged configuration space Q with the topology
of a complete cone. There is no topological obstruction
to extending our bundle to all of Q (unlike for fermions in
three spatial dimensions or higher), but there is a prob-
lem with smoothness, and therefore with the notion of

connection. In the spec1al cases §=0, 7 we might evade
this difficulty by passing to the twofold cover of Q (i.e., by
labeling the particles), but we know of no similar trlck
which would apply for other values of 6.

In the absence of such guidance, we will fall back on
the general theory of self-adjoint extensions, only noting
on one hand, the question whether different such exten-
sions can be related to any generalization of the notion of
bundle with connection (called “gauge space” in [10]),
and on the other hand, the possible answer that the ques-
tion is moot, because the physically favored extensions
will turn out to involve only wave functions which vanish
at the origin (except for 6=0, where the covering-space is
regular).

III. SELF-ADJOINT EXTENSIONS
AND THE HAMILTONIAN

Away from the origin, the Hamiltonian for a system of
two identical particles moving freely in the plane is given,
in c.m. coordinates, by the differential operator,

#” #|120% W 1 rad
2u 2u|r dr  9r? 2 9¢?

(1)

where u=m /2 is the reduced mass and (r,¢) are the rela-
tive radius and angle coordinates. However, for nonzero
statistics parameter 6, ¥ satisfies discontinuous boundary
conditions: the exchange of the two particles corre-
sponds to the coordinate shift g—@+ = in configuration
space, and the wave function acquires a phase according
to

V(r,p+m)=e'W(r,p), )

the points (r,@) and (r, + ) being identified.

Equations (1) and (2) describe the system in terms of
multivalued wave functions with no (nontrivial) connec-
tion or potential. As referred to earlier, we can
equivalently work with single valued wave functions ¥ by
introducing an explicit interaction term (or bundle con-
nection). The two different descriptions just represent
different choices of gauge with respect to a single U(1)

bundle with a (locally flat) connection. The first choice is
such as to trivialize the connection (and is therefore
necessarily discontinuous), the second is the simplest con-
tinuous gauge choice. In the second description different
values of 0 are explicitly associated with different interac-
tions (different values of the connection):

2
# |13¥Y 3w 1 |3 ,if
HY=——|="=+ = |+ |V
2u | r or  3r? + r2|0p w ] @
Y(r,p+m)=V(r,e) . 4)

The two Hamiltonian operators are related by

0
7|

As is made explicit in the description (3), (4), our
boundary condition on ¥ can be expressed by saying that
it is a continuous cross section of a trivial U(1) bundle
over the configuration space Q. (Notice that the bundles
corresponding to different 8 must all be topologically
equivalent to the trivial bundle, since one can continuous-
ly change the parameter 6 to take any value.) Thus the
only distinction among different statistics resides in the
connection; if it were not locally flat, it could not be
characterized by a single parameter 6, and statistics
would have no gauge independent meaning. This differs
strikingly from the situation in three (or higher) dimen-
sions, where the Bose and Fermi bundles differ topologi-
cally, and the meaning of statistics is altogether indepen-
dent of any connection.

Now, the operator in (3) is singular at the origin for
two reasons: As mentioned earlier, the particle is moving
on a cone (because of the identification of x with —x in
R? that expresses the identity of the two particles), and
the cone is not smooth at the origin. Moreover, the con-
nection term (3/3¢@+i0/7) is itself singular at r =0. We
are now interested in checking whether the Hamiltonian
admits any self-adjoint extensions at the singular point
where the two particles overlap, and if so, how many.
We will use Von Neumann’s theory of deficiency indices
[11] to answer these questions.

Let us review some definitions.

A densely defined linear operator T on a separable Hll-
bert space is called symmetric if and only if TC Tt (r?
being the adjomt operator) that is, if and only if
D(T)CD(T') and T®=T'® for all PED(T). (D is the
domain of T.) This is equivalent to saying that T is sym-
metric if and only if (T®|¥V)=(®|TV¥) for all P,
veD( T) An operator T is called self-adjoint if and only
if T= T that is, if and only if 7T is symmetric and
D(T)= D(T ). This last statement implies that if the
functions in D (T) obey certain boundary conditions m
order that T be symmetric, then the functions in D(Th
must obey the same boundary conditions.

