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Expectation values of grand unified Higgs scalars can be strongly changed in the core of the cosmic
string. We show that in certain cases such unusual Higgs structures imply the existence of nonzero clas-
sical gauge currents in the lowest-energy state of the system. This automatically triggers the condensa-
tion of the grand unified gauge bosons interacting linearly with this current, which could be either trivial
or nontrivial under the U(1) subgroup responsible for the string. For the former, the gauge-boson con-
densate accumulated in the core of the defect is strictly radial, while in the latter case it also acquires an
azimuthal (and magnetic) component. Existence of such types of condensates on the boundaries of the
expanding vacuum bubbles (which arise in high-temperature phase transitions) can play an important
role in creating the present baryon asymmetry.

PACS number(s): 12.10.Gq, 12.50.Lr, 98.80.Cq

I. INTRODUCTION
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where e is a U(1) gauge coupling constant. The charac-
teristic peculiarity of solution (1) (as well as of the other
topological objects such as monopoles and domain walls)
is the restoration of the U(1) symmetry in the p=0 re-
gion. The possible behavior of other scalar (and vector)
expectation values in the core of the defect is, however,
highly nontrivial. It turns out that the phase-space por-
trait of the vortex in realistic cases is much more compli-

Vortices [1] or cosmic strings [2] are well-known topo-
logical defects that can be formed during a possible phase
transition in the early universe when the initial symmetry
group G undergoes a series of hierarchical symmetry
breaking. In each case, the string creating is due to some
spontaneously broken subgroup U(1)CG with a corre-
sponding generator K and (if local) a gauge vector field
A„. The phase of the vacuum expectation value (VEV}
of the scalar x responsible for U(1) breaking changes by
an integral multiple of 2m. on any closed path around the
string. For the infinitely long string this VEV in the cy-
lindrical coordinates (p, e,z ) has the form [1]

x=g(p)e'"

where n is an integral winding number. The radial solu-
tion ri(p) must satisfy the boundary condition
g(p~)~p, , where JM is the usual constant vacuum
(minimum potential) solution. In the core of the string,
there is a magnetic flux corresponding to the 8 corn-
ponent of the vector potential A & which has a pure gauge
asymptotic (p~ ~ } form

cated than in the usually discussed simplest approaches.
In the present paper we investigate certain nontrivial
configurations of grand unified Higgs expectation values
in the vortex and show that these can induce a condensa-
tion of grand unified vector gauge bosons (e.g., X, Y, IV) in
the core of the cosmic string. The condensation of the
gauge bosons can lead to interesting and important physi-
cal effects such as the catalysis of baryon decay. It
should be remarked that the aforementioned cosmic-
string-induced configuration can take place for a wide
range of parameters so that the probability of their oc-
currence compares favorably with the usually proposed
mechanisms. The simplest example is the bosonic-type
superconducting string discussed by Witten in Ref. [3].
In this paper an electrically charged scalar H, interacting
with the vortex (1), is considered. The scalar potential
has the form

v(H, x)= v(x)+(f lxl' —m ') IH I'+& IH I' (3)

where V(X) is the self-interaction potential of X mini-
mized by IXI =I m is a mass, and A, ,f are dimensionless
parameters with the usual requirement A. &0 to insure
that the potential is bounded from below. Witten has
shown that if f&0, m &0, and fpz —m &0, then the
scalar H develops a nonzero VEV in the core of the de-
fect while in the outer region H vanishes. This is because
the effective mass (of H) mH =f lXl

—m is a monotonic
function of p and becomes negative in the core where lxl
is small tending to zero. On the other hand if m &0 andf lpl —m (0, the opposite situation prevails; H van-
ishes in the core, while it remains nonzero away from it.

Let us now imagine the scenario when two scalars H,
and Hb are interacting with the vortex X (we stipulate
that lxl » lH, l, lH„ l away from the core). Let us also as-
surne that H, and Hb belong to the same irreducible rep-
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(J„)=tg([H, r)„'(r,H )
—(B„H,)r,H ])%0, (4)

where g is a gauge coupling constant of G. The very ex-
istence of a nonzero current implies that there exists a
classical gauge field A„'" (corresponding to the generator
r, ) interacting with this current; the appearance of
(J„)%0 in the lowest energy state inevitably leads to the
condensation of the gauge boson A,"b. Stated differently,
the extremum of the Lagrangian (with current J„'") can-
not be realized on the state A „' =0, because the Euler-
Lagrange equation, satisfied by A,"b,

gg ab +m 2 g ab + ( Jab ) —0pv P P
(5)

resentation H of some spontaneously broken non-Abelian
gauge group G. At the same time, we can place them in
different representations of the subgroup G'CG, which
appears unbroken at some intermediate stage of the
hierarchical phase transition G~G'~. . . . It is clear
that the VEV's of H, and Hb components of H which are
influenced by the vortex will, in general, have different p
dependence; the group G is broken and the effective
masses M, and Mb [of H, (p) and Hb(p)] are no longer
degenerate. The VEV's are developed on different super-
positions, (H;„)=H, (0)+Hb(0), and (H,„,) =H, ( ~ )

+Hb( ~ ) inside and outside of the core [where H„(p)
and Hb(p) are functions of p]. In particular, we can have

