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Massive Schwinger model and four-dimensional QED: The connection

M. P. Fry
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We state the connection between the fermion determinant in four-dimensional QED (QED4) and the
massive Schwinger model, QED2, for the case of smooth, polynomial-bounded, unidirectional magnetic
fields. Using the diamagnetic bound on the fermion determinant in QEDz, we obtain an upper bound on
the fermion determinant in QED4 for this class of fields. Using Kato s inequality, we obtain an upper
bound on the one-loop effective action in scalar QED4 for smooth, polynomial-bounded but otherwise
general fields with fast decrease at infinity.

PACS number(s): 12.20.Ds

I. INTRODUCTION

The unrenorrnalized Euclidean Green's functions in
QED can be defined by the functional integral

1=—fdp( A)det[S(x;, yl;eA)]~,",

X P A„(zk )det„„(1—eS A ),
it' =1

where S is the fermion two-point function in the external
potential A „, SF is the free-fermion propagator,
det„,„(1—eSF A ) is the fermion determinant defined
below, and

Z = f dp( A)det„„(1—eSF A ) .

The Gaussian measure for A„ is chosen to have mean
zero and covariance:

f dp A„(x)A„(y)=D„,(x —y),
where D„ is the free-photon propagator in a gauge
determined by the measure, dp( A ). The measure may be
chosen to give D„an infrared cutoff mass; a way of in-
troducing an ultraviolet cutoff will be mentioned below.

An open question is the following: how does
det„„(1—eS+A ) behave for large values of A„? If the
logarithm of the gauge-invariant fermion determinant
grows more than quadratically in the field strength F„,
then there is doubt that det„„(1—eSF A ) can be integrat-
ed for any Gaussian measure: four-dimensional QED
(QED4) would be unstable. Our goal here is to obtain a
gauge-invariant upper bound on the ferrnion deter-
minant.

As we shall see in Sec. II, we will have to confine our-
selves to smooth, polynomial-bounded, unidirectional
magnetic fields with fast decrease at infinity. For such
fields we are able to link the massive Schwinger model,
QEDz, directly to det„„via Eq. (8) below.

This result immediately places the massive Schwinger
model on an entirely new level: it is no longer a model; it
contains physical information about the four-dimensional

world. For example, if the fermion determinant of the
massive Schwinger model were known, one could, via Eq.
(8) below, calculate the, at present unknown, effective ac-
tion for QEDz for unidirectional, smooth, polynomial-
bounded magnetic fields with rapid decrease at infinity.
We use the diamagnetic bound on the functional deter-
minant in QED2 to obtain an upper bound on det„„ for
these special field configurations. Our results are summa-
rized in Sec. III.

Let us state straightaway that our special field
configurations are a set of measure zero, and, therefore,
the long-standing problem of how the spinor determinant
det„„behaves for strong general fields remains
unanswered. Nevertheless, our bound, Eq. (15), does
represent progress. Hitherto, explicit strong-field results
for det„„were known only for constant field strength
[1,2] and expansions around constant field strength [3].

An upper bound on det„„([(P —A ) + rn ] l(P +m ) )

for the case of scalar QED4 for smooth, polynomial-
bounded but otherwise general fields F„with fast de-

crease at infinity is obtained in the Appendix with the
help of Kato's inequality.

II. BOUND ON det„, IN SPINOR QED4

The functional measure dp(A) for the free Maxwell
field A„can be realized on 4', the space of tempered dis-
tributions. Our procedure for smoothing these rough
fields will also serve to regulate QED4. Specifically, we
smooth A„by convoluting it with an ultraviolet-cutoff
function h~ E4, the functions of rapid decrease; that is,
let A„=A„*h~. A choice for h~ might be a function
whose Fourier transform f~ ECo", such as f~(p)=1 for
p ~ A, fA(p) =0 for p ~ (A+ mz ), where mz is the re-
normalized fermion mass. Then A is a polynornial-P
bounded C function. To deal with volume divergences,
multiply A„by a volume cutoff g &Co and replace the
potential in det„„(1—eSF A ) with gA; the potentials in
S can be simply replaced with A „,as no volume cutoff is
needed here. Note that the photon propagator is now re-
gulated:

f dp A„(x)A (y)=D„(x —y),

where D„'s Fourier transform D„,~ ~AA~ . Since the
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fermion determinant has lowest-order charge renormal-
ization built into it (see below), the unrenormalized
theory is now free of divergences. Hereafter, the product
g A „"will be denoted by A „,where A „is now a smooth,

I

polynomial-bounded potential with fast decrease at
infinity.