Now suppose that T 1s a self-adjoint operator and
that there is a ®E€D(TT)=D(T) for which T'd=i®.
Then T®=i® and —i{(P@|®P)=(i®[®)=(Td|D)
=(®|T'®)=(®|T®)=i(®|®), whence ®=0. A
similar proof shows that T'®=—i® can have no solu-
tions (as is well known, the spectrum must be real). Let

H=exp -—igq) H exp
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us look at the converse statement: if 7 is a symmetric
operator and T'®=+i® has no solutions, then T 1s
essentially self-adjoint, in the sense that its closure yull
self-adjoint. This is the basic criterion for self-ad_]omtness
[11].

Now, let
#H,.=Ker(i—T"),
#_=Ker(i+T"),

(T)=dim[#, ],
(T)=dim[#_],

H , and # _ are called the deficiency subspaces of T, and
n are the deficiency indices. The theory then states the
following.

Let T by a symmetric operator with deficiency indices
n, and n_. Then (i) T is essentially self-adjoint if and
only if n, =0=n_. (i) If n, =n_ =n then T possesses
an n’-dimensional family of self-adjoint extensions; and
there is* a one-one correspondence between self-adjoint
extensions of T and unitary maps from %, onto F _.
(iii) If n . *n _ then T is not self-adjoint and has no self-
adjoint extensions.

Let us go back to the form (3) of our Hamiltonian, with
the domain taken to be, say, the C ® functions of compact
support on the punctured version of Q. We want to find
the normalizable solutions to H'W=+i¥ and thereby
determine the poss1ble self-adjoint extensions at the ori-
gin. (Note that HY is given by the same differential
operator as H itself.)

Let us set 2u/#* equal to 1. Then we are solving the
equation

v 139 1
ar? ar

d i6
_._.+._
dp 7

where A=1i is the eigenvalue of H T (Strictly speaking A
has dimensions of length‘z, but we can imagine that
some particular choice of units has been made.)
Separating out the different angular fourier modes (and
recalling that the period of ¢ is 7 rather than 27), we can
set |

1/2
—1 — 1
cos(z —3vm—4m)

n

5 1
— | sin(z—ivr—4m)
mZ

k=0
(v,k)={(4?2—1) (42 —3%) - -~

(v,0)=1.

[4v*—(2k —1)* ]} /(

To find the deficiency indices, we set A==i and
demand that ®(z) be L2[0,0;rdr]: [|®(2)|*r dr < .
Looking at the behavior of this integral for large z, we
find a set of terms in exp( v2r). In order that these diver-
gent terms all cancel out, one finds that there is a unique

4More generally there is a correspondence between closed
symmetric extensions and partial isometries of # , into # _.

z (— Dk, 2k)(22)"*+0(|z| 7> 7?)

\I’(r,qa)=<l>(r)e2i”"’.

Then (5) becomes

190, @) 1 '
ron e e temETh
Setting
v=2n+6/7|, (6)

the radial equation can be put in the standard Bessel
form:

2
d®(z)  1dz) | |V lgz)=0, ™
dz? z dz 2
where z=VAr.
The general solution of (7) is
®(z)=aJ ,(z)+bN (2),

where a,b €C and J,, is the ordinary Bessel function and
N, is the Bessel function of the second kind
{N, (z)=[J (z)cosvm—J _ (z)]/(sinvw) for v noninteger,
and N,,(z)=lim,_,,, N (z) for m integer}.

We will need the asymptotic expansions of J, and N,
for complex argument z. We give them here for immedi-
ate and future reference [12].

For z—0:

1 z Y
O~ 12|
NV(Z)N-—M 2 , v>0,

o V4

No(z)~£1n
T

z
2

For z— « and z away from the negative real axis:

3 (—D5wv,2k )(2z)—2’<+0(lzl‘2"“2)] ,

22Kk |

—

linear combination of J,, and N, possible : b=ia for A=i
and b= —ia for A=—i. Let us adopt this combination.
Then, by looking at the behavior of the integral near the
origin, we see that we have a term in r1=2¥ under the in-
tegral sign. In order that the integral be finite, we need
v<1, or in terms of 0,|0/m+2n|<1. Now let us nor-
malize 6 by the condition