H, (0)=O=Hb( ~ ), and Hb(0), H, ( ~ } to be nonzero. In
the present paper we will be interested in those cases in
which there exists some interval p&[p„p2] with both
H, (p)%0 and Hb(p)%0. Notice that, because of the
presence of the vortex, the derivatives BH„b/Bp&0, and
are large if the influence of the string is strong in the in-
terval pF [p„pz]. In this situation a necessary condition
for gauge-boson condensation via our mechanism is the
existence of a generator r, of G, which in the H represen-
tation transforms states H, and Hb into each other, i.e.,
H, =~,Hb. If it is so, then in the region pE[p„pz], one

may expect the appearance of a nonzero expectation
gauge current

also result giving a nonzero azimuthal (together with the
radial) component of the current (4), and of the expecta-
tion value of the gauge vector field. Since (VX 3 ),%0
(in general), we may now expect finite magnetic flux asso-
ciated with A„'. It may be mentioned that Ambjorn
et al. have considered the possible condensation of 8'
gauge bosons in the strong magnetic field created in the
core of the superconducting cosmic string [6] in high en-

ergy collisions [7]. They showed that the condensation
takes place because of the magnetic moment of the spin-1
8' bosons due to which the vacuum of the electroweak
theory cannot remain stable for sufBciently large magnet-
ic fields [8]. Linde has also discussed the possible con-
densation of 8'bosons in superdense matter [9]. Both of
these scenarios differ fundamentally from the mechanism
of the grand unified gauge-boson condensation discussed
in the present paper. We end this section by delineating
the scope of this paper.

In Sec. II we develop the above idea through the sim-
ple but realistic example of minimal SU(5) grand unified
theory (GUT). We analyze the behavior of grand
unification Higgs VEV's in the vicinity of a vortex field
formed due to breaking of an additional U(1) group un-
der which SU(5) scalars are assumed to be trivial. We
show that for a certain range of parameters, the grand
unified phase-transition patterns can change and lead to
an accumulation (condensation) of (strictly radial) grand
unification gauge bosons like X, Y, and W.

In Sec. III, we study the behavior of the vacuum expec-
tation value of scalars carrying nontrivial I( -charge of the
external vortex field.

In Sec. IV we consider the gauge-boson condensation
which might take place when the scalar multiplet respon-
sible for the string formation is nonzero in the core. As a
realistic example, we consider an SU(5)-string which
might exist during an intermediate stage of the high tem-
perature phase transition in the early universe. We also
show that in those stages of evolution of the universe, the
aforementioned gauge-boson (e.g. , X„) condensate could
readily form.

does not permit the trivial solution A„' =0. If the com-
ponents H, and Hb carry no charge of the generator E
responsible for the string, then their VEV's are L9 in-

dependent (we assume that there are no domain walls
bounded by K strings). In this case the current (4) as well
as the gauge-boson condensate is strictly radial. Such a
case was briefly discussed in Ref. [4]. It is important to
note that by the same mechanism the gauge-boson con-
densate could accumulate not only on the cosmic strings
(which of all the topological defects seems to be the only
possible candidate which could exist in the observable
part of the present universe [2]), but on any other
sufficiently massive vacuum defects, stable or unstable.
In particular, such accumulators can play the role of the
boundaries between the decaying false vacuum and the
expanding bubbles of the new phase which are created in
a first-order high-temperature phase transition in the ear-
ly universe (e.g. , see [5]}. If H, and Hb transform non-

trivially under the generator E, then in some cases dis-
cussed below, nontrivial L9 dependence of VEV's might

II. SU(5) HIGGS SECTOR WITH ZERO U(1) CHARGE

A. Adjoint 24-piet in the vortex field

[fz(TrX )+f~(H H)]~y~ (6)

Near the string (p (R, where R is a typical radius —
IM

')
where the vortex field has nonzero gradients, the effective
mass terms for X and H will be modified causing a change

Here we consider symmetry-breaking patterns in
minimal SU(5) GUT with an additional U(1) symmetry
responsible for the string creation. We begin with the
simplest model in which all the ordinary SU(5) Higgs sca-
lars in the adjoint (24-dimensional, to be denoted by X;)
as well as in the fundamental (S-dimensional, H,-,
i, k =1—5) representation are trivial under the U(1) sym-
metry. In this situation, the only possible (renormaliz-
able) coupling between SU(5) and U(1) Higgs bosons are
the self-conjugate interactions of the type [SU(5) indices
are suppressed]
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in their VEV s. Far from the string this influence is ab-
sent since ~y~~const as p~~, and SU(5} Higgs fields
must develop their usual VEV's leading to the hierarchi-
cal breaking pattern SU(5)~SU(3) SU(2) U(1)
~SU(3} U(1).

Let us consider the situation in detail beginning with
the analysis of X's behavior (neglecting H) in the vortex
field. The most general SU(5)-invariant renormalizable
self-coupling potential for the adjoint X; has the form
[suppressing SU(5) indices]

M 2 h 2 2 3Vz= TrX +—(TrX ) ++TrX3+—TrX (7)
2 4 3 4

where M and p are masses, and h and A, are dimensionless
parameters.

It is well known that X,". , a vector in the 24-dimensional
representation space, can be brought by means of SU(5)
transformations into the simple diagonal form
X=diag(X„Xz, X3, X4, X5). This makes it a vector in the
4-dimensional (TrX=O) orbit space allowing a represen-
tation X", =C,"A where C', " are real and A (a= 1 —4)

I

are diagonal generators from SU(5} Cartan subalgebra,
which at the same time form an orthonormal basis
(TrA =0,TrA A~=5~} in the orbit space. As soon as
X is viewed as a vector in the orbit space, it can be de-
scribed by its length (TrX )' =(g~C~)'~, and direc-
tional angles C /(TrX )'~ .

The potential Vx contains three independent SU(5)-
invariants TrX, TrX, and TrX . First of these TrX, is
also an SU(24}-invariant and does not distinguish between
directions of X in representation as well as in the orbit
spaces. The other two depend on the length as well as
the direction of X. For an arbitrary fixed TrX =a, they
take different values for different orbits and determine
which direction in the orbit space is energetically more
favorable.

