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Interpolating Lagrangians and SU(2) gauge theory on the lattice
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We apply the linear 6 expansion to non-Abelian gauge theory on the lattice, with SU(2) as the gauge
group. We establish an appropriate parametrization and evaluate the average plaquette energy EJ to
O(5). As a check on our results, we recover the large-P expansion up to O(1/P'), which involves some

O(5 ) contributions. Using these contributions we construct a variant of the 1/p expansion which gives

a good fit to the data down to the transition region.

PACS number(s): 11.10.Ef, 11.15.Ha, 11.15.Tk

I. INTRODUCTION

The 5 expansion as originally formulated [1]was an ex-
pansion in the degree of nonlinearity of the interaction:
for example a y interaction was written as y

"+ ' and 5
treated as an (artificial) expansion parameter, to be set
equal to 1 at the end of the calculation. Although Feyn-
man rules were developed [1,2] for the resulting logarith-
mic interaction Lagrangians, the evaluation [3] of
higher-order contributions rapidly becomes extremely
complicated, and it has not proved possible, in field-
theory calculations, to go beyond second order. More-
over, it is difficult to extend the range of the technique
beyond scalar field theories, although some progress has
been made recently in treating U(1) gauge theory [4].

In the light of these difficulties, a variant of the
method, the linear 5 expansion, was developed by Dun-
can and Moshe [5] and applied in the first instance to the
Gross-Neveu model and U(1) gauge theory on the lattice
in three dimensions, where they obtained an improve-
ment on the usual strong-coupling expansion. The linear
6 expansion shares some important features with its
predecessor, although in other respects it differs
significantly. Like the original 5 expansion it introduces
an action S& which interpolates, in this case linearly, be-
tween a soluble action So and the action S for the theory
we are trying to solve:

Ss=5S+(1—5)Sc .

The advantage of this interpolation, apart from its range
of applicability, is that the Feynman rules are very close
to those of ordinary weak-coupling perturbation theory,
but the price to pay is that one loses the improved con-
vergence properties which were such an attractive feature
of the original 5 expansion [1].

However, it is at this point that an aspect of that ex-
pansion which was a useful but not indispensable addi-
tional tool, now becomes of vital importance. We are
referring here to the fact that there is a great deal of arbi-
trariness in So, which should nonetheless be chosen to
embrace as much of the relevant physics as possible. In
particular, the overall scale p is at our disposal, and will

have no effect on calculated quantities if these are evalu-

ated exactly using the infinite expansion. However, in
practice we will always be dealing with a truncated ex-
pansion, and that approximate answer will indeed depend
on p. How then should we choose that scale? Faced
with such an ambiguity, we adopt the principle of
minimal sensitivity (PMS), developed in another context
[6], namely that at any order E we should choose p such
that the truncated result R ' ' does not depend on p, at
least locally. In other words we demand that

(1.2)

This fixing of p via the PMS criterion gives the 5 ex-
pansion some features of a variational principle. It is this
which can turn [7] a divergent series (for fixed p) into a
convergent sequence (where p is recalculated at each K)
and which makes the linear 5 expansion genuinely non-
perturbative.

Among the many problems to which the linear 5 ex-
pansion has subsequently been applied, perhaps one of
the most testing was U(1) gauge theory on the lattice [8]
(in four dimensions). There the Monte Carlo results [9]
showed a clear nonperturbative transition in the pla-
quette energy EI, between the weak-coupling and strong-
coupling regimes which neither strong- nor weak-
coupling expansions could reproduce. The 5 expansion,
based on an Sc appropriate to the weak-coupling (large p)
regime, gave a distinct improvement on the usual 1/p ex-
pansion and contained within itself a signal for the cross-
over, in the disappearance of a solution to the PMS con-
dition analogous to (1.2).

The purpose of the present paper is to attempt to ex-
tend these calculations to a non-Abelian gauge group,
specifically SU(2). As might be expected, the calculations
are considerably more involved: the following Sec. II is
devoted to the technicalities —choice of parametrization,
evaluation of traces, etc.—and the calculation of the
lowest-order [O(5 )] contribution to Ep At this stage.
there is no dependence on the scale parameter p' and so it
is not determined by the PMS condition. This only
comes into play in O(5), which is the subject of Sec. III.
In this section we are obliged to take account of the Haar
measure, which can be done in a variety of ways. The
various 0 (5) contributions to Ep are calculated and col-
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lected together. The results are disappointing: although
the expansion again senses the transition by the disap-
pearance of a stationary point, the actual values for EP
lie slightly above the weak-coupling curve. In order to
understand the reasons for this, in Sec. IV we rederive
the 1/P expansion from the 5 expansion up to O(1/P ).
This serves as a check on our calculation and brings out
some important differences from the U(1) case. It also
suggests a variant of the 1/p expansion which incorpo-
rates some of the features of the 5 expansion and gives a
rather good fit to the data right down into the transition
region. The overall situation and the prospects of an
0 (5 ) calculation are discussed in Sec. V.