—7<0=T7



45 WHEN CAN IDENTICAL PARTICLES COLLIDE? 691

Then |6/#| <1 for all 8, and v can be <1 only for n=0.
Conversely, for n =0, we will have v<1, except in the
fermionic case 6=, where there is no solution for any
value of n. We thus conclude that the deficiency indices
are always equal, and take the values n, =n_ =1 except
for 0=, where both vanish. The fermionic Hamiltonian
is therefore unique, with the functions in its domain van-
ishing at r=0. In all other cases there is a U(1)’s worth
of physically inequivalent boundary conditions available
at r=0, the deficiency subspaces %, being one-
dimensional and spanned, respectively, by

V. (r,@)=J (Vir)+iN (Vir)
=HV(Vir),

Y _(r,@)=J,(V—ir)—iN,(V—ir)
=H?(V —=ir),

where H!""?(z) are Bessel functions of the third kind.

Let us remark that the equality of n, and n _ is no ac-
cident. It follows from a generalized reality-condition
that H obeys: H is preserved by complex conjugation fol-
lowed by the reflection ¢— —@. For the same reason, ¥,
are conjugates, and therefore have the same L2 norm.

We may now construct the general self-adjoint exten-
sion of (3). In the present case, since the spaces %, and
¥ _ are one-dimensional, the only unitary maps of #
into % _ are the maps W, —uW_ where |u|=1. There-
fore [11] the self-adjoint extensions H, are defined by the
following domains:

D(H,)={¥+B¥,+e'w_)\weDH'), Bec),
(8)

where a characterizes the self-adjoint extension. (In
effect a selects that linear combination of W which epi-
tomizes the boundary condition determining D(H,).
Notice also that, as pointed out in [13], @ is not really di-
mensionless because A is really not dimensionless. Rath-
er, it should be regarded as equivalent to a sort of
“scattering length” with which the extension is associat-
ed.)

IV. FAVORED BOUNDARY CONDITIONS
ON THE WAVE FUNCTION

The differential operator (3) is singular at the origin be-
cause the particle is moving on a cone, and also because
the connection is singular at » =0. A priori therefore, the
Hamiltonian is not globally defined, and we have found
that (3) is compatible with more than one unitary evolu-
tion, except in the fermionic case 6=7. We will now see,
however, that a plausible regularization-scheme will al-
low us to pick a unique self-adjoint extension (and there-
fore unitary evolution) for each 6.

It proves convenient to introduce two independent re-
gularizing parameters, dealing separately with the
‘“‘connection-singularity’ and the “geometrical” one. To
smooth out the former we can allow 6 to become a func-
tion of r which goes continuously to 0 at the origin, for
example,

Br)=0(1—e "7 )

which reverts to the constant value 6 as a —0. This will
define our regularized connection. We also need to
smooth out the conical singularity of our configuration
space. To that end we will replace its metric by the fol-
lowing metric of a rounded cone:

ds’=dr*+f(r)r¥de?,

where @ runs from O to 7 and f(r) is some smooth func-
tion such that f(0)=2 and f( o )=1, for example,
1
f(r)=sech(r/b)+1 cosh(r/B) +1.
We then recover the pointed vertex as b—0. This defines
our geometric regularization.

Now let us imagine that we let the regularization-
parameters a and b revert continuously to zero. If, as
a,b—0, our regularized Hamiltonian H has a limit in
some appropriate sense, then we can designate this limit
as the “favored self-adjoint extension of H.” Since we are
dealing with unbounded operators, the notion of limit is
not so straightforward,’ so for convenience we will em-
ploy an easy-to-use criterion related to the concept of
weak topology for bounded operators. Specifically, we
will require that certain matrix elements of H behave
continuously as a,b—0. In fact, we will really only need
to require that these matrix elements be bounded, and
will see that this very weak condition suffices to select the
favored extension unambiguously. Recall now that the
possible extensions H, of H are parametrized by the an-
gle a which appears in (8), and which determines which
of the vectors ¥,=W, +e'®¥_ belongs to D(H,). Our
rule will be to choose the a for which (W |H|W¥,) is
bounded as a,b—0. In the Appendix we verify that this
rule leads to the right answer in the case of the hydrogen
atom.