The potential (4) has been keenly investigated [10] and
it was found that its minima for any values of parameters
A, , h, M, p is realized on those directions in orbit space
which break SU(5) (if it is broken at all} down to one of
the subgroups, SU(3)@SU(2)U(1) or SU(4)U(1) with
respective configurations

X=diag(1, 1, 1, ——', ,
——', )Q —,', a, a =

X=diag(1, 1, 1, 1, —4) —a, a =1

(1/v 30)p+Qp /30 —4p (h +A, 3o )

2(h +A, —,'o )

(3/&20)@++—,
' p —4p (h+A, —,", )

2(h+ A, —,", )
(9)

V& =p( ——')a'+A, —"a4 .20 80 (12)

Note that the sign of the parameter p plays no role in
determining the SU(5) breaking pattern, since for any
sign of p, a adjusts its sign in such a way that pTrX
remains negative. So without any loss of generality, we
can assume p)0. Then one can easily see that if A, &0
the minima of Vx corresponds to (9) [with residual sym-
metry SU(4)U(1)] for all a. This unrealistic case is not
of interest for us. When A, )0, the minimum of Vz is
realized on the direction (111——', ——,') [Eq. (11}]if a & ao
and on (1111—4) [Eq. (12)] if a & ao, where

has two directly degenerate minima (11) and (12) with
equal vacuum energy. If the interaction with the vortex
field y is absent, then a has the same value in the whole
universe, and the breaking pattern has to be
SU(5)~SU(3)s SU(2) U(1}.

Now let us discuss what happens when the interaction
with y is switched on; the effective mass (of X)
M(p) =M +f~g~, now p dependent, forces radial varia-
tion on TrX =a so that the system can go through
different symmetry phases at different p. If fx is chosen

For fixed TrX =a the orbit-direction-dependent part of
the potential Vz

V'=+TrX +—TrX3 A
(10)

3 4
takes the form (respectively for the two cases)

V, =p( 6 ~i~ )a +k», a

and

SU(3)~
A =diag[0, 1, —1,0,0]

(13)

In terms of (13), we can express X=C, A'—=aA' for
p&po (a &ao), and X=C, A '+Cz Az=a[( —3)'~ A '

+(m)' A ] for p&po(a &ao}. At the point p~O, the
direction of X at the orbit level cannot be determined by
the potential alone because Vx has two minima: (11)and
(12). The former, being deeper, is the true minimum for
p &po. As p~O (a ~am;„}, the energy of the minimum

I

to be negative, TrX =a decreases with decreasing ~y~.
Here with different choices of potential parameters one
has to consider two possibilities:

(a) a & ao everywhere. The group SU(5) is now broken
down to SU(3)e SU(2) U(1) in all space.

(b} If the influence of the vortex is sufficiently strong,
then at some point p=po, a(p) could become smaller
than its critical value ao, i.e., we could have a )ao for
p&po, and a &ao for p&po. If this tendency of the
effective potential were strong enough, the system would,
by a first-order phase transition (under p}, go to the
SU(4}sU(1)-invariant phase.

To discuss the latter in more detail, it is possible to
choose a convenient (Cartan algebra) basis consisting of
the following SU(3}8SU(2) U(1) generators:

U(l)~A '=diag[1, 1, 1, ——'„——,']~,
SU(2)~ A z=diag[0, 0,0, 1 —1]

1

2
'

A =diag[ —2, 1, 1,0,0] 1
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(11) increases while that of (12) decreases. At p=po, the
potentials become degenerate and as p decreases further,
(12) becomes the deeper of the two.

At the point p =po, one has a phase transition with cor-
responding shifts hC& = [1—( —', )' ]ao, and EC2
=(—")'~2ao, the vacuum solutions C&(p) and C2(p) are
some smooth functions of p with solitonlike behavior in
the vicinity of the critical point po. Despite the fact that
dC& 2/dp40, C& 2(p)40 near po gauge-boson condensa-
tion does not take place since there is no SU(5) generator
which connects C, and C2.

mT=m f+f~lyl +[—,', A, , +A2]a +( —,', )'~ p,a,
mD=m, +f~lyl + f —,', k, +A2]a —( —,', )' p, a

(15)

where the parameters have to be fine tuned (by some
mechanism) in such a way that m ~-mD & 0 (m ~ is the
weak scale —100 GeV) in order to obtain the correct
scales for electroweak symmetry breaking. At the same
time, one must demand mT-a &0 (a —10' ' GeV as
the GUT mass scale) which will prevent an unacceptably
fast proton decay.

With the aforementioned mechanism, mT and mD be-
come functions of p through lyl and a, and can vary
strongly near the string core. In fact, for a wide range of
parameters, it is possible to arrange mz. &0, mD) 0 on
the string, and thus condensation of the colored triplet
can take place on the vortex line. As an illustration, one
may propose the choice m, =0, f~ =0, A—:—,', A, , +A, z & 0,
and B—:—,', A, , +A.z & 0 which is consistent for A, , & 0,
A, 2 )0, and —

—,', A,
&

& X2 &
~p Ar, , and leads to

mT= Aa —p'a,
(16)

mD= —Ba +—', p'a

where p'= —( —,', )'~ p, )0. For correct magnitudes of the

doublet-triplet splitting arising out of the string interac-
tions, we must demand Ba +( ,')p'a &0,——
—B[a —', p'/B ]—m ~~/a, a—nd mT & 0 and sufficiently

large.
Equations (16) admit a variety of possibilities. Let us

begin with analyzing the case when a )ao everywhere. It
should be possible, then, to arrange mT &0, mD )0 if a is
sufficiently smaller than p' with the resulting condensa-
tion of T on the string. The general behavior of mD and

mT can be readily discussed. As p~0 with a approach-

B. Higgs 5-piet included

The most general form of the Higgs potential, contain-
ing self-coupling of H, and its interaction with X and y, is

Vx~r =m, HtH+ fzHtHlyl2+p, HtXH

+g HtX2H+$)(HtH)~+/ (HtH}TrX2 . (14)