E

II. BASIC FRAMEWORK AND LOWEST-ORDER
CALCULATION

A. The lattice action

For a non-Abelian gauge group SU(N) the Wilson ac-
tion [10] is based on "plaquettes, " elementary squares on
the lattice labeled by a position m and two directions,
(pv) say. One each plaquette we define

Uz= —Re Tr(U, U2U3 U4 ),=1 —1 —1 (2.1)

S =Pg Up (2.2)

where by considering the continuum limit it is easy to es-
tablish that p is related to the coupling constant g by
P=2N/g

Such systems have been extensively studied by Monte
Carlo methods. In the case of SU(2), Lautrup and
Nauenberg [11]have established the form of the average
plaquette energy E~ as a function of p. As shown in Fig.
2, this exhibits a fairly smooth transition between the re-
gions of small and large p, which are fitted by the strong-
and weak-coupling expansions, respectively. As far as
the weak-coupling (1/P) expansion is concerned, the 1/P

where U„. . . , U4 are the SU(N) group elements associ-
ated with each link around the plaquette (see Fig. 1).
This construction preserves local gauge invariance, but of
course breaks Lorentz invariance for finite lattice spacing
a. The Wilson action is then defined as

FIG. 2. Monte Carlo data on the plaquette energy compared
with the weak-coupling expansion (solid line) and the strong-
coupling expansion (dashed line).

—p'(1 —5)(S(3+S r) (2.4)

where S f is the gauge-fixing term, to be specified later.
p' is the variational parameter called p in the Introduc-
tion, to be fixed by the PMS condition (1.2) on Ez. In
common with the U(1) case it will turn out that the op-
timal value of p' is always less than p.

coefficient is easily seen to be —
—,', but the 1/P and 1/P

coeScients were obtained by a least-squares fit to the
Monte Carlo data over the region 4 ~p( 10.5, giving

3 0. 13 0.29EP=1— — ' — ' + (2.3)
4p p2 p3

The coefficient cz of —1/p was subsequently calculated
by Heller and Karsch [12] and others [13]as cz =0.1514.

In applying the 5 expansion to (1.2) we will approach
the problem from the weak-coupling side, aiming at ob-
taining an improvement over the large-p expansion. Ac-
cordingly we take So to be the weak-coupling limit of S,
up to a scale factor P'. The large-P limit forces the link
variables UI to unity and the angles parametrizing UI to
zero. For our parametrization of U&, to be introduced
shortly, So is rather a simple quadratic S& in angles.
Thus our interpolating action So for SU(2) is

Ss=g[p5[ —,'Re Tr(U, U2U3 U4 ) —1]]
P

B. Parametrization of SU(2)

FIG. 1. Notation for the standard (12) plaquette positioned
at m.

According to (2.4) the evaluation of successive terms in
the 5 expansion involves Gaussian integrals over the vari-
ous angles. For this purpose the usual parametrization
U&

=exp( —,
' io -al ) proves unsuitable, because the pla-

quette action (2.1) is a very complicated function of the
individual angles a, The Euler parametrization
Ui = xp(i o 34( ) xp(i o z&i )exp(i o 3yi ) is more promising,
but suffers from the problem that $1 and p& are not
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forced to be small by the large-p limit (rather g&
= —y&),

and this is rejected in the singular nature of S&.
A satisfactory variant of the Euler parametrization is

found to be

i~2Ur=e e (2.5)

which corresponds to shifting the origin of 8 by ~/4 and
i cJ27I /4

premultiplying by the constant element e ' . With this
parametrization we have a sensible quadratic limit, and
UP can be evaluated in terms of projection operators
multiplied by ordinary exponentials which are amenable
to Gaussian integration [see Eq. (2.9) below]. The Haar
measure approximate to (2.5) is

H = g cos(28(),
I

(2.6)

&'ql'1 ~ ' +i ~(1)

s =+1

etc., where

P"=—'(1+so;) .

(2.7)

(2.8)

Thus, UP can be written as

Up =Re g g,
e"'e

s,- =+1
(2.9)

where s is a twelve-component vector whose elements are
all plus or minus one, and 8 comprises the twelve angles
of the plaquette: 81 =(y&, 8&, f&). The complex quantity

g, is given by the trace of all the projection operators:

—(Tr[(p(1)p(2)p(3) )(p(1)p(2)p(3) )S 2 S) $2 $3 S4 $5 $6

where NI is the total number of links.
The lattice action UP involves the trace of the product

of twelve elementary group elements, three for each of
the four links. Each such element can be written in terms
of two projection operators; thus

where i,j,k, l =1,2, 3,4 denote links within a plaquette
and )((,, v, r, A, denote angles: q&, 8, g. The quantities v; = + 1

take account of the in verses on links 3 and 4:
u, =u2=+1, u3=v4= —1. The three-point and four-
point non-Abelian vertices are encoded in T and F, re-
spectively. T" is zero unless all three indices (@vs) are
different, while F" ' is zero unless p=v=~=A, or they
are equal in pairs.

