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Photon-photon resonances in quantum electrodynamics
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A Hamiltonian variational method is used in quantum field theory to describe photon-photon scatter-

ing in quantum electrodynamics (QED) at energies where the cross section is dominated by the forma-

tion of positronium states of symmetry J =0 +. It is shown how the originally homogeneous eigen-

value equation for the positronium bound states is augmented by an inhomogeneity due to the coupling

to the two-photon sector. Thus our calculation reproduces the well-known result that QED has a con-

tinuous spectrum at all energies and that the positronium bound states appear as resonances in the y-y
scattering channel. Consequences for photon-photon scattering experiments are discussed briefiy.

PACS number(s): 12.20.Ds, 11.10.St, 11.15.Tk

I. INTRODUCTION

It has become a standard phrase to say that quantum
electrodynamics (QED) is the most successful theory
known, in that it is in spectacular agreement with experi-
mental observation. (In the case of the electron's magnet-
ic moment this agreement is better than ten decimal
figures [l].) Yet one of the fundamental QED processes,
that of photon-photon scattering, which, in lowest order,
proceeds via virtual electron-positron pairs [2], has elud-
ed direct experimental verification to date. The reasons
for this are fairly obvious: the cross section for photon-
photon scattering is, except at resonant energies, very
small, and the diSculties of performing high-intensity
colliding-beam experiments are considerable. With the
recent development of laser technology, however, such
experiments are now practical, and are being discussed in
the literature [3].

The photon-photon scattering cross section, at lowest
order in perturbation theory was calculated long ago
[4,2], and yields the low-energy (%co « mc ) result
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II. QED HAMILTONIAN, VARIATIONAL ANSATZ,
AND EQUATIONS

The (normal-ordered) Hamiltonian operator of QED,
written in the Coulomb gauge, is given by H = f:&:d x,
where

%=%0+%c+%T,

JVo= g ( i a.V+13m)—f+ ,' [ A + (V X A—)~],

(3)

(4)

photon resonances, can be conveniently and naturally
treated by the variational method within the Hamiltonian
formalism of quantum field theory. This formalism is
eminently suited for a description of photon-photon
scattering in the e+e resonance region. To our
knowledge this is the first time that resonance bound-
state phenomena in QED and continuum scattering are
presented in a unified manner. This is the main point of
this investigation. In Sec. II we derive the integral equa-
tions that describe the coupled yy and e+e channels,
and outline their solution. The results are presented and
discussed in Sec. III. Concluding remarks are given in
Sec. IV.

for the elastic cross section of unpolarized photons.
Here, a is the QED fine-structure constant, m is the elec-
tron mass, ro=e /mc the classical electron radius, and
co the photon center-of-mass energy. The interest in this
process is, however, not at low energies, but in the region
Aco= mc, where the cross section becomes quite substan-
tial, reaching the pbregime [3]. I,ndeed, on resonance the
cross section reaches the unitary limit, as has been point-
ed out by Guzenko and Fomin [5], and is given by (here
and henceforth we set A'=c = l)

0 =2m/m =10 cm

Recently [6], we have pointed out, using scalar QED as a
pedagogically useful example, that relativistic particle-
antiparticle (quasi-)bound states, viewed as photon-

and

3 g (y)g(y)g (x)g(x)
Sm fx —

y/

ST=—eg a Ag . (6)

In the Hamiltonian formalism we seek solutions of the
equation

which follows from the variational principle

We consider approximate solutions of (7) based on the
ansatz
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ig) = g fd'p F, , (p)b (p, s, )d ( —p, s, )i0)+ g fd'p, d'p2G, , ~(p„p2)b (p„s, )d (pz, s, )a (p, , )()i0}
$1$2 $1$2A,