As soon as the X's nonzero VEV breaks SU(5} symmetry
down to SU(3)SU(2)jgIU(1), the mass degeneracy be-
tween the colored triplet ( T, =H„i =. 1,2, 3) and the weak
doublet (D =H;, a=i 3,i =4, 5}c—omponents of H is re-
moved. The effective masses of T and D are obtained by
substituting the VEV (11) in Eq. (8),

ing a;„,mD (m T ) has a tendency to increase (decrease) in
regions close to the string. Two distinct situations may
emerge. If

+(m.' —m,') IDI'. (17)

By means of the residual SU(3)@SU(2)U(1) transfor-
mation, one can always convert the triplet and the dou-
blet components in such a manner that each one of these
has only one nonzero component, e.g. , T, =T(H~ ),Dz
=D(H, ). The subsequent behavior, thus, can be dis-
cussed in terms of the two nonzero components. Evi-
dently, the first two terms are invariant under all SU(5)
(in this context only T~~D) rotations. Consequently, the
minimum of the first two terms of Eq. (11),

l Tl + lDl = —mT/2h, is continuously degenerate. The
last term, however, breaks the degeneracy imparting
VEV on either the D [for mD —mr &0] or on the
T(mD —mr )0) component.

For mD =mT, the symmetry is restored and one ob-
tains degenerate minima in which the direction of VEV's
on the T-D plane cannot be fixed on the potential level.
In this situation the phase portrait of the string is the fol-
lowing: In the region p )p, the lowest energy state of the
system is usually SU(3)U(1)-symmetric with the corre-
sponding configuration of SU(5) Higgs VEV's

H = (O, O, O, O, H5 ),
(18)

X=diag[1+ e, 1+e, 1+@,——,'+ E, ——', +e]a
where e-H5/a is a small correction arising due to the
back reaction of the 5-piet on X's VEV. As p increases
the energetic balance between various minima of the po-
tential V[X,H] changes. Starting from the point p &p„
the system begins to prefer the SU(2) SU(2) U(1)-
invariant vacuum

H =(H1,0,0,0,0),
X =diag(1 4',e1 +e', 1 —+e', ——,'+c', ——,'+e')a

(19}

~min I ~~ & 2I ~B amax

mD can become positive before m T goes negative, making
D vanish before T develops a VEV. In this case, both the
VEV's are absent in a cylindrical annulus around the
string.

More interesting is the case —', (p'/B ) &p'/A for which
there exists an interval pe[p&, p2] in which both mT and
mD are negative. One may note that such a choice of pa-
rameters does not correspond to the correct doublet-
triplet splitting away from the core. However, for our
simplest illustrative example, it does not matter. One can
readily show that in more complicated cases, e.g. , when
ao & a;„(see below) in SU(5) GUT, or in larger GUT's
[SO(10), F6 ] in which a variety of Higgs scalar multi-
plets with VEV's (-10' GeV) inducing the D Tsplitti-ng
occur, this incompatibility can be avoided for a wide
range of parameters.

For further analysis relevant to this region, it is con-
venient to write effective potentials for T and D com-
ponents in the form
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where e'-(Ht /a). At the point p, the first-order phase
transition SU(3)SU(1)~SU(1)SU(2) XU(1) relative to
the parameter p takes place. So that in the neighborhood
of the point p=p, the Higgs expectation values corre-
spond to the intermediate SU(2}U(1)-symmetric state

H =[Hi, O, O, O, Hq],

X=diag(1+a 4e—', 1+a+a', I+a+ a',
—

—,
' +e+e', —3 +e' —4e )a .

(20}

Notice that due to the gauge freedom, we can always
choose H, and H5 to be real and positive. Qualitative be-

havior of H
&

and Hs is shown in Fig. 1. Since
t}Hi /t}p (0 and t}H5/r}p )0, the expectation value of the
current [g is SU(5) gauge constant]

J„=ig (H, r}„H Hr}„H—, ) (21)

is nonvanishing in this region. This current corresponds
to the nondiagonal SU(5)-generator r, which in the fun-

damental representation transforms the components H1
and Hs into each other. Existence of a nonzero current
in the lowest energy state precipitates a condensate of the
corresponding gauge field in the boundary between
SU(3)U(1) and SU(2)cgtSU(2)U(1) symmetric phases.
To examine the situation in some detail, let us substitute
the SU(2)U(1)-invariant VEV's (20) of Higgs scalars in
the gauge-field-dependent part of the Lagrangian,

&=
I a„H; ig A „",H„—I'+

I B„X," ig [ A X],"I—' ,'trF„F. "—"—

and

E2 =g
I A„'iH, +R„H5 I +g IR„H, + A„sH5 I

+g'I A p2Hi+ A p2HsI +g I
A p3Hi+ A p3H51'

+g I
A „'4H, + A „4H5 I

Hs H1
1Aq1= — Rq, Aps = — Rq, Aq2

=—
1 Hs

s sA„3=— A„, A„4=— A„4 .
1

3 H1

Hs
p2

(24)

However, for a simultaneous minimization of the last
term in (22), only the trivial solution

where R„and I„are respectively the real and imaginary
parts of the g~~ge boso~ A„i = A„'5 =(R„+iI„}(1/
(well-known proton-decay-mediating X& boson}. Let us
now seek the form of classical vector fields which will
minimize energy in the region under consideration. For
the present purpose, our interest pertains only to those
gauge field components which do not commute with H's
expectation value on (20) (such components have at least
one SU(5) index equal to 1 or 5). All others are zero if
they correspond to the broken generators, or can be elim-
inated by means of a gauge transformation. Evidently,
the term E2 is minimized by any configuration of
R, A 5, A ', (i =2, 3,4) satisfying the conditions

(22) A„'5 = A pi =R =0 (i =2, 3,4) (25}

E= i ttF F&v+E +E +g2 A i A kIXi Xk I2 (23)

with

E =lr}„H +gI„H I +Ir}„H, gI„H I'—

where p, v=0, 1,2, 3 are the Lorentz, and i,k=1, . . . , 5

are the SU(5) indices, A„'k is a 24-piet, SU(5) gauge-
boson potential matrix and Fpk . =apA k. a.A pk.