C. The quadratic action and the lattice propagator

Returning to Eq. (2.4) we are now in a position to be
more explicit about S& and the gauge-fixing term S f. In
our parametrization S& turns out to be simply three
copies of the quadratic action for U(1), one for each an-

gle, namely

Sg = —,'g (0 ~+Bp+fp), (2.12)
P

where (}()p= g;v;q&, , etc. Accordingly, we shall also take

Ssf to be three copies of the U(1}gauge-fixing term, viz.

(2.13)
m, p

Provided that Ss& is accompanied by the factor (1—5), as
in Eq. (2.4), we will be entitled to calculate in the absence
of ghosts, even for the non-Abelian case. With this in

mind, for the first part of the paper we use a gauge pa-
rameter a = 1 —5, in close analogy with the U(1) case [8].

As already intimated, we adopt the notation that ordi-
nary angles indicate vectors that span all the links of the
lattice, but only for one angle, e.g., y, whereas bold angle
vectors span all links for all angles.

(2.14)

For the matrices M and D =M ', the lattice propaga-
tor, we use bold-face when all three angles are involved.
In this notation we write Sq„,d=p'[(1 —5)S&+aSs()],
the quadratic part of S, as

S „,d= —,'p'OMO

(2.10)

from which it is clear that the 2' possible values for s
can immediately be reduced to 2', since g, vanishes un-

less $1 $12 and $6 = —$7.
The real and imaginary parts of g„which we call g,

and g„respectively, have various important properties:

g g, = 1, g r1,=0,

gg,s/'=0, +2},s/'=0,

= 2P' g empMmp, nv~nv
m, p, n, v

M is the diagonal matrix

M% 0 0

M= 0 M~ 0

0 0 M~

where M is as it was [8] for U(1):

M
1 2~ip-(m —n)/L~

mp, nv p,v

P

where

H„„(p)=(1 5)[5„b(p) c—„*(p)c„(p)]—

(2. 15}

(2.16)

(2.17)

g g,s/'s, ". =v, v, 5)", g 2},s/'s"=0,

g g,s/'s, s„'=0, +7(j,s/'s, s„'=TP~„',

(M
'V 1 2. Fpvtl.

(2.11} +ac„*(p)c (p) +p5 ()5„,

c„(p)=e" —1, ~(p) —=—g le„(p }l'

SoD =M ' is

(2.18)
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./L 5„„—[1—(1 —5)/a]c„'(p)c (p)/h(p) 1 5„„
d (2.19)

y e2nip (m —n)/L Pv5

L (1—5)&(p)
(2.20)

For a suf5ciently large lattice, the last term, which can-
cels zero modes, is damped out by the 1/L" factor, and in
the Feynman gauge, a= 1 —5, adopted in (2.4), the prop-
agator reduces to a simpler expression, which only cou-
ples parallel links:

I

The plaquette energy is obtained as before [8]:

Ep(P, P') = 1+ ae
P

=(U, )+—,y(U, U, &,+
1

where the angular brackets mean

(2.26}

As before, values for elements of the matrix D can be
found by numerically integrating products of modified
Bessel functions:

(f ) =— J ff d 8i cos(2+) )f exp( —
—,'P'8M8}

Z()(5)

D „,=— 5„J die " gI~ „~(X) .
2 1 —5 " p P

1

2(1—5)
3vDv=

2(1 —5)
(2.22)

(2.21)

The gauge choice a = 1 —5 has the advantage of com-
putational simplicity, but when we come to consider the
I/P expansion we shall be obliged to use the a= 1 gauge,
as it is the only gauge that will yield correct I/P expan-
sion coei%cients at finite order in 5.