With our regulated connection and metric, the (gauge-
and-geometrically covariant) Laplacian becomes

1, f'(r)
~+
r  f(r)
1 d i0(r)
Lot
r2f(r)? [a¢ ™

and the regularized Hamiltonian is H=—V?2 We will
now examine lim, , o( ¥, |H|¥,,), where

Y, =V, +elow_ (12)

(10)

2
V2= i+_a_

or  or?

2
] , (11)

In order to check for square integrability of the expecta-
tion value, we need to look at the behavior as r —0 and
make sure that the divergence at the origin cancels out.

3See [14] for one possible definition. Other possibilities might
be to work with the bounded operators exp(iHt), or with the
spectral projection operators corresponding to H (i.e., to say
that a sequence of operators converges if the corresponding ei-
genvalues and eigensubspaces converge).
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We will need the asymptotic forms of H'!"? for small z:

H‘J”(z)~¢l—l¥ % » §=1,2 and v#0,
(13)
1.2, 2
HYP(z2)~F |i=In= |, ¢=1,2.
0 (z) l7T nZ q

Also, we have

Y, =H\(Vir)+e“HP(V —ir).
Now, we can write from (11) (and noting that ¥, is in-
dependent of @):

(W HW, ) =(V,|H,|¥,)

_fa, 86

* <W“ Foar T e

wsa) .

(14)

We know that (W |H,|¥,) is bounded since ¥, is in
the domain of H,, so we need only consider the last two
terms in (14).

We are interested in the integrand for small 7, so we
will need the asymptotic expansion of the function f(r)
and related terms for r —O0:

—f1—2~%[1+%(r/b)2] ,
PSS
f'7f 2br/b .

Notice that the general forms f 2~1+0(r?) and
f'/f~O0(r) are independent of the specific ansatz (10).
Since our conclusions will rest only on these general
forms, they will be independent of the particular f we
choose.

We first consider the case v=|6/7|70. For this case,
(V,|H|V,)—(V,|H,|¥,) will have two terms, one
coming from the derivative term on the right-hand-side
of (14), and the other from the expression involving the
connection. Let us begin by asking whether these terms
are even finite when a,b#0. Inasmuch as (f'/
f)0/3r ~rd/dr near r =0, it is plain that the first of the
two terms just mentioned will not diverge faster than |¥|?
at r =0; hence it must be integrable because ¥ itself is £>
by construction. However the second term

32r—2_p2
<\Ijsa —# \I/sa> (15)
T°r
is more troublesome. Since 6(r=0)=0, this term

behaves near » =0 like

2
6 _ dr
= drr 2| W, [P~ [ =¥, |*.
- frrrrr W, vfr|sal

J

From (13) we will have ¥, ~r " for a generic choice of
e’® and then the integral will diverge for all positive
values of v. This means that ¥, will not even be in the
domain of H for such extensions, and our ‘‘weak
boundedness” criterion will be badly violated. The only
self-adjoint extension which escapes this infinity is that
for which e® is chosen so that the r ~¥ divergences in ¥,
and W_ cancel each other. From (13) it is easy to com-
pute that the coefficient of » ~" in W, is proportional to
eldeim™/4_ o —imv/4 o4 the desired cancellation occurs for
the unique choice of self-adjoint extension,

e—in'v/2 , (16)

eia=
that is for a= —mv/2. For this special extension, ¥, is
finite at the origin, behaving there like r" rather than
r %, and the integral giving (¥, |H|¥,,) is now conver-
gent, taking the form near » =0 of f(dr /r)r?¥, which is
finite. Even in this case, ¥, is not strictly speaking in
D (H), since HY_,~r""%, which has infinite norm, but
our concern is with the expectation value (W |H|¥,,),
which is finite. Thus, for 650, our regularization has led
us to a favored extension, even without our examining
what happens as the regularization is removed. We will
take up this question in a moment, but first let us exam-
ine the finiteness of (V| H|¥,,) for the case of 6=0 (bo-
sons).

For =0, the expression (15) vanishes and only the
derivative term in (14) contributes to (W, |H —H|¥,).
Near r =0 this derivative term behaves, in virtue of (13),
like

frdr(lnr)(ra/ar)lnr~frlnr dr ,

which is a very convergent integral. Thus, for bosons
(V,|H|V,,) is finite for all a (if b > 0); and only a closer
examination of the a,b —0 limit can select the favored
extension.