We define the fermion determinant, based on
Schwinger's proper-time definition [1]as

lndet (1—eS A)= —f —f d x tr x e —exp — (P —eA) + c—r g „ t x + e
1 ~dt 4 2 e F

ren F 2 P P 24m

where o„„=(1/2i)[y„,y„],[y„,y„]+=—25„„, yt
= —y„, and m is the unrenormalized fermion mass. This
definition makes sense out of the formal expressions

(P —eA) +(e/2)o„+„„+m
det (1—eS~A )=det

P +m

and provides a gauge-invariant representation of the fer-
mion determinant. It includes a second-order charge re-
normalization subtraction to make the proper time in-
tegral well defined for small t. This definition yields the
conventional power-series expressions for the one-loop
fermion graphs. For example, the O(e ) expansion of
Eq. (1) gives

lndet„„(1 —
eS&A )=——f d x d y A&(x)

1

XII„(x—y)A„(y),

with the Fourier transform of II„„given by the second-
order vacuum-polarization tensor

2
1

(k 5„„—k„k„)f dzz(1 —z)

z(1 —z)k +m
Xln

m

Definition (1) also renders the box diagram gauge invari-
I

ant and respects Furry's theorem. The point of these ele-
mentary remarks is to emphasize that we are dealing with
QED in its entirety and not some abbreviated version of
it.

We do not know how det„„(1—
eS+A ) behaves for

strong general fields F„„.But it is a legitimate and well-

posed question to ask how it behaves for strong magnetic
fields. Since we are in Euclidean space, E and B are on
the same footing, and it may be the case that the behavior
of the determinant for large B fields will remain true for
general fields F„„.This is the case for constant fields. To
reduce notation we will absorb e into A„and replace

eA„by A„. Then [1,2]

lndet„„(1 —S~A )= (B +E —3IE BI)
V

B+E
Xln +O(F ),

m

where V is the volume of the space-time box. The deter-
minant is seen to grow more than quadratically for
IE B

I
/(B'+ E') (—,

'

We still cannot estimate the large-B behavior of
det„„(1—

S~A ) unless B is further restricted to be uni-

directional, thereby reducing the problem to an effective
two-dimensional one. Specifically, we set B=B(x,y}k,
where B (x,y) is a smooth function with fast decrease at
infinity. Then in the chiral representation of the y ma-

0'3
trices cr &2=( o

'
), and Eq. (1) reduces to3'

—p2~ g2
lndet„„(1—S~A )= f —f d x~ tr(x~Ie ' —exp —[(P~—A) o3B]iIxj )+— e ™, (2)

where l (II) refers to the x and y (z and t} coordinates, and V~~ is the volume of the zt box. We used

tre II = II

4m.t '

the factor 2 in Eq. (2) comes from a partial spin sum. Then

—2m. lndet„„= f fd x~ tr(x~Ie ' —exp[ —[(P~—A) o3B]t] Ix~—)e ™+
Bm 2 '" 2 0 t 12m.rn

=
V~~ ln dets, „(1—S~ A )+

12am

where IIB II
= f d x B (x,y). The determinant dets, h is defined by

ln dets, „(1—S~A ) =—f tr(e ' —exp[ —[(P—A) o3B]r ] )e ™,—

(3)

(4)

where the trace is over two-dimensional space-time and spin spaces. That is to say, dets, h is nothing but the fermion
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determinant of the massive Schwinger model [4] or, in other words, it is the fermion determinant of QED2. The propa-
gator Sz and the y matrices in the argument of detsch are now two dimensional. It might be objected that in four di-
mensions 8 (e) has dimension m (1) while in two dimensions 8 and e both have dimension m. But recall that 8 stands
for the product eB, which has the invariant dimension of m .