We have several sum rules regarding the D and
D =M ' propagators:

r

(U )= y Jd8$, p(' 8—
—,'P'8M8)1

ZQ
(2.28)

with no contribution from the imaginary parts g, . The
notation here is that s and 8 run over all angles in the lat-
tice, but all elements of s are zero apart from the twelve
that relate to the plaquette P. Performing the Gaussian
integrations' we obtain

(2.27)

and Zp(5) is a normalization such that ( I ) =1.
To evaluate the 0 (5 ) contribution ( Up ) we use the

expression (2.9). Ignoring the Haar measure for the mo-

ment, this gives

where v = ( + 1,+ 1, —1, —1) reflects the direction con-
ventions of links around a plaquette and v is the triple an-
gle extension of this. Also for three plaquettes PQ, P„
and P2, we have the sum rules:

(U ) = gg, exp
1

, sDs (2.29)

( 1 5}g vp Dvp vp Dvp =vp Dvp
1

Note, however, that

(1—5)(DuvD)m„„„

(2.23)

(U )=—'e ' (e —3e +6e )4 (2.30)

( Up ) is thus the sum of at most 2' exponential terms,
but all nonzero terms are of three kinds only and the ex-
pression reduces to

(D)
1 y e2mip. (m —n)/L c'(p)c„(p)

(1—5)~(p)2

(2.24)

We can recover (2.23) from (2.24) by contracting at both
ends with v and including all three angles, since contract-
ing (2.24) at either end with u causes the second term to
vanish.

D. The plaquette energy in lowest order

We start by defining a generating functional for can-
nected Green's functions, with gp representing a sum
over positions and orientations of the plaquette P:

where

a =D":; pls p
——0. 1549334,

b =D~m= a=(),p, p, p) ls=p=0. 029 9334,
(2.31)

with a —b =—'.8'
This lowest-order calculation does not represent a real-

istic evaluation of Ep since it is independent of P . We
will have to go to O(5) to obtain an explicit P depen-
dence, which is then modified by the PMS condition,
which makes P' a nontrivial function of P. However, at

W=lnf g d8i cos(2t)i)exp 5PQ Up —
—,'P'8M8

'

l P

(2.25)

Note that the integrals initially run over finite ranges. The er-
ror incurred in extending the range to infinity has been studied
in Ref. [8], and can be neglected for the values of P' encoun-
tered in Sec. III.
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this stage we can perform a check of (2.30) by setting
P'=P and expanding in I /P, in which case, following the
arguments of Ref. [8], we would expect to obtain the
correct 1/P coefficient. Indeed, we then obtain

Ep =1—6(a b—)/P+ . . =1—3/4P+ (2.32)

which can also be derived directly from Eq. (2.29) with
the help of (2.11}and (2.22).

The Haar measure does not contribute at order I/P,
since there is no linear term in the expansion of cos(28t ).
Although it is reassuring to achieve the correct 1/P
coefficient at order 5 we must check that the result is not
spoilt by higher-order corrections. We shall show later
that we get the saine 1/P coefficient at O(5), in any
gauge, and that the result is stable at all higher orders in
5.

III. FIRST-ORDER CALCULATION

A. The Haar measure

It is now time to come to grips with the Haar measure
[Eq. (2.6)], which we have so far neglected, with no
justification other than the large-P expansion. As it
stands, the Haar measure comprises a cos(28t ) factor for
each of the 1VI links of the lattice, not just those in a few
plaquettes. It is therefore quite impractical to deal with
it without approximation, since its exact inclusion into
the Gaussian integral would increase the size of the cal-

NIculation by the prohibitive factor of 2 '. Among the
many possible ways of dealing with the problem in the
context of the 5 expansion, we have settled on two.

The first of these, which we call the "cosine-Haar" or
"CH" expansion, is simply to insert a factor of 5' into
the argument and then expand the cosine. In that case
( U~ ) becomes

( Up ) = fg d8t cos(25' 8& ) gg, exp(is 8—
—,'P'8M8)1

Zo(5)

=g g,(1—5sDes)exp( —sDs/2P')+O(5 ) . (3.1)

Alternatively we may promote the Haar measure to the exponent, writing

icos(28t }=exp 5+ ln cos(28t )
I I

(3.2)

and setting 5= 1 after expansion of the exponential. We will call this the "log-cos-Haar, " or "LCH" expansion. For a
one-dimensional integral

f in~cos(28)~e ~ d8= — f cos "(28)e1 a
2 Bn

1/2
1 8 I'(2n + 1)
2 Bn

1
00 e

—8r d

+2
[I (n +1)]' „,I (n +r +1)l (n r+1)—

(3.3)

and if we introduce a source

ln~cos(28)~e" e d8= 2~
m

—8r de " cosh(4rsd ) (3.4)

where d = 1/m. Generalizing to matrices we find that

f gln~cos(28&)~exp(is8 ,'P'8M8—)d—8=e ' ' ~ g e " ' ~g cosh
Zp I I

4rs,.D,.I
(3.5)

where D,I is a 6--angle propagator. R should be ~, but in
practice a value in the range 10—20 is adequate in the nu-
merical sums; I is summed over the whole lattice and
there is an implied sum over i = 1,2, 3,4.

Unfortunately, both these methods of expanding the
Haar measure give rise to infrared divergences. This is
most clearly seen in Eq. (3.1), which involves matrix ele-
ments (D z ),"=g&D,&Dt, which grow logarithmically
with the size of the lattice. This divergence can be con-

I

trolled by modifying the 8-angle gauge propagator, by
the inclusion of the quadratic part of the Haar measure in
the exponent.