In order, then, to estimate (¥ ,|H —H,|¥,,) for small
a and b (or really just for small b, since a is irrelevant
when 6=0), we may notice that, as b 10, f(r) is designed
to approach a step function. It follows from this (at least
heuristically) that f'/f will approach a & function whose
strength is of order unity and whose location is near
r=b:

—f'/f~8r—>b). (17)
For the generic (a70) behavior of ¥, ~Inr, (17)leads to

(W, |(—Inf)a/ar|W,)~ [ rdrinrd(r—b)(inr)
~ [dr 8(r—b)inr ~Inb ,

which blows up as b—0. Hence our criterion of weak
boundedness has again selected the extension for which
¥,,(0) is finite, although the derivation required more
care in this case. Continuing a bit further we can see
that, for the favored extension, { W |H —H,|¥,,) is not
only bounded, but actually vanishes as b—0+, as fol-
lows from the estimate

(W|(—Inf)d/9r|W) ~(c,+c,r2|8(r—b)d/dr|cy +cyr?) ~ frdrS(r—b)r~b2
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and the observation that no difficulty can occur away
from r =0. Thus in the bosonic case, and for the favored
extension, a=0,

(W H|Wy,) (W, |H, W, )

as the regularization is removed, the limit being c for all
other choices of extension.

Finally, let us return to the “properly anyonic” cases
0<|6| <7 and ask whether the favored extension yields
weak convergence (and a fortiori also weak boundedness)
in this case also. For the favored extension, the leading
term in ¥, comes from J, rather than N,, and ¥,~r".
Hence (W|(=1Inf)d/0r|W)~ [rdrr'd(r—b)r*~!
~b? 0. This was the first term in (14). For the second
term, namely (15), we have the convergent behavior,

(v

whence (15) itself also goes to zero, its integrand vanish-
ing pointwise as a,b —0. We conclude that, for 6+0
also, {(V,|H—H,|V¥,)—0 as the regularization is re-
moved.

To summarize then: our criterion of weak bounded-
ness selects a unique self-adjoint extension for all values
of @ in the range —7 <0 <, the favored extension being
that defined by (8) and (16), or equivalently by the re-
quirement that the functions in D (H,) be finite at » =0.
For the favored extensions we have not only weak bound-
edness, but weak convergence in the sense that

<\I’sa|ﬁ|\psa)—’<\ysa|Hsal\ysa)

1
2

V)~ rdrrvr*er,\_, dr r2v—1~r2v
b
r

as the regularization is removed. In the case of fermions
(=), this analysis is not needed, but we may note that
there is consistency with the limit 6 — 7 in the sense that
for v=|0/m|=1 and e'*=e ~I™/2=—|, the correspond-
ing ¥, vanishes at r =0, being in fact O(r) there. For
properly fractional statistics (0<|60| <) the favored ¥,
also vanishes at » =0, though now only like r*,v=10/7|.

V. CONCLUSIONS AND COMMENTS

So what shall we say about whether identical point par-
ticles can collide, and about the closely related question
whether the points of coincidence or “diagonal” A must
be excluded from the configuration space Q or not? In
the situation we have examined (two particles in R?) the
answer seems to depend very much on the “statistical pa-
rameter” 6.

Things are most clear cut in the fermionic case 6=1.
There the ‘centrifugal potential/Fermi-repulsion” is
strong enough to keep the particles apart, this repulsion
being expressed mathematically by the essential self-
adjointness of H [with domain such that ¥(0)=0] and
the corresponding lack of ambiguity in the dynamics. In
this case then, the correct answer seems to be that the
particles cannot collide and that it therefore does not
matter whether we include A in Q.

In the bosonic case, on the other hand, there is a one-
parameter family of possible self-adjoint extensions, and

all of their domains include wave functions for which
W(0)70. Thus the correct answer for =0 seems to be
that the particles can collide, and therefore A must be in-
cluded in Q. In fact, by including it and then regularizing
H at r =0, we have seen how to select a unique H,,
which turns out to be the one for which ¥ remains finite
on A (and is also the ‘“standard quantization™ for bosons,
of course). By excluding A we would preclude such a reg-
ularization, and this is another reason for keeping the
points of coincidence.