—ie[ A„A„]," is the field tensor. The relevant part of the
energy density including that of the gauge fields has the
following form:

is acceptable. Otherwise, there will be nonvanishing con-
tributions to the energy from this term since X,—X';%0 if
i%1 and X5 —X,'%0 if i%5 in the SU(2}U(l) symmetric
state (20). Thus we are left with only one possible
nonzero field I„. It can be seen easily that in contrast to
other gauge fields, I„cannot vanish in the lowest energy
state. This is due to the nonzero current (21) which gen-
erates an effective linear term for I in (22). Forgetting for
a moment the term trF„ in (22), one finds the following

iJ(I )=, m'(p)=g'[IH, I'+ IH$I'+(IX,' —X5I')']
2m (p)

(26)

VEV

Pc

XP

minimum-energy solution. Since all scalar VEV's depend
exclusively on the radial variable p, the only surviving
part of the current (20} is the radial component
J~=ig(H, r}H~/dp H~r}H, /r}p) im—plying that only the
radial component I of the classical solution (25) has p
dependence. Therefore F„=O for such a configuration
and in fact (18) is the true vacuum solution for given
VEV's of Hs, H„and X. Existence of nonzero expecta-
tion value of the gauge boson can be seen directly from
the Lagrange equation for X„+,

FIG. 1. Highly qualitative behavior of
I TI, IDI, and the X~

condensate (VEV's) near p =p„ the critical point.

t}J'„+ +m X„—g [X„(X+X ) —X„+(X„X„)]—J„=O
(27}
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which forbids the trivial solution (X)=0 in the region
where (J„)WO. Qualitative behavior of X condensate is
shown in Fig. 1.

Existence of the (X ) condensate is not a gauge ar-
tifact and it cannot be eliminated by means of local SU(5)
transformations. We may attempt to eliminate the radial
classical current J by means of the following local (p-
dependent) orthogonal (since H, and H5 are chosen real)
rotations in the 1-5 subplane,

H ~exp[is, a(p) ]H =(0,0,0,0, QH f +H5 ) (2g)

&)(p) =—,
' [&5(p)—XI(p)]sin2a(p) (29)

of the 24-piet which, in turn, creates another radial
current [instead of (20)]

(30)

interacting with the same gauge boson X„'(A; ); the bo-
son condensate emerges unharmed. For similar reasons,
gauge fields of the usual vortex (1) away from the core
cannot be eliminated everywhere by means of local U(1)
transformations because of a nontrivial winding number.
Of course, in our case the SU(5) sector by itself does not
carry any topological number; the nontrivial phase struc-
ture of the system is generated from "outside" by the vor-
tex which forces the SU(5) Higgs scalars to form nonto-
pological soliton-type configurations in its own core.

The SU(5)-phase portrait of the string may be consider-
ably more complicated. For example if a;„&ao, then at
some point po[a(po) =ao] the phase transition, with ei-

ther one of the possible jumps of X's VEV:

ao+ —,', (1,1, 1, 1, —4),
X=aov'2/15(1, 1, 1, ——,'——', )~ ao+ —,', (1,1, 1, —4, 1),

ao+ —,', (4, 1, 1, 1, 1),

(31)

can take place. (Back reaction from the 5-piet VEV is
neglected. ) This phase transition, depending on the
choice of parameters, can induce variety of respective
phase transitions in the fundamental representation sec-
tor, e.g.,

(H„O,O, O, O)~(O, O, O, O, H5 ),
(O, O, O, O, H~ )~(O, O, O, H4, 0},
(O, O, O, H4, 0)~(H„O,O, O, O),

(32)

leading to the condensation of X, 8', Y gauge bosons.

where a(p)=arctan[H, (p)/H5(p)] is a gauge rotation
parameter and r, is the appropriate antisymmetric SU(5)
generator which can be represented by a 2X2 submatrix

0 —i

i 0

in the 1-5 plane. However, this transformation immedi-
ately generates a nonzero p-dependent element

III. BEHAVIOR OF SCALAR VEV
WITH NONTRIVIAL CHARGE

/H/' Bco

p2 dO
(33)

where co denotes the phase of H, and where we have used
the gauge field asymptotic condition [Eq. (2)]. Notice
that periodicity in 0 demands that

co(2m ) co(0) =2vra— (34)

(where a. is an integer) be satisfied for a single-valued
VEV of the scalar field H. Since y is an integer, then
clearly the minimizing solution

co( 8)=y 8+c (35)

(with arbitrary constant c) satisfies the constraint (34) and
is acceptable. This solution also minimizes possible non-
self-conjugate phase-dependent couplings between H and

X which for y =2 (for example) can be expressed as (X has
unit charge)

mHX+ +m +H+X =2
~
m

~ ~
H

~ ~X ~
cos( co 28+p) —(36)

(where P is the phase of the parameter m =
~
m

~
e '~) and

has a minimum for (35}with y =2 and c =~(2k + 1 ) 13—
Thus for integral y, both the kinetic and the potential

energies are minimized by a co(8) which satisfies the
periodicity constraint.

The situation changes drastically for nonintegral y be-
cause the solution (35) which mathematically minimizes

In many realistic cases, the H, and Hb components
which compose the current (1) (source of nonzero gauge
boson expectation value), have nontrivi. al charges under
the U(1} subgroup responsible for the string. Before in-
vestigating such cases, one needs to understand the possi-
ble behavior of some scalar H transforming nontrivially
under U(1) in the vortex field. Let y be the U(1) charge
associated with H (the charge is measured in units of X's
charge). The field H is influenced by X in two ways: (1)
directly by the U(1)-gauge vector field, and (2) through a
U(1)-invariants coupling in the potential. For simplicity,
we assume K «y, so that the back inhuence of H on y
can be neglected. This assumption will be quite valid for
realistic cases when U(1) is embedded, for example, in
some GVT symmetry group. Let us at first consider the
case when the Higgs charge is an integral multiple of y's
charge, i.e., when y is an integer. We assume the topolog-
ical charge n =1. While going around the string, g's
phase changes according to the U(1} transformation [8
measures the angle] X(8)=X(0)exp[i8], while the corre-
sponding U(1) transformation for H is

H(8) =exp(iy8)H(0) .