Thus in the CH expansion we replace H by

(3.6)
I

Applying the same modification to the LCH expansion
results in
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H„CH =g exp[ —2(1—5)8(+5 in cos(28) )], (3.7)

4M~M'=M+ —,1 (3.8)

which is in line with the general philosophy of the 5 ex-
pansion (1.1) if the Haar measure is absorbed into the ac-
tion S.

2(1 —~)8
The additional factor of e ' amounts to a

modification of the 8-angle propagator, causing it to fall
off exponentially with distance and eliminating infrared
divergences. The effect on the weak-coupling matrix M
for the 8 angle is

framework of the 5 expansion, but is more difBcult to im-
plement than the simpler ad hoc modification of Eq. (3.6).
But there is still more freedom: for example, we could
multiply by a damping factor exp[ —2(1—5)8;P'/P],
which would lead to the modified propagators being a
function of P rather than P'. Further, although there is no
need to modify the y and g propagators from the point of
view of infrared divergences, subsequent calculations are
greatly simplified if they are also damped in exactly the
same way as the 8 propagators. In the calculation of Ep
to order 5 we shall use all these variants, which are com-
pared in Table II below.

which causes D to become a function ofP':

„„(P')=— 5 dke
2 (1—5) ""

Q

XgI~ „~(X),

(3.9)

to be compared with Eq. (2.21}. We will use a prime on D
to denote a damped propagator.

These are the minimal modifications we can make.
Equation (3.7) has a firmer justification in the general

I

B. E toO(5)

There are three parts to the O(5) contribution: & Up &

with the (1—5) ' factor in each propagator expanded,
and the connected correlators 5& UH & c and

5y, &U, U, &,.
In view of the modifications we have introduced in or-

der to deal with the Haar measure, & Uz & will now be a
more complicated expression than (2.30}, involving a'
and b' as well as a and b, in the case where only the ti
propagator is damped. There are now five different types
of nonvanishing terms, and

& U &
= )e (4 +2 )/P 1 s)( (4b 2b )IP (1 s)+e (4b+2b )IP(1 s)+2 2b /P(1 s) 4e 2blP(1 b)+4e 2b(P)(1 b)}

4 (3.10)

which simplifies to an expression analogous to (2.30) if all three propagators are damped, when a ~a', b +b' T-o fin. d

the 0 (5) contribution from (3.10) we expand

A/(1 —5) — A()+5+ ' '
) —A(1+5g +. . . )

Turning now to 5& U~H &, in the CH expansion we have to evaluate

(3.11)

1 25+ f Pd88,'exp is 8 P'8M—'—81

ZQ 2 C
g g, sDes exp( —sD's/2P') .

p2
(3.12)

This sum can be performed algebraically, with the result:

5& UpH &=, e ' '+ ' ' ~[(az b~)e ~/[1 +—cohs(4b P/')] +4az sinh(2b/P')] (3.13)

where

a2 —(De }m—n=plb=p~ bg (De }m—n=(), Q, Q, P)lS=P . (3.14)

We calculate a2 and b2 by summing our damped propagators over sites. They converge to sufficient accuracy within

an 11 lattice.
In the LCH expansion method we can again perform the sum over permutations of s algebraically. The resulting ex-

pression, which is rather more complicated than (3.13), is used to find values of & UPH &c for different values of P and

The major part of the calculation in terms of computing time is the evaluation of
yp &U1 Up &c=gp (&UpUp &

—&Up&&U1, &). H«e

g &UpU~ &= gg f gd8Re(g, e" }Re(g,e" )e
1

Pl S,t
+ + )e

—(s+t)D(s+t)/2p' (3.15)
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TABLE I. The number of different types of exponential term
in Eq. (3.15). When the two plaquettes have no directions in
common, the exponent is always zero. There is less degeneracy
between the terms if the 8-angle propagator is different from
those for the other two angles.

Ep

Directions in common
Dq=D' =D~
DgAD~ =Dg

1

38
140

2
221
808

ls gt

1 2
38 212

140 791

The double sum over permutations of s and t is large,
generating in the first instance 2' X 2' = 1 million terms,
each to be summed over the lattice, which typically has
11 sites. However, due to symmetries of the exponential,
and of g, and t)„we can reduce the number of terms to
2 X2, and of these there is much degeneracy between
the arguments of the exponentials, as shown in Table I.
We treat the g,g, and g,ri, contributions in isolation, and
within these treat separately the two cases where P and
P, have one direction or two directions in common.