+ y fd'p A„(p)~ (p, , &&)u (p~, ~~)l», (9)

where the functions F, G, and A are adjustable
coeScients, and p, +p2+p3=0. In Eq. (9), b (p, s) and
dt(p, s) are creation operators of free electrons and posi-
trons with momentum p, spin index s and mass m, corre-

sponding to the free-particle Hamiltonian Hp, while

a (p, A. ) is the creation operator for photons of momen-

tum p and polarization index A. . The state ~0) is the vac-

uum eigenstate of Hp.
The above ansatz, which is sensitive to all terms in the

Hamiltonian is a linear combination of two- and three-

particle states. This ansatz will certainly not reproduce
results of covariant perturbation theory, since to order

cz, old-fashioned time-ordered perturbation theory re-

quires multiparticle states that give the so-called "Z-
graph" contributions. We have elaborated on this point
in Ref. [6]. We emphasize, however, that resonance

physics is an inherently nonperturbative phenomenon

and, in fact, the resonance height is independent of e.
Our ansatz is completely sufficient for our purposes as it
includes the resonant channel. This channel completely
dominates the cross section near resonance. In fact it will
be shown (see Figs. 4 and 5) that the resonance sits on a
background that lies nine orders of magnitude below.
This background disagrees with covariant perturbation
theory results by a factor of 2 as one would expect, due to
the limitations of our ansatz. We should add that at very
large a, our results can only be considered illustrative as
at high a one expects dramatic changes to the vacuum
state such as population by electron-positron pairs, for
example.

Insertion of the ansatz (9) into the variational principle
(8) results in the following set of coupled integral equa-
tions for the functions F, 6, and A:

2
1

(2~, E)F, , (q—)—,g fd'pF, , (p) U", U, V't V
(23r ) $)$4

—eg f d p[G, , 3„(p,
—q)Uq, a eq ~3U&,

—G, , z(q, —p)V, a e zV, ]=0,
$3'

(10)

G...,3(q&, q2)(~„+~, +lql+q21 E) eg[F,—, (
——q2)U", a egU. F, , (q&)Vt—, ae, V ]

$3

—eg[A& 3, (q, +q2)+A33 (
—q, —q2)]U, a e + 3 V, =0,

2

(2~q~ —E)[A3 z (q)+ A3 3, ( —q)] —eg f d p[G, , z (p, q
—p) Vq z, a eq3 Uz,

$1$2

+G, , ~ (p, —
q

—p)V, a e q3, U, ]=0, (12)

with co =+q +m, e ~=l[2~ki(2n) ]
'

e'k3, and U, =+m /co„u~, etc. , where e'|3 and u~, are the usual photon po-
S

larization vectors and fermion spinors, respectively.
As the coupled equations (10) to (12) are quite complicated, we shall use an approximate decoupling scheme rather

than solving them directly. Taking F. =co +co, in lowest order, Eq. (11) provides us with an explicit expression for

G, , z(q|, q2) in terms of F, , (q) and A3 3 (k). We substitute this expression for G, , into (10) and obtain the equation
1 2 1 2 1 2 1 2

2 1(2' E)F, , (q) — —g f d'p F, , (p) K. . . , (q, p)
(23r )' 34pq21 324

$3$4

d p=e g f
~

~[A&3, (q —p)+A3~(p —q)]U, a.e z(U, U, —V ~, V ~, )ae~ q3 V q, , (13)
$3 A,

I
A, 2

where

I
('q p) Uqs ps V—ps V—qs P qs eq —p, x Ups —ps eq —p, A.

V—qs (14)

We note in passing that if A3 3 is set to zero, (13) reduces to an integral equation for relativistic fermion-antifermion
1 2
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bound states derived earlier [7] using a more limited ansatz in which A i i =0 in (9).
1 2

In arriving at Eq. (13) we implicitly added a mass counterterm to our original Hamiltonian. The counterterm was
chosen to precisely cancel all self-energy contributions that arise from the Coulomb and transverse-photon interaction
Hamiltonians. Mass renormalization is trivial at this level of inclusion of Fock-space states.

To complete the approximate decoupling, in Eq. (12},we make the lowest-order replacement

Gs s Oqi lz) + XIF s ( q2)+q s ~'e —
q

—
q iU —qs s s (li}V—qs ~'e —q —q, iVqs

$3

which transforms Eq. (12}into the form

(2lql —E)[A» (q)+ A«( —q)]

d p Fs s (p)[V—qs tx'eqi. (Up+q, s Up+q, s V—
p

—q, s V —p
—q, s )&'&—qi. Up, s

3

$1$2$3

t+V—ps
+'e—q&( p —q, s p

—q, s, Vq —p, s Vq —p, s, ) '
q& p, s, ] ' (16)

We note that the terms in parentheses on the right-hand side which also appear in Eq. (13) are the spin-projected co-
variant fermion propagators integrated over po.