Since the model is locally U(1)-symmetric, it is obvious
to look for the solution of H in the form H=((p)e'
with c =const, and g(p)~const as p~ ao. Now the ki-
netic term of H in cylindrical coordinates away from the
vortex (where radial derivatives are negligible) is seen to
be
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+ lHl — —eAe + lHl
p BO Bp

(37)

Since the solution lHl minimizing the potential goes to a
constant, and A& has the asymptotic form given by Eq.
(2), it is obvious that we look for a solution (away from
the core) of the form H =ge

' ' ', where g =
l
H

l „and
co(8) is the appropriate function which minimizes

'2

6=J —y deBco

0 ae
(38)

subject to (34). Variation of (38) leads to the extremum
condition

8 N

g2

with the solution

co=k8+C,

(39)

(40)

where k is an integer minimizing
l
k —y l. This result can

be appreciated in the following manner. The already
mentioned full global symmetry of the model,
U(1)xXU(1) U(1)tt [together with local U(l)] is broken
down to U(1)tt by y's VEV responsible for the local string
formation. Being broken by H, the residual global U(1)tt
gives rise to a global string with a different topological
charge k, and to a Goldstone boson expressed in the arbi-
trariness of C. The energy of the solution H=ge' "+
diverges logarithmically with radius as p~~ [R is a
measure of the string radius]

E(p) =2m lH I (k y ) ln~, (41)

as in the case of the standard global string [11]. In typi-
cal realistic cases, the scalar H, in addition, transforms

the kinetic energy (3) (as well as a possible phase-
dependent coupling in the potential) no longer respects
the physical constraint (34).

We assume that there are no non-self-conjugate terms
in the potential V(y, H) which, in our case, is given by
Eq. (3). Note that if yP+ —,', +—,

' then Eq. (3) represents
the most general, locally U(1}-invariant renormalizable
potential. For y= —,'( —,'), one could add additional non-
self-conjugate terms, yH +H. c. or (yH +H. c.). It
can be shown that the existence of such terms lead to the
appearance of domain walls as soon as the respective re-
sidual discrete symmetry Zz=—[H~e™K,m =0, 1], or
Z3= [H~e' ~ ' H, m =0, 1,2] is broken by the VEV
of H. These walls are bounded by y strings. However,
the non-self-conjugate terms can be eliminated from the
potential since the relevant counter terms are not induced
radiatively by any interaction. This is guaranteed by the
additional global symmetry U(1)tt XU(1)z which prevails
if the aforementioned terms are absent. The kinetic term
for H in polar coordinates is

ap
+

~ ae
'2

nontrivially under some larger symmetry group 6 (unbro-
ken by y). Thus, the total symmetry breaking induced by
H is G XU(1}tt~G'. It might be that this breaking, by
itself, admits no string solution. This is the case if the
manifold 6XU(1}tt/6' is simply connected, and then
the solution H=ge' +' is a nontopological vortex.
Such a structure, by itself, is topologically unstable and
can be smoothly deformed to the trivial solution (k =0}if
coupling with A e is switched off (y ~0).

The next important issue is the behavior of the func-
tion g(p) in the core of the defect. Of particular interest
is the case when the minimum of lk —y l corresponds to
k =0 [if kAO then g(0}=0]. The integral

T '2

f —p A e(p)ey d 8 (42)
0

W'(p)=(eyAe)2+(f yl —m2) . (44)

Behavior of g(p) is evidently determined by the tendency
of the function W(p). For m &0, the coefficient W(p) is
negative at the origin since A (0)=0 and y(0) =0. How-
ever, this is not sufficient to have g(0)%0, since W(p) is
not, in general, negatively determined. Corresponding to
the realistic example which we will discuss in Sec. IV is
the case when fp —m &0. In this situation, the ex-
istence of a solution with g(0)%0 can be investigated by
checking the stability of the trivial solution. Following
(3), let us consider small fiuctuations of the form
g(t, x,y, z) =e' 'g(x, y) in the string background, the equa-
tion for g is a two-dimensional Schrodinger equation
(linearized)

Gf

, 0+~(pC=~'k. (45)

If there is a normalizable bound state solution with
b,~&0, then we can say that state with g(0)%0 is unsta-
ble. It was shown in Ref. [3] that such a solution exists
for y =0 (see also Ref. [12]). In the case yAO, the possi-
bility of a solution with g(0)WO depends on the balance
between the strength and range of the attractive potential
in the region 8'(p) &0 (around the origin), and the repul-
sive tendency of the energetical barrier in the region
W(p)&0. Usually in the realistic cases, H transforms
nontrivially under some other Abelian gauge group U(1)'
with a corresponding generator ~, and gauge field B„. In
Ref. [3], it is shown that in the kinetic term of H, the
inhuence from the vortex gauge field, A„,

lHl (8 co eyA —e'y'&„')— (46)

for any fixed p is minimized by the functions of type (41}.
Such solutions with different k cannot be smoothly
transformed into one another if g(p)=0. The solution
with k =0, must, for p~ 00, behave as H =((p}e"with
an arbitrary constant phase c. The energy density of this
field configuration is

'2

E= +( W(p)+A(
a

(43)
Bp

with
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[where e' and y' are the U(1)'-gauge coupling constant
and hypercharge, respectively], can be compensated by
B„. This will happen if the potential of H-A, over-
comes the magnetic energy -(1/e') associated with B„.
In such a case g(0}%0,and the magnetic flux in the core
of the string corresponds to the superposition of U(1}
and U(1)' generators:

k' =e'y'k —ey v. ,

which remains unbroken in the core.