Thus by storing the details of each type of term and its
total weight, we can cut the computing time by a factor
of the order of a thousand. So, although on the face of it
the O(5) calculation for SU(2) involves an increase in
computing time by a factor of a million over the corre-
sponding U(1) calculation, this factor is reduced to some
2000 if D

&AD�'

=D
&

and down to 500 if D z =D
+

=D &.

The total O(5) contribution to EI, is obtained by sum-
ming Eqs. (3.10), (3.13), and (3.15). Depending on the
type of infrared damping chosen, some or all of the lat-
tice propagators are functions of P or P'. Because of con-
straints on long-term memory these propagator matrices
have to be recalculated each time a new value of P(P') is
required in the evaluation of (3.15). We opted to calcu-
late the relevant quantities a', b', a 2, b z, and

gp ( Up Up ) on a coarse P' grid, and interpolated be-
1 1

tween these points using Fortran library routines, to pro-
duce smooth curves of Ep against P', for different values
of P.

In Table II we give a comparison between the various
damping methods introduced in Sec. 3.1 at the value
P=2. 8, which corresponds roughly to the onset of the
transition in EI, . At this value the weak-coupling expan-

FIG. 3. The minimum of EI as a function of P' for P= 2. 8.

sion to O(1/P) gives EI, =1—3/4P=0. 732, which lies
somewhat above the Monte Carlo point. All of these
methods give rather similar results, with the simple CH
expansion with full damping being marginally favored.
Disappointingly, however, the 0 (5) expansion is margin-
ally further away from the experimental value than is the
large-P expansion, in contrast to the situation for U(1).
The reason for this difference will be explored in the next
section.

Nonetheless, the 5 expansion contains a signal of the
transition which prevents it being used beyond a certain
point, in contrast to the I/P expansion, which contains
no internal measure of its range of validity. This signal
arises from the implementation of the PMS criterion,
which in this case reads BE&(13,P')/BP'=0. Above the
transition region there is a broad flat minimum in P, il-
lustrated in Fig. 3, but as the transition region is ap-
proached, this becomes less pronounced and eventually
disappears.

In Fig. 4 we show the O(5) curve for Ep using the sim-
ple CH prescription with partial damping which was
favored at P=2.8. For reasons just discussed, the curve
terminates at P=2. 1.

TABLE II. O(5) results for eight possibilities of infrared divergence damping scheme and Haar ex-
pansion, for the specific case p=2. 8. Note that the Monte Carlo studies yielded Ep=0.70, and
1 —3/4P=O 732. .

Type
of

damping

Dq, D =D~

D'(p') D'(p) D'(p') D'(p)

Dg=D~=D~

CH
LCH

0.73442
0.74069

0.73554
0.74245

0.73890
0.74797

0.73878
0.74822
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FIG. 4. The 0(5) expansion for Ez. The curve terminates at
P= 2. 1 due to the disappearance of the minimum in P'.

IV. THE WEAK-COUPLING EXPANSION

Ss =P5 g (cos8i, 1)——,'P(—1 —5)g 8~
P P

= —
—,'P g 8t, +P5(cos8t —1+—,'8t ),

P
(4.1)

ignoring the gauge-fixing term for the moment. The
large-P limit in the functional integral forces the pla-
quette angles to zero as 8~ —1/P' . Hence the factor
which is brought down with 5 is of order P8~ =O(1/P).
In calculating E~ we always have a factor of
U~=0(1/P) by connectedness. So nth order in 5 gives
(1/P)(5/P)", i.e., (n +1)th order in I/P. In particular,
the O(5) calculation already gives the 1/P term. In re-
trospect this feature of U(1) may well have been an im-
portant element in the success of the 5 expansion in that
context. Another important point is that the gauge-fixing
term does not affect the argument, because of the residual
gauge invariance of the quadratic approximation. For

A. The large-P limit and the 5 expansion

The calculational framework we have set up for the 5
expansion also allows us to calculate the I /P term in the
weak-coupling expansion. This provides a useful check
of previous calculations [12,13], which used the conven-
tional parametrization and were carried out in lattice
momentum space, and brings out a very important
difference from the U(1) case. Precisely because of the
non-Abelian nature of SU(2), there exist three-point cou-
plings between the gauge fields, encoded in the matrix T,
which alter the relationship between the 5 and 1/P ex-
pansions.

Let us briefly review the argument for U(1) to the effect
that an order-5" calculation automatically gives the
correct 1/P coefficients up to O(1/P"+'). If we set
P'=P, the 5 action is

example a change in gauge parameter from a=1—5 to
a= 1, which involves additional gauge insertions [see Eq.
(4.2) below], has no additional effect because of the gauge
invariance of the U(1) diagrams.