Expanding Eq. (4) to 0 (8 ) and denoting the remainder by ln det3, we get

d k
lndets, h(1 —SF& )=— f ~8(k)~ f dz +lndet3(1 —SF A ) .2' (2m)~ o k2z(1 —z)+m

Restoring F„„(F&2=B,cr &&= —o 3), by definition

lndet3(1 —SzA ) =— —tr(e '—e ' ' + ')1 ~dt
2 0 t

+ dzz(1 —z) ~P „(k)~ e """ ™d'k 2 2

2~ o (2~)z
00 —tr(SF g )" .

n

(5)

(6)

(7)

We recognize lndet3 as the sum of all one-loop fermion
graphs in two dimensions, beginning with the box graph,
since definition (6) respects Furry's theorem. Recall that
these graphs vanish when m=0 [5,6]. By making a simi-
larity transformation [7], lndet3 can be interpreted as
det3(1 —K), where

K =( —5+m ) (il8+m)A( —6+m )'

Then K is a compact operator on L ()R )SL (R ); it also
belongs to the trace ideal C for q )2 [7—9], i.e.,

tr(E'K)~~ ( ao .

Substituting Eq. (5) in Eq. (3) gives

2n. ln—det„„= ' f ~S(k)
~ f dz z (1—z)

Bm
"" 2n. (2n. ) o m

1 + Vlllndet3 .
k z(1 —z)+m

Integrating with respect to m gives

ln det„„= f ~8(k)
~

4~ (2m. )

( )1
k z(1 —z)+m

0 m

ln det ~ ~S(k) ~
dz2n(2m ). k z(1 —z)+m

Inserting (10) in (8) and choosing ~~B ~~

~ m, we get

(10)

dets, „ (9)

for m ~0. Referring back to the definition of dets, h, Eq.
(4), it is evident that Eq. (9) is rather an expression of the
paramagnetic property of fermions; it is also a statement
of the positivity of the effective interaction Lagrangian of
QEDz. From Eq. (5), Eq. (9) implies

+ " f dM lndet3(M ),2' m

where we have set lim 2 det„„=1. This is true graph

by graph; it is true nonperturbatively for the constant
field case, and it is physically reasonable that an infinite-
mass fermion cannot respond to an external magnetic
field. Referring to Eq. (8), we find it somewhat remark-
able that the massive Schwinger model, through det3, has
such a direct bearing on QED4.

Unlike the original Schwinger model with m =0, the
massive model has not yet been solved. But there are
some important results. One of these is the "diamagnetic
bound" [7,9,10], which states that

ln det„„~ f ~k(k)
~ f dz z(1 —z)

4m. (2n. ) 0

k z(1 —z)+iiBii )

m

ln det„„~
A. »1

V&, IIB

24 2

X f, ,dM lndet3(A, A, M )+O(A, ) .
&'ll~ll'

(12)

From Eq. (6), the dominant contribution to det3 in Eq.
(12) for large mass will come from the small-t region of its
proper time representation. In QED2 we have the heat-
kernel expansion [11]

+ f,dM lndet3(M ) .
ll&ll'

Equation (11)gives a bound on det„„ for strong magnetic
fields. Indeed, letting A„~A,A„we get
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t2 t3
tr(exp[ —[(P—A) + ,'c—r F]t]—e ' }= fd x —F+ F„VF„, —(F ) + F„„VF„„+0(t )

(13)

The second term in Eq. (6}is specifically designed to cancel all terms of 0 (F ). Thus, when (13) is substituted in Eq. (6)
we get

lndet3= —f —f d x (F ) +0(t ) e ™
2 o t 360m.

f d&x(F&)& fd2x F2F VzF fd2x(F2)3
'

+0
360m.m m' m"

fdxB fdxBVB fdxB'
+0

90am m m '

Then

fdic B4

f, ,dM det3(A, A, M2)= +0
180~IIBII'

(14}

and hence the strong magnetic field bound

lndet„„( ln
2

+0(A, ) . (15)
A, »1 2477 m

The bound in Eq. (15) is in accord with the expectations
of the authors in Ref. [12].