(47)

IV. TOPOLOGICALLY NONTRIVIAL CLASSICAL
CURRENTS, GAUGE-BOSON CONDENSATION

Our further analysis is based on the fact that some sca-
lar H with nontrivial y-charge can (under conditions dis-
cussed above) have nonvanishing VEV in the core of the
vortex y. The case of our interest is the one in which both
the scalars y (responsible for the string) as well as H (hav-
ing nonzero expectation value in the string core) belong
to the same irreducible representation of a certain gauge
group G. To develop the argument, it will be necessary
to stipulate the existence of a (nondiagonal) generator r
(of G) which transforms states y and H into each other,
y=~H. If it is so, then in the false vacuum of the vortex,
there definitely exists a classical current

J„=ig[y r)„H (B~ )H—]

with nonvanishing 8 and p components given by

J =ige
Bp Bp

(48)

(49)

(50)

admits no string solution in this model. However, it is
well known (e.g. , see Refs. [13—15]) that the phase transi-
tion chain at the finite temperature T need not follow the
symmetry breaking patterns characteristic of zero tem-
perature. The configuration of Higgs VEV's, which mini-
mizes the scalar effective potential at finite temperature,
differs from the VEV configurations at T=O. This is be-
cause the effective masses of Higgs fields are temperature
dependent. High temperature approximation to the po-
tential of any Higgs scalar H can be obtained by adding
to the potential the term [16]

V( T,H ) = &(H)+fT'IHI' (52)

where the parameter f is a function of the gauge coupling

with g assumed real. We also consider only the winding
number n =1 strings. Accordingly, the expectation value
of the gauge boson (corresponding to r), which inevitably
will be created by this current, will have both 8 and p
components. To demonstrate the working of this mecha-
nism, we consider the realistic example of the string
which might be formed in minimal SU(5)-GUT without
any additional U(l) symmetry. It is obvious that stan-
dard pattern of symmetry breaking

SU(5)~SU(3)SU(2)U(1)~SU(3)U(1) (51)

T2 T3

~SU(3)I3 SU(2)U(1)~SU(3)U(1) . (53)

In this situation T-dependent phase structure of the
Higgs fields is the following: Above the critical tempera-
ture T, —M /f x the effective mass of the 24-piet
M ( T))0, and thus the universe is in a SU(5)-symmetric
phase. As the universe expands and cools below T„ the
24-piet develops the VEV [Eq. (9)], and the universe
passes on to the SU(4)U(1) symmetric phase. Further
cooling decreases M (T) (increasing a =trX ) and at
some temperature T2 [a ( T2 ) =ao ] a first-order phase
transition takes place, and the SU(4)U(1) phase be-
comes metastable, and finally the original 24-piet passes
to the SU(3)@SU(2)U(1) symmetric phase. This phase
structure has been studied by many authors, and it was
found that at some intermediate temperatures
T, (TO) T, ) T2), the fundamental 5-piet H can develop
a VEV,

H =(H, ,O, O, O, O), (54)

which makes the existence of an intermediate SU(4) phase
possible.

At the temperature Tz, as soon as the 24-piet goes to a
SU(3)S SU(2) U(l)-phase, the mass square of H becomes
positive and the VEV of the 5-piet vanishes.

Cosmic strings of interest to the current work are
created by the H& component at the second stage of
phase transition (53). These strings are founded by the
monopole-antimonopole pairs formed at the previous
stage of the phase transition, and they disappear at a tern-
perature T~ together with the SU(4)-symmetric vacuum;
the present universe is free of them. It is worth mention-
ing that the (quasi)stable topological defects existing only
in the hmited range of temperature T, ) T& T, , and
disappearing as the temperature falls (T( Tz) are well

known in literature (e.g., see Ref. [13]). We now show
that in the early universe such topological structures
might serve as templates for the SU(5) gauge-boson
(X, F, V, . . . ) condensation. We are primarily interested
in understanding the quasistationary picture at some
fixed temperature T(T, )T) T2). So we neglect all
effects related with the temperature gradients. Substitut-
ing the SU(4)U(1)-invariant VEV (9} of the 24-piet in
the part of potential including H(14) [replacing

constants and of the quartic coupling of Higgs field, and
can be taken to be approximately constant over a wide
range of temperatures. From (52), it is clear that the
changing of the scalar effective mass (and VEV) due to
the finite temperature is very similar to the changes
which occur in the extra vortex field y. In the high tem-
perature limit, therefore, the temperature dependent
effective potential for SU(5) Higgs fields can be obtained
by the simple replacement lyl ~T in the equations of
Sec. II. And, of course, fx and S~ now must be con-
sidered as appropriate functions of gauge and quartic
coupling constants. We shall now consider the following
high temperature phase transition pattern [14,15]

TQ

SU(5 )~SU(4) U(1)~SU(4)
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M2~Mi+ fx T =M (T), and insuring that all parame-

ters pertain to the temperature T], one finds the following
effective masses of the singlet H5, and the 4-piet

H, (i =. 1,2, . . . , 4) fragments of H in the SU(4)SU(1}-
invariant universe (due to the unbroken local freedom we
can consider only one component of the 4-piet, e.g., H, ):

1
m~ = —m, +f~T +(Ai+ 'A, , )—a(T) + —pia(T),

1
20 v'20

tonic function of p with g(0)%0 and Bg(0)/Bp=O and the
magnetic 6ux in the core is aligned in the directions
r+K =(1,——,', —

—,', —
—,', 0}; a superposition of color,

weak hypercharge, and electricity. To see that the above
picture leads to the touted X„-boson condensation we
have to check the stability of the system at X„=O. The
X„-dependent part of the Lagrangian has the form

I-(X)= ', ID—„—X„D„—X„I m„—X„+X„igf—„,X„+X„

and

(55} + —,'g [X„+X,—(X„+X„)]

m~ = —m +f&T +(A, +—'A, i)a(T) +(—')' p&a(T} .