Equations (13) and (16) couple the bound fermion-antifermion channels, described by the momentum-space wave

functions F, , (q), to the two-photon channels, described by the coefficients Ai i (k).
1 2 1 2

To proceed further we specify a particular J state. We do this as in Ref. [7] and write

F, , (p)=F(p)U&, I V &, =F(p)gs s (p),

where I is the appropriate Dirac matrix (e.g. , I'=yz for the 0+ states}. Also, making the substitution

a~ ~ (q}=A~ ~ (q)+Ak k ( —q»

(17}

and performing the requisite matrix manipulations, we find that Eq. (16}becomes

2 1
(2lql —E)a& & (q)= d p F(p) z tf„i (p, q},

(2n) q 2 1

P

where

(19)

ti i (p, q)= tr[(gf+m)I'(gf —m)E'qi (P'+g'+m)t' i ]+ tr[(P+m)I (P —m)tf' qi (P' —g'+m)tf i ],
8cop+ q

2 1 8cop

(20)

where p =(co~,p), p =(co~, —p), p'=(O, p), and eq&=(O, eq&).
The reduction of Eq. (13) proceeds similarly, and we obtain

(2' —E)F(p)g'(p)—,J d3p, E(p,q)=, T(q),2 e 3 F(p) e

(2~)'
I p —ql' (2~)'

where

d3
T(q)= ggt, (q) f a& & (p)Uq, 8&& (Q'+m)8

&& V
2COq p

$1$2

(21)

(22)

with Q'=(O, q —p), and

g (p, q) [[tr[(gt m}I (g —m+} (yp +}mI (p —m }y"]+tr[(g m)I (g + m) (tP)+—m) 1(P
—m) i}]]i16~q~z

with g=y (q —p)/lq —pl, »d

(23)

g (p)= g lg (p)l =
&

tr[I (gf+m)l (P —m)] .1
(24)
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We next consider the coupled equations (19) and (21)
for the specific case 0 +('So). In doing so we will con-

centrate on the most salient feature of the present formal-

ism, namely, the description of the e+e (or p+p etc.)

electromagnetic bound state as a photon-photon reso-
nance.

Consistent with our lowest-order approximation, we
evaluate t& & in the nonrelativistic limit:

2 1

2i—(
—1) 'm

t~ ~
= q e~z X

aqua2 1 CO
q

Thus, we write

(25)

qa, , (q)= —'( —1) ',
, eq, Xe,', (q),

whereupon Eq. (19) for the 0 + state reduces in this ap-
proximation to the radial equation

2 2

(q —qo)a(q)= f dp
qco o ~~ g(p)

(27)

where a=e /4n, q =~q~ and E =2qo. We have written
F(p) =g (p)f (p), with g (p) =&2 for the 0 + case.

This equation has the formal photon-photon scattering
solution

equation for e+e bound states of 0 + symmetry, which
we discussed earlier [7]. In the nonrelativistic limit this
homogeneous equation is precisely the s-wave radial
Schrodinger equation. However, the nonzero right-hand
side of (29), which couples the e+e system to the yy
channel, implies that Eq. (29) has nontrivial solutions for
all E )0, and not just at the specific eigenenergies
E =2m m—a /4n (n =1,2, 3, . . . ). This is consistent
with the fact that QED has a purely continuous spectrum
for all energies above the vacuum energy.

X,=tang, = f dpP,
2am ~ p (p)
qoco& 0 ~ U 2

(31)

III. RESULTS AND DISCUSSION

We solve the radial integral equation (29) numerically
to obtain f (q) at a given E =2qo, as discussed in Ref. [6].
The momentum variable is mapped into a finite interval
via the transformation p =P tan(8), where P is a scale pa-
rameter chosen as a multiple of the coupling constant e.
Equation (29) is converted into a set of linear algebraic
equations by means of a Fourier-sine expansion of f (8).
These solutions are then used to evaluate the 0 + K ma-
trix element using the expression [cf. Eq. (28) with m =1]

(28) and therefore the partial cross section
q

—
qo n qco o ~ V'Z

=2" 2
4 'YF 2

sin 'gp .
qp

(32)
where the coefficient of 4/(q —

qo ) gives the 0 + partial
K matrix [6]. In keeping with our lowest-order approxi-
mations, we evaluate Eq. (21) for the 0 + case, by substi-
tuting in only the first term of (28), i.e., a~ (q) =5(q —qo)
into (26) and then the resulting T(q) of Eq. (22) into Eq.
(21). The result is an inhomogeneous relativistic
Schrodinger-like equation for the radial momentum-
space 0 + wave function:

Figures 1 and 2 are plots of this partial photon-photon
cross section, 0.

