
PHYSICAL REVIEW D VOLUME 45, NUMBER 2

5 expansion applied to quantum electrodynamics

15 JANUARY 1992

Carl M. Bender and Stefan Boettcher
Department ofPhysics, Washington University, St L. ouis, Missouri 63130

Kimball A. Milton
Department ofPhysics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

(Received 4 June 1991)

A recently proposed technique known as the 5 expansion provides a nonperturbative treatment of a
quantum Seld theory. The 5-expansion approach can be applied to electrodynamics in such a way that
local gauge invariance is preserved. In this paper it is shown that for electrodynamic processes involving
only external photon lines and no external electron lines the 5 expansion is equivalent to a fermion loop
expansion. That is, the coefficient of 5 in the 5 expansion is precisely the sum of all n-electron-loop
Feynman diagrams in a conventional weak-coupling approximation. This equivalence does not extend to
processes having external electron lines. When external electron lines are present, the 5 expansion is tru-
ly nonperturbative and does not have a simple interpretation as a resummation of conventional Feynman
diagrams. To illustrate the nonperturbative character of the 5 expansion we perform a speculative calcu-
lation of the fermion condensate in the massive Schwinger model in the limit of large coupling constant.

PACS number(s): 11.15.Tk, 11.15.Bt, 12.20.Ds

I. INTRODUCTION

Xs= '(Ft'") +M/—[(—i' eA )/M] P,—

where M is a mass parameter that has been inserted to
make the quantity raised to the power 5 dimensionless.
Note that when 5=1 the Lagrangian in (1.1) reduces to
the standard Lagrangian for massless electrodynamics
and no longer depends on the parameter M. If the fer-
mion mass m is nonzero we consider the Lagrangian

Xs= ,'(F"") +M/[(m +iei e—A —)/M] g —. (1.2)

A recent series of papers [1—5] has explored a new
technique for generating nonperturbative expansions of
quantum field theories. This technique, known as the 5
expansion, is implemented by inserting a small parameter
5 in the exponent of the nonlinear interaction terins in
the Lagrangian. For example, to treat a A,P field theory
we consider a A(P )'+ theory, where the parameter 5 is
regarded as small: 5((1. Then, following well-defined
rules explained in previous papers [1], we express the
Green's functions of the theory as series in powers of 5.
At the end of the calculation, we set 5=1 to obtain the
result for a A,P theory. In models we have studied so far,
the numerical results have been good; a small number of
terms in the 5 series gives a good nuinerical approxima-
tion [1—6]. We einphasize that the 5 expansion is non-
perturbative; the construction and convergence of the 5
series does not depend on the value of A,.

To apply the principles of the 5 expansion to quantum
electrodynamics it is necessary to insert the small param-
eter 5 in such a way that local gauge invariance is
preserved. It appears that the only way to do this is to
replace the minimal coupling term i B eA by (i8 —eA )—
[7]. Thus, we consider the Lagrangian

The general procedure for computing the Green's func-
tions in d-dimensional space-time as series in powers of 5
is straightforward. We describe the first-order calcula-
tion below. Using the fact that for small 5

a = 1+5lna +O(5 ),
we replace Xs in (1.2) by

gs= ,'(F"')+M/—p+—5M/ in[(m+ie( eA )/M]p—

+O(5 ) (1.4)

It is not possible to give diagrammatic rules for the La-
grangian in (1.4) because the interaction term is nonpoly-
nomial. Thus, we construct a provisional Lagrangian X
of the form

,'(F"')2+M—PP—+5M/[(m +i j3 eA )/M—] g .

(1.5)

If we regard N as a non-negative integer, we can derive
Feynman rules for computing the Green's functions ofX.
Having computed a Green's function to order 5 as a
function of N, we now treat N as a continuous variable,
differentiate with respect to N, and set N =0. This gives
the Green's function for L& to order 5.

The reader will note that (1.5) and the technique of
differentiating with respect to N and setting N =0 bears a
strong resemblance to the replica method well known in
statistical mechanics [8]. (This analogy with the replica

It is easy to show [7] that for all values of the parameter 5
the Lagrangians in (1.1) and (1.2) are invariant under the
local gauge transformation

P(x)~g(x)exp[ieA(x)], A "(x)~A "(x)—tl"A(x) .