Finally the case 0< |8| < seems to be logically inter-
mediate between =0 and 6=, as might perhaps have
been anticipated. On one hand, it resembles 6=0 in that
the centrifugal barrier (cf. [15]) is too weak to drive the
particles apart, and there is again a circle’s worth of ine-
quivalent choices for H,,. On the other hand, although
the regularization procedure again selects a unique® H,,
this time the corresponding ¥, vanishes at »=0. The
answer in this case thus seems to be—at least for this
favored H, —that the particles cannot collide, but that
A must nonetheless still be included in Q, its presence be-
ing felt indirectly in the fact that ¥ vanishes there.

(Of course, one can also consider situations where the
particles are spatially extended, and then the replacement
of Hy, by a regularized H might have direct physical
meaning. In such a case we would not subject H to a lim-
iting process, and some other self-adjoint extension might
be more appropriate than the ones we are calling
“favored” (especially since there would then be a dis-
tinguished length scale in the physics). This sort of cri-
terion for selecting an extension is discussed in [13],
whose authors point out that such “finite-size” effects can
be particularly important in two dimensions, where one
often has logarithmic fall off at large r instead of power-
law decay.)

By means of the analysis carried out above, we hope to
have completed the intrinsic formulation of identical-
particle quantum mechanics, by providing a derivation,
in a certain sense, of what must occur at points of over-
lap. There are several comments to be made about possi-
ble directions to look at from here.

To extend our analysis to higher dimensions would
seem to be straightforward. In three dimensions,
presumably, the free fermionic Hamiltonian would again
turn out to be essentially self-adjoint, while the free bo-
sonic Hamiltonian would admit a circle’s worth of self-
adjoint extensions, with the standard bosonic extension
once again emerging as the favored one via our limiting
process. One should also study systems of three or more
identical particles (in both two and three dimensions) to
see whether new ambiguities can arise at points of multi-
ple coincidence.

As we mentioned before, when particles are able to
overlap, their dynamics cannot globally be described in
terms of a U(1) bundle over Q with locally flat connec-

61t is interesting that the mere fact that some unique extension
can be selected tells us which one it must be: since the non-
favored extensions are transformed into each other by scaling,
no scale-invariant selection procedure can pick any one of them.
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tion. It would be interesting to find out if it is possible to
generalize (where appropriate) the description in terms of
a bundle to handle configuration spaces where the diago-
nal is included.

Let us observe again that topology is a poor guide in
the case where particles are allowed to overlap, since
m,(Q)=0 when the diagonal is included in Q. Statistics,
on the other hand, is well defined whether or not the
overlap is allowed, since it physically concerns what the
particles are doing when they change places without
meeting. The potential for conflict between this
viewpoint on statistics and the purely topological one re-
lying on 7(Q) seems to have been removed by our con-
clusion that ¥ vanishes at »r=0 for all nontrivial (i.e.,
nonbosonic) statistics, which frees us from having to ex-
tend our bundle with connection to the points of overlap.
Still one can wonder whether this outcome was just a
matter of luck.

However this may be, it raises the important general is-
sue of the dynamical implications of kinematical struc-
tures such as configuration spaces. A statement such as
“the configuration space is Q ~R*’ (where Q is thought
of as specified, say, by its topology and differentiable
structure) would seem to acquire its meaning from an im-
plicit completion like ‘“and the Hamiltonian is a
differential operator on Q with continuous coefficients.”
We know from many examples that this particular com-
pletion is too restrictive, but we do not know what the
most suitable replacement for it is. Perhaps it involves
vector bundles over Q, or perhaps some formulation in
terms of a sum over paths should be preferred. Any
definite choice would have implications for attempts to
place the spin-statistics theorem on a topological footing
[16], and for related attempts to understand how novel
topological phenomena arising in the quantum-gravity of
globally hyperbolic spacetimes (emergent spin 1, emer-
gent Fermi and more general statistics, quantum multipli-
city, etc.) are influenced by the exigencies of topology-
change [9].