&~
for two values of the coupling con-

stant. The prominent resonances, which have maxima at
the positions of the quasibound particle-antiparticle
states, are evident in these plots. At low a the
positions of the maxima occur at E/m =2 —a /
(4n ) —(24—3/n)a /(64n ) as discussed in Ref. [7], aug-
mented by an 0 (a ) shift due to the coupling to the
photon-photon channel [8]. At the maximum, the cross
section takes on its "unitary limit" value of
o.

~r =2m /qo ——10 cm . The shift in the position of the
maximum of the cross section E;, compared to the energy
eigenvalues of Eq. (28) with the right-hand side set equal
to zero, results as a consequence of the fact that the reso-
nant part of the phase shift (which crosses vr/2 at E, ) is
added to a background phase.

The finite number of states kept in the Fourier expan-
sion of the bound-state wave function limits our numeri-
cal results in that only the lowest three resonances (radial
excitations) are properly represented. The calculations
reported here were performed with about 30 Fourier
states kept in the expansion and required little computer
time.

For the case of o.=0.2, shown in Fig. 1, results from
two calculations are given: in addition to the calculation
with kernel (30), which includes both the Coulomb- and
transverse-photon exchange interactions in the e e
bound-state channel, a calculation with Coulomb-photon
exchange only is presented. It can be seen that the main
features are present in this calculation except that the

(2coq E)f (q) f dp~f (p)k(p, q)=
7T 0 g 7T COq COqqo

(29)

where

(cop+coq) +4(co co —m )
k (p, q) =

4COp COq

Xln ~+~—
p g 2copcoq

(30)

Equations (28) and (29) represent our Inain result.
From Eq. (28) we see that scattering of photons results as
a consequence of a nonzero amplitude for an e+e pair,
i.e., f (p). Equation (29) shows that off resonance f (p) is
essentially controlled by the inhomogeneous right-hand
side. At particular E values the operator on the left-hand
side of (29) becomes singular, resulting in very large
values of f (p), which, in turn, generate a resonant yy
cross section.

Equation (29), with the inhomogeneous right-hand side
set to zero, is a momentum-space relativistic eigenvalue
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FIG. 1. Photon-photon scattering cross section in units of
1/m 2 as a function of total energy for a QED coupling constant
of a=0.2. Solid line: calculated with kernel (30), dashed line:
no transverse-photon exchange in Eq. (29) included; see text.

FIG. 3. Width of the ground-state resonance as a function of
the QED coupling constant. Solid line: lowest-order perturba-
tive result (33), circles: present result with Coulomb-photon ex-
change only, squares: present results including transverse-
photon exchange (30).

resonance positions are shifted.
We have fitted a Breit-Wigner form to the resonance

peaks and extracted the widths. A plot of these widths
for the lowest-energy resonance (n = 1) is given in Fig. 3.
We find that these widths follow the perturbative result
[g]

I'/m =
—,'a', (33)

quite closely, even up to relative large values of a, beyond
which our results begin to deviate upwards from the per-
turbative values. For n & 1 the widths are reduced by the

8.0
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0.0
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FIG. 2. Same as in Fig. 1 for a =0.5. The strong deviation in
the ground-state resonance position from the nonrelativistic
value of E/m =2—a /4= 1.9375 is obvious.

well-known (1/n ) factor.
In principle there are infinitely many resonances, that

crowd up against the "dissociation limit" at E =2m. In
practice we are able to resolve only a few of the lower
ones, due to the approximate numerical method we em-
ploy in solving Eq. (29).