In general, neither mz nor mz is forbidden, by any con-
1 5

straints, to become negative [14]. We can thus look for a
range of parameters for which both m~, mz & 0. Then,

1 5

the necessary condition for H
&

to develop a VEV is

m~ (m~2 2

l 5
(56)

The back influence from H
&

on X is expressed through a
modification of a. Since H& creates the string, it has the
standard form (we consider a string with top number
n =1}

If this is so, then the universe goes to the SU(4)-
symmetric phase, and the VEV of H

&
is

2m~
(57)

+X„+ig(H i+ B„Hs Hs8 H

ie—A„'HsH&+ )+h. c. . (59}

Here m„=g (IH, I +IHsl +IX', —Xsl ) is the mass of
the X„boson, D„=d„igA—„', and f„„=B„A'„—BsA „' is

the magnetic field of the gauge boson A„' corresponding
to the generator (1, ——,', —

—,', —
—,', 0}which generates mag-

netic flux in the core of the string. The last term is linear
in X„and X„=O is definitely unstable in the core; the
nonvanishing source

J =ie(H,+ B„Hs—Hs8„H,+ ieB„HsH—+, )%0 (60)

tends to preserve the linear term in X„, resisting any at-

tempts by the system to settle to X„=O. The source (60)
has nonzero p and 8 components

J =ige
a~ a~
Bp Bp

(61)

Hi =r)(p}e' (58} Je=ge '
vari

——+gBe (62)

with ri(0) =0 and, ri( ao ) =Hi. The magnetic fiux in the
string corresponds to the generator

E=diag(1, —
—,', —

—,', —
~~,

—
—,
'

) .

What is the behavior of the H5 component in the core of
this vortex? Conditional minima of the potential which
[in SU(4} U(1}phase] has the form:

«H, Hs }=m~ IH) I'+m~ IHsl'+hi(IHi I'+ IHsl'}',

subject to H, =0 is at IHsl = —(mar )/2h, (mls &0).
We neglect by radiative splitting in quartic term. The po-
tential energy, thus, tends to make Hs&0 in the core of
the defect. But since Hs has hypercharge y = —

—,
' under

the generator K (in units of H
&

s charge), it is difficult for
Hs to develop a VEV in the core (see Sec. III), because of
the influence of the vortex gauge field A„ in the kinetic
term of H5. This influence, however, can be compensat-
ed by some other U(1}CSU(4) gauge field B„ interacting
with Hs [with corresponding generators
7=diag(0, r2, 'rs, r4, rs) ] if the magnetic energy of B is less
than the Higgs energy of Hs. This is just the case if [3]
h ' & e 2 where e is the SU(5) gauge-coupling constant
pertaining to the temperature T. The magnetic energy,
proportional to trr, has to be minimized subject to the
conditions ~5= —E5, ~, =0. The generators B turn out
to be B =diag(0, —,', —,', —,', —1). Finally Hs =g(p) is mono-

since B&A(gp} ' in the core. Note that the term

f„,X„+X, is an "anomalous" magnetic moment term as-

sociated with the vortex gauge field B„.This term is un-

bounded from below and, in principle, can also lead to
the condensation of X„ in the vortex magnetic field in the
same way as the interaction with the normal magnetic
field associated with the superconducting string induces
the condensation of the W bosons [6]. In this paper,
however, we do not investigate this interesting possibility.

V. SUMMARY

In the present paper we have shown that under certain
well-defined conditions, the cosmic string (vortex} excit-
ing (in its core) VEV s of grand-unification Higgs scalars
can also create nonzero classical currents in the false vac-
uum of the defect. This current, in turn, leads to the ac-
curnulation of a nonzero expectation value of the corre-
sponding grand-unification gauge bosons in the vortex
Seld. The scalars forming the classical current could be
either trivial or nontrivial under the U(1}group responsi-
ble for the string. In the former case (discussed in Sec.
III), this current has a nontopological nature implying
that similar condensation could take place on other vacu-
um defects (topologically stable or unstable) like the
domain walls and monopoles provided the grand-
unification Higgs sector has sufBciently strong interac-
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tions with the scalar g representing the defect.
It is well known that in the high temperature era, the

universe could pass through various exotic phases before
reaching its usual SU(3)SU(2)U(1) symmetric phase
which, below the electroweak scale (100 GeV), undergoes
the transition to SU(3)U(1) symmetric vacuum. Deter-
mined by the choice of parameters as well as by the initial
grand unified symmetry group [SU(5),SU(12),E(6), . . . ],
the phase transition chain can be quite complicated. In
principle, during the high temperature symmetry break-
ing, the phase transition of the type SU(3)U(1)
~SU(2)gSU(2)SU(1) discussed in Sec. II, with rapid
transfer of VEV from H& to H5 of the fundamental repre-
sentation, can also occur. In minimal GUT, for example,
one could imagine the following scenario of the phase
state of the universe.

At some temperature T„ the phase SU(3)SU(1) corre-
sponding to the form (18) of the Higgs VEV becomes un-
stable and will decay via the creating of the expanding

bubbles of the SU(2)SU(2)U(1) symmetric vacuum
[with scalar VEV's of the form (19)]. On the boundary
between two phases, the VEV's have the form (20), but
the parameter p, now, must be understood as the coordi-
nate transverse to the boundary surface. If the bubbles
are expanding, then the scalar VEV's acquire a time
dependence and, in turn, add a time component to the
current (created on the bubble surface), as well as to the
induced classical X„-boson field to their already existing
space components.

Appearance of the X-boson expectation value during
the high temperature phase transitions can play an im-
portant role in creating the observed baryon-antibaryon
asymmetry of the universe.
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