We would also like to be able to describe the meaning
of the different possible self-adjoint extensions found in
Sec. III in path-integral terms (cf. [17]), which in particu-
lar might help us interpret the choice of extension made
in Sec. IV.’

Finally, it would be very interesting to try to generalize
our methods to non-Abelian UIR’s, as with parastatistics,
and also to bundles with curvature, such as the case of a
charge-monopole system in three dimensions. It also
might be rewarding to consider the case of a particle and
its antiparticle, where the extension might not be self-
adjoint due to annihilation. Analogous but more compli-
cated cases would be Skyrmions in an s wave and topo-
logical geons [9], both of these being extended objects

"In particular one can ask whether the zero boundary condi-
tion we have favored for 65<0 corresponds to two-dimensional
“avoiding boundary conditions” in the path integral. If true,
this would conflict with our above interpretation that in some
sense the diagonal should be included in Q when 6.

which might be expected to decay in certain situations.

As we were writing-up the results contained in this pa-
per, we received Ref. [18], which also considers self-
adjoint extensions of the Hamiltonian (3). For the case
6+ they appear to find the same extensions as we do by
a somewhat different method. They also study a specific
regularization of the connection (but not of the conical
geometry) reaching by an examination of the energy
eigenfunctions, the conclusion that the extensions which
survive as their regularization is removed are the same
ones which our criterion of weak boundedness has select-
ed.
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APPENDIX

When solving for the energy eigenfunctions of the hy-
drogen atom, one encounters a candidate ground-state
solution whose radial wave function is singular at the ori-
gin. Dirac [19] rejects this solution on the grounds that it
fails to satisfy the Schrodinger equation (construed in a
generalized-function manner) at the origin,® » =0. In this
sense, one is including r =0 in Q, and using information
available there to select the physically appropriate self-
adjoint extension of H. In this appendix, we revisit the
problem using the language of self-adjoint extensions, and
show that our regularization criterion also selects the
correct extension. It is, of course, very natural to intro-
duce a smoothed Hamiltonian in this case, since the pro-
ton really does have nonzero size. Nonetheless the suc-
cess of our procedure here tends to show that the criteria
adopted in the main text are reasonable, and could be
used in other situations as well.

Except in the / =0 sector, the Hamiltonian,

_hiv2 — 6"_2

H=—
2m r

is essentially self-adjoint. In that sector the solutions ¥
of the equation HY . ==iV¥, have the form Y=y (r)/r,
where y (r) (in effect the J-density version of W) obeys the
following differential equation:

8There is no difficulty in extending the Laplacian to the origin
in this case because there is no conical singularity there, the
proton and electron being distinguishable particles. This, to-
gether with the fact that the Coulomb potential is integrable,
makes it possible to give a generalized meaning to the Hamil-
tonian differential operator without resorting to actual regulari-
zation.
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y=0. (A1)

Here p=ar,a2=—8m(ii)/h2, A=e®2m /#%a, and the
sign of « is chosen so that its real part is positive.

For real A, one ordinarily writes the solution in terms
of Laguerre polynomials: y(x)=e ~*/2L2(x), but they
are defined for integral n, whereas for us here, A is com-
plex, whence n would have to be complex too. However
the general solution of the complex differential equation

A1, i#
z 4 22

d*u

dz? +

u=0

is known [13], being given (for |argz| <) by the pair of
linearly independent Whittaker functions

where 2u#—1,—2,—-3,....
given by

MA 1(z)=ze “22¢(1—1,2;2) ,
?2

Our solutions are then

W, 1(z)=ze “(1—A,2;2) ,
’2

where

= (Bl z*
d(B,y;z)= -—,
BY kéo(y)k k!

|zl <o, y#0,—1,—2,...
is the confluent hypergeometric function with

(17)0=1,(7])k=m+—k)-=17(77+1) s (gptk—1),

L'(7)

M, ,(2)=zF"12e 2 2P(L—A+p,2ut+1;2) , k=1,2,...
W) (2)=zF"12e 220 ( L—A+p,2u+12), and
|
YEntt= ST g BUE k) —gn +14K) +Inz]
Bt L) =Ty 2, (n +hkr Y 4 Yin e
L1 "—l(—l)k(n—k~1)!(B—n)kzk_"
B %, k1

with |argz| <7, n=0,1,2,..., B#0,—1,—2, ... . Here ¥(z)=T"(2)/T'(2) is the logarithmic derivative of the gamma

function. 7Y is called the confluent hypergeometric function of the second kind. (We have given here the expression of
Y for integer y,¥ =n +1.) Note that in our case (A1), y=2,n=1,=1—A and p=1.