For small values of a, o8' resonance, where perturba-
tion theory would be expected to hold, our predicted o rr
elastic cross section behaves as a E, which is consider-
ably larger than the familiar perturbative result a E [Eq.
(1)]. This is because our ansatz (9) does not contain all
the Fock-space states needed to reproduce perturbation
theory at low order in a. We could add these states, at
considerable expense in complexity, but this would not
change the results near resonance significantly. The reso-
nance results are completely dominated by the channels
which we have included in (9), and attain the "unitary
limit" value of cr =2m /qo independent of a.

In Fig. 4 results are shown for cr with the correctrr
value of the fine-structure constant a= 1/137 in the vi-
cinity of the positronium ground-state resonance. While
the cross section rises by about ten orders of magnitude
at the resonance, the width is also very small. Whether
this resonance (or the sequence for n =1,2, 3, ... ) can be
observed experimentally, given the energy resolution of
currently available photon sources at these energies, is
under investigation [9]. It should be noted that one does
not require an energy resolution of the order of the width
(33), i.e., bE =10 eV, but that one has to discriminate

—5

energies on an interval where the cross section falls by
many orders of magnitude. As is apparent from Fig. 4 a
relative energy resolution of the order of 10 or
DE=0. 1 eV is required in order to detect the Breit-
Wigner resonance.

Our calculation predicts structure in the cross section
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FIG. 4. Photon-photon scattering cross section for a= 1/137
in the vicinity of the ground-state resonance. Solid line: present
result with kernel (30), short dashed line: present result with
kernel set equal to zero (no photon exchanges in virtual e+e
channel), long dashed line: perturbative result [3]. On the ener-

gy scale 1.9999 has been subtracted to facilitate the display of
labels.

beyond the Breit-Wigner shape. We observe that the
phase shift bio rises by n radians at the (n =1)-resonance
energy. The crossing of go=a gives rise to a drop of the
partial cross section to zero and can be interpreted as a
destructive interference between the resonating and back-
ground scattering contributions. We cannot be certain
that the broad feature predicted by our calculation in the
vicinity of the resonance is entirely correct. Due to the
limited nature of our Fock-space ansatz (9) our calcula-
tion does not yield the results of covariant perturbation
theory to order a off resonance and is guaranteed to be
exact only at resonance. In order to compare our calcu-
lation to the covariant perturbation theory result, which
ignores the bound virtual positronium formation, but in-
cludes virtual formation of free e+e pairs [4] and which
rises steeply as the energy approaches 2m, we have car-
ried out a solution of Eqs. (28) and (29) with the photon
exchange kernel (30) set equal to zero. This result is seen
to be free of resonances. How real the enhancement of
the cross section near the resonance is, will be the subject
of a subsequent (much more complicated) calculation
with enough Fock space included to ensure covariance at
the required order of a. The background scattering cross
section from this calculation will agree with the covariant
calculation not only in its energy dependence, but also in

the absolute height of the cross section near E =2m.
Figure 5 shows our results for the n =2 resonance. As

expected the width is reduced by a factor of 8 compared
to Eq. (33). The interference between the resonating and

9.66xt 0 9.67 x10
E/m —1.9999

I I I I

9.68X1 0

FIG. 5. Same as in Fig. 4, but for the n =2 resonance. Note
that the energy scale is stretched by a factor of 4 compared to
Fig. 4.

continuous background part of the elastic photon-photon
cross section happens closer to the resonance position.
From this one can conclude a similar behavior for the
higher-n resonances of which there are infinitely many in
between the position of the n =2 resonance and the
threshold for the creation of free e+e pairs.

IV. CONCLUDING REMARKS
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We have used a variational method in the Hamiltonian
formalism of QED to derive coupled integral equations
that describe unstable fermion-antifermion bound states
as resonances in elastic photon-photon scattering. These
equations were solved approximately for the J =0
case, to yield the photon-photon cross section, for various
values of the coupling constant a. The cross section is
dominated by resonance peaks that occur at values of the
energy which are very close to the eigenenergies obtained
in a traditional bound-state formalism. The width of the
lowest-lying resonance is found to be close to the predic-
tion of perturbation theory, I =

—,'ma, even for relatively

large values of a. The photon-photon elastic cross sec-
tion reaches a peak value of o. =2m. /m =10 cm on
resonance, which is many orders of magnitude above
nonresonant perturbative values [Eq. (1)] and hence may
be amenable to experimental observation.
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