Turning now to SU(2), we note some crucial
differences. The most important of these is that the
difference between the action and its weak-coupling limit
is now of order 8 rather than 8 . Hence the factor
brought down with 5 is of order P8 =O(1/P' ). [This
occurs for contributions proportional to g, the imaginary
part of g: those proportional to g follow the U(1) pat-
tern. ] Thus one must in general go to higher order in 5 in
order to obtain all the contributions of 0 (1/P"). In par-
ticular there is a second-order contribution
grl, rig„D«D,„D«of order 1/P which is not included in
the calculations of the previous section.

The second important difference is that the choice of
gauge does now affect the argument, because the quadra-
tic action on which the 5 expansion is based lacks the re-
sidual gauge invariance of the U(1) case. In our discus-
sion so far we have been using the gauge a = 1 —5, which
has the great simplification that the propagator only cou-
ples parallel links [cf. Eq. (2.20)]. However, from the
point of view of the large P expansion it is not the op-
timal gauge to use, since the gauge-fixing insertion
brought down with 5 is of order P8 =O(1) and no longer
vanishes. Thus, given any diagram of a particular order
in 5 and 1/P, we can generate new diagrams of higher or-
der in 5 but the same order in 1/P by making such inser-
tions on any of the propagators. In order to avoid this
problem, we must choose a different gauge, the a=1
gauge.

B. Calculating in the a=1 gauge

=D „„„+5[(1—5)DvvD —D] „ (4.2)

using Eq. (2.24). Thus to a given order n in 5 the contri-
butions are given by diagrams of the Feynman (a= 1 —5)
gauge up to order n, together with the appropriate num-
ber of insertions of the form (4.2) on propagators of the
lower-order diagrams. In Table III below we show the
relevant diagrams up to second order in 5 and 1/P that
remain after making the insertions and after expanding
the (1—5) ' factor in each propagator. The notation is
that the solid lines represent propagators D „„„,solid
blobs represent the interaction vertices arising from S,
and the open circles represent the Haar measure.

The zeros are a consequence of the arguments given in
the previous section. In the way we actually calculate,
where the (1—5) ' factor is kept in the propagator and
then expanded to the appropriate order, these zeros cor-
respond to a guaranteed cancellation between diagrams.
As expected, there are no higher-order corrections to the
coefficient of 1/P given in Eq. (2.32).

The calculation of the coefficient of 1/P is free of in-

In this gauge the propagator is modified by the addi-
tion of an extra term compared with (2.20)

=D 5 y e&~iP (« —&~&L
c"(p)c,(p)mPnynLd(15)/2()
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TABLE III. Connected diagrams up to O(5') and O(1/p') in the a=1 gauge.

go

1/P g-diagrams

1/P g-diagrams

frared divergences, and may thus be performed with the
original undamped propagators. This is because the
Haar diagram involves the difference a 2 b2-
=(D,—D,+(, coo))~s, . Although each term is
individually divergent, the difFerence converges to a value
which is easily shown to be a /8. With undamped propa-
gators it is possible, using sum rules like (2.23) and (2.24),
to evaluate most of the diagrams semianalytically, i.e., in
terms of a and b. Indeed it is only the two g diagrams
that need to be computed numerically.

The 0(52) diagram, involving three plaquettes, each
with its SU(2) trace factors, takes of the order of an hour
of Cray XMP time.

C. Non-Ahelian gauge Ixing and ghosts

With the original choice of gauge parameter a= 1 —5
there is no need to include ghosts. This is because when
5 is set equal to one the gauge-fixing term vanishes and
the action reverts to being gauge invariant. However, in
the a=1 gauge which we have been be obliged to use in
this section in order to obtain the correct 1/p expansion
at finite order in 5, this is no longer true. The gauge-
fixing term survives at 5=1, fixing the gauge of the full
non-Abelian theory, and therefore gives rise to a func-
tional determinant, which can be represented by ghost di-
agrams.

The problem of gauge fixing on the lattice for a non-
Abelian theory has been considered in detail by Baaquie
[14]. It is more complicated than the continuum limit,
where there is only a three-point interaction between a
gauge meson and two ghosts. On the lattice there are
higher-order vertices, of which we need only include the
four-point vertex in evaluating the coefficient of 1/p.
There are thus two additional contributions, shown in
Fig. 5, where dashed lines represent ghost propagators.

The second diagram, Fig. 5(b), is rather easy to evalu-
ate, as it is simply related to the Haar diagram of Table
III. In evaluating the second, and indeed in the entire
formulation, we have to be careful to adapt the analysis
of Baaquie, which was performed in the standard SU(2)
parametrization, to our parametrization (2.5). The net
result is that the three-point vertex is not simply propor-
tional to the usual structure constants e,b„but also con-
tains a term proportional to E,b„ the tensor relating our
modified Euler angles to those of the standard parame-
trization near the origin, namely

8, =-, (a, +E.b, aba, )+ (4.3)

FIG. 5. Ghost diagrams of O(1/P ).