Therefore the general solution for Y=y (r)/r is given by

W(p)=ae P>Y(1—A,2;p)+be "P2®(1—1,2;p) .

(A2)

For A corresponding to the +i eigenvalue, that is A~(1+i)/V2, there will be one linear combination in (A2) which
will give a square integrable eigenfunction, ¥ . To find it, we need the asymptotic behaviors of Y and .

For large |z|,

k
oy [‘(1{) +Bmi_ —B n (—1) (B)k(l‘i‘ﬁ-’}’)k
<b(ﬂ,?’,2) F(‘}/—B)e z kgo Kl
L) . —-p | & Y =BR(1—B)
T ¢t 2 k!

where |argz| <7—3§, where 8 >0 is arbitrarily small, y 70, —

z7k+o(z|7" ™Y

1,—2,...

z7k+o(|z|7" 7 l

b

, and the plus sign corresponds to Im(z) >0 and

the minus sign to Im(z) <0. For |argz| <17 —3§, the second term is the one which contributes, and we have

P

D) o ep | & Y BR(—B)
D(B,v;2) 1_‘(‘B)ez kgo————-—k!

where |argz| <7/2—8, B,y#0,—1,—2,....
For large |z|,

(—1)k(B)k(1+B_’}/)k —k
z

Y(B,y;z)~z"F ‘ s x
k=0 :

+0(Iz|_"*l)]

with |argz| <7—8. It is easy to see that the exponential

z7k+o(z|7* Y

b

e?’?=¢% /% in ¥ coming from ® will dominate for large

|z| and therefore we must take b =0 in (A2).
Then the behavior of W, near the origin is

In(ar)+ T 1 for z—0 .

1
\I] ~ —_—
*T(=A) (1—2)
Therefore ¥, is .L2[0, «;r2dr].
Clearly, W_ is just the complex conjugate of W (the
Hamiltonian being a real differential operator). The

ar
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deficiency indices are thus n, =n_ =1. The wave func-
tion defining the self-adjoint extension is then written in
the usual way by taking a linear combination

v, =V, +e MV _

where 7 is the phase which determines the self-adjoint ex-
tension H,.

Now, the singular term in the Hamiltonian is the po-
tential in 1/r, so we will pick our regularized Hamiltoni-
an to have a potential smeared over radius r,, and take
the limit of the expectation value (Wgl|H, [¥,,) as

ro—0. We have

11 v_ridr .

sa

"o
<\I/sa‘Hr0_Hsa'wsa) = fO L 24

Only the terms in 1/7 of ¥, can lead to divergences (log-
arithmic ones) of this integral at »=0. When such terms
are present, the expectation value (‘I/[H,OI\I/) will be
infinite, similarly to what happened for properly fraction-
al statistics in Sec. IV. In order to avoid this divergence,
we must choose 77 so that the 1/r term in ¥, disappears,
which requires

2 ; 1
¥ _ 2 te'
L(1—=A"(1—1)lal

F(l_}\.* )2a*2
1

—in L —,)
[(1—A)%a?

or
in— _ L(1—=A%) a*
ein=_ "~ )X
ri—»A) «a
We now notice that this choice of 7 has the effect of elim-
inating the logarithmic divergence in ¥, as well.
Indeed, the latter is given by
1 e F(1—A*) o* 1
r(—=A2) N1—A) a (=A%)

(A3)

Inr

using (A3). But this vanishes, owing to the property
I'z+1)=zI(z)

and the fact that a* /a=A/A*.

Thus, both the 1/r and logarithmic terms drop out of
this linear combination, and we find—once again—that
an extension with W(0) finite exists, and is the only ac-
ceptable one. For that extension, the integral not only
converges but vanishes with ry, meaning that we have
weak convergence: (\IlsalH,Ol\Psa)—»(\Ilsalea]\Psa) as

ro—0. Our criterion for selecting a favored self-adjoint
extension is therefore amply satisfied.
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