There remains the question of whether the logarithm
term in Eq. (15) can be removed by a better estimate. If
one goes back to the definition of det„„ for a unidirec-
tional magnetic field, Eq. (2), and breaks the t integral up
into fo and f &ill~ll"

then the charge renormaliza-

tion term in det„„gives the contribution

e
—tm

24~' iill~ll' t

+0(IIBIIo)
B2

24m m

III. SUMMARY

The massive Schwinger model has been shown to be of
direct physical relevance. Essentially, Eq. (8) says calcu-
late dets, h and integrate over the fermion mass to get
det„„and the effective action for spinor QED4 for
smooth, polynomial-bounded, unidirectional magnetic
fields with fast decrease at infinity. If one wants to calcu-
late classical trajectories, A„ itself may be assumed
smooth with rapid falloff at infinity so that the regulators

g and h A may be removed. This effective action would be
relevant to the interior of pulsars, where trapped and
more or less unidirectional magnetic fields near the elec-
trodynamical critical field B =m le =(4.41)(10' ) G are
believed to exist.

Since dets, h is not yet- known, we have resorted to the
diamagnetic bound, Eq. (9},to bound det„„ for a class of
strong unidirectional magnetic fields. It is indeed rare
when a two-dimensional result from constructive field
theory has a direct bearing on physics in four dimensions.
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APPENDIX

where y is Euler's constant. This is the logarithm term
in Eq. (15). Any hope of canceling it would have to come
from the term

dt 2 —tm
,—tr(exp[ —[(Pj—A) o3B]t] )e ™—

4~ iill~ll' t'
This integral is sensitive to the eigenvectors of
H =(Pi —A) o3B with eigenvalues a—t and near zero.
Defining the flux P of B by fd x B (x), the Aharonov-
Casher theorem [13] states that H has exactly [P/2m]
eigenvectors with eigenvalue 0, all with o 3=1 (o 3= —1)
if $)0 ($(0). Here [x] denotes the largest integer
strictly less than x, and [0]=0. Thus the zero modes of H
for large B fields with rapid decrease at infinity are highly
degenerate. Further progress along these lines might
shed some light on the question we have raised [14].

For scalar QED4 we can proceed as above and ob-
tain a relation between the scalar determinant,
det( [(P —A ) +m ]/(P +m ) ), and a determinant in
scalar QEDz analogous to Eq. (8) for the case of a uni-
directional magnetic field. If one simply wishes to get an
upper bound on the effective action for strong general
fields F„,then there is a more direct way to proceed as
we will now show.

We define the determinant of scalar QED4 as

(P —A) +m
ln det ren p2+

~ dt —p& —(p —g&2t IIFII e tm-
o t 192m.

(A 1)
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which contains a second-order charge renormalization
subtraction. The dimensionless quantity ~(F ()= fd xF . We are continuing to regard A„as a
smooth, polynomial-bounded potential with fast decrease
at infinitv. Now break the t integral in Eq. (Al} into

1/m F
fo II II and f,"& 2 2and use Kato's inequality [15] in

the form

t (
P—t (P——3) t)

d F+ F VF
12 12O

1680 P

t [~ ~] ' t
2 2

(A2)
2

+ [(FF)'—7(F')']+0 (r ')
1440

which expresses the universal diamagnetic tendency of
spinless bosons in an external gauge field. Then

dt p&t —&p —g)2t)

we get

lndet„„& — ' " (ln ~~F~~
—y)+const .

192m.

(A4)

(A5)

IIF II'

192m

The one-loop contribution to the Euclidean effective ac-
tion is, for [~F ~~

&&1,
I'"= —ln det„„

192~ 1/m //F(/

(A3}

The first integral in Eq. (A3) is dominated by its small-t
behavior for

~~
F

~~
&&1. Using the expansion [16]

(ln//F
//

—y ) +const . (A6)
192m

Of course, this result may have no direct bearing on the
stability of scalar QED~ because the P' P interaction,
necessary to make the theory perturbatively r'enormaliz-
able, has not been included.
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