[where we have written (qr, 8,$)=(8„82,83)]. By virtue
of their symmetry properties there is no interference be-
tween the two types of vertex in Fig. 5(a).

Combining the ghost diagrams with those of Table III
we finally arrive at a value c2=0.15, in essential agree-
ment with Refs. [12,13]. This small coefficient is in fact
the result of substantial cancellations between individual
contributions.

The analysis we have just carried out suggests a way of
improving on the 1/p expansion which does not involve



45 INTERPOLATING LAGRANGIANS AND SU(2) GAUGE THEORY. . . 663

E

/
/

/
/

/

FIG. 6. The optimized I /P expansion for Ep.

—(I/P )(a, +a2x+a3x ) (4 4)

where x —=P/P' and the coefficients a&. . .a3 are
a, = —1.8888, a2=3.6326, a3= —1.5940.

In the limit P'=P (x = 1), this of course reduces to the
I/P expansion E~(P)= 1 —3/4P —cz/jP, but in the spirit
of the 5 expansion one can regard P' as a free parameter,
to be fixed as usual by the principle of minimal sensitivi-
ty.

We have carried out this procedure on Eq. (4.4), and
the result is the curve shown in Fig. 6. In contrast to the
full 0(5) calculation the curve does not naturally ter-
minate: like the I/P expansion itself it continues on into
the small-P regime, where it is no longer appropriate.
However, it does give a remarkably good fit to the data
on the large-P side of the transition region, with only a
small hiatus between this fit and the strong-coupling
curve.

V. CONCLUSIONS

We have shown how it is possible to extend the appli-
cations of the linear 5 expansion to include the non-
Abelian group SU(2) on the lattice. In so doing we en-
countered several major obstacles which were not present
in the U(1) case. A judicious choice of parametrization
enabled us to reduce integrals of the group action to ordi-
nary Gaussian integrals, albeit at the cost of dealing with
a large number of permutations of the elementary traces
g„which causes higher-order calculations to be rather
demanding of computer time.

Another problem which did not occur in the U(1) case
was the Haar measure. It was impractical to treat this

the full 0(5 ) calculation. Namely we can evaluate the
diagrams of Table III and Fig. 5, but keeping P' distinct
from P. In that case the expansion becomes

Ep(P, P') =1—(3/4P')(3 —3x +x )

exactly, and so various methods were proposed for incor-
porating it into the 5 expansion, all with their own
difficulties. The numerical results of the 0(5) calculation
turned out to be not quite as accurate as the weak-
coupling expansion to the same order, and in order to un-
derstand this we made a careful analysis of the relation-
ship between the two expansions. This revealed that, un-
like in the U(1) case, the 0 (5) calculation is not
guaranteed to include all contributions of 0 ( 1/P ).
Indeed we identified the most important missing contri-
bution, the 0 (5 ) "cone" diagram of Table III. We also
noted that in the gauge most appropriate for the I /P ex-
pansion it was necessary to include ghost contributions,
and the I /P coefficient thus calculated agreed with pre-
vious results. The comparison with the I/P expansion
suggested a variational improvement whereby we kept
just the relevant diagrams in the 5 expansion but fixed p'
by the PMS criterion rather than identifying it with P.

In view of the shortcomings of the full 0(5) calcula-
tion, what is the outlook for going to higher order? %'e
believe it would just be possible, particularly in the
method where all angles are treated equally, to extend the
calculation to 0(5 ) in the Feynman gauge. The main
problem is producing the table of non vanishing
coefficients for the different exponentials occurring in a
three-plaquette correlator. Although we suspect that, as
in Table I, the final result will show a dramatic reduction
in the final number of surviving terms, a much larger
number of terms have to be held in the computer in the
intermediate stages. This problem is under active con-
sideration.

However, a more promising way forward may be to
choose an So which is geared to the strong-coupling rath-
er than the weak-coupling regime. Such a method, based
on a maximal tree of plaquettes, was already investigated
in the original paper [5] on the linear 5 expansion, in the
case of U(1) in three dimensions. We are currently ex-
ploring ways of extending these ideas to SU(2) and to four
dimensions. The advantage here is that gauge invariance
is maintained, and the angular integrals can be performed
rather simply using the elegant machinery of characters.

Finally we should mention another method which has
been used to deal with SU(2) on the lattice. This method,
which was termed the "variational cumulant expansion"
[15], can now be seen as a variant of the 5 expansion,
with an So constructed from single links. The main
difference is that, although it was Ep which was being
calculated, the variational parameter was fixed by the
PMS condition on the first order expressi-on for W. In
our formulation of the 6 expansion we would more natu-
rally apply the PMS criterion to the nth order expression
for Ez itself. We are currently investigating the changes
that result when this criterion is applied to the model.
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