(1.3)
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method does not persist beyond leading order [1].) Al-
though the analytic continuation described here cannot
be justified rigorously, we have investigated this pro-
cedure in many models, and have found it to be invari-
ably correct. These examples include zero- and one-
dimensional models [1], the large N-limit [1], supersym-
metric quantum field theory [3], stochastic quantization
[9], and the renormalization of scalar quantum field
theory [2]. Although there are many obvious and crucial
questions of analyticity awaiting further study, we feel
that it is valid to proceed on the basis of our experience.

As we will see later on, the Feynman rules for 2 are
rather unusual. The electron propagator is just the con-
stant 1/M. Furthermore, there are many different ver-
tices, all of order 5. The number of vertices depends on
the parameter N. Using these Feynman rules in conjunc-
tion with the computational procedure described above
(differentiating with respect to N) we have been able to
compute the anomaly in two-dimensional electrodynam-
ics [10].

In this paper we will show that, for the special case of
Green's functions having no external electron lines, the 5
series at 5=1 is an infinite resummation of ordinary
weak-coupling Feynman graphs. Specifically, we will
show that the coefftcient of 5" in the 5 expansion of such
a Green's function is the sum of all Feynman diagrams
having n internal electron loops. For Green's functions
having external electron lines, there is no known way to
express the coefficients of the 5 expansion as a resumma-
tion of Feynman diagrams. Thus, for such processes, the
5 expansion appears to provide a new nonperturbative
method of calculation that is not accessible to ordinary
graphical perturbation theory. One such process is de-
scribed by the Green's function having two external elec-
tron lines and one external photon line. This Green's
function gives the value of the anomalous magnetic mo-
ment g —2 of the electron.

This paper is organized as follows. First, in Sec. II, we
illustrate the equivalence of the 5 expansion and the loop
expansion of a zero-dimensional field theory for the case
of Green's functions having no external electron lines.
We also show that this equivalence no longer holds for
the case of Green's functions having external electron
lines. We conclude that for such Green's functions the 5
expansion is truly nonperturbative in character. This
conclusion suggests a simple speculative calculation of
the fermion condensate in the massive Schwinger model.
This calculation is described in Sec. III.

Next, in Sec. IV we derive and explain the diagram-
matic rules for the provisional Lagrangian in (1.5). These
rules may be used to calculate Green's functions to first
order in 5. (Successively more elaborate, but well-defined
and straightforward, sets of rules must be used to calcu-
late the Green's functions to higher order in 5.) Using
these graphical rules to compute a Green's function to
leading order in 5 is a lengthy and difBcult procedure. To
present the relevant computational ideas in a simple con-
text we set ourselves the more limited task in Secs. V and
VI of computing Green's functions to first order in 5 and
to second order in the electric charge. Specifically, we
compute the photon Green's function in Sec. V and the

electron Green's function in Sec. VI. We will see that the
photon Green's function to first order in 5 and to second
order in the electric charge, e, is identical to the O(e )

one-fermion-loop contribution to this Green s function.
However, we will see that the electron Green's function
to first order in 5 and to second order in e bears no
resemblance to the 0 (e ) weak-coupling contribution to
this Green's function.

In Sec. VII we generalize the results of Sec. V to all or-
ders in e. That is, we show that to order 5 a Green's
function having no external electron lines is precisely the
(infinite) sum of all one-fermion-loop weak-coupling
Feynman graphs. Thus, for such Green's functions the 5
expansion is an infinite resummation of ordinary weak-

coupling Feynman graphs. Finally, in Sec. VIII we gen-
eralize the conclusions of Sec. VII to second order in 5
and indicate how this equivalence persists to all orders in
5.

II. ZERO-DIMENSIONAL ILLUSTRATIVE MODEL

Consider a trivial zero-dimensional model of electro-
dynamics described by the Lagrangian

1.= —,'mP+ —,')u A + —,'go~A, (2.1)

where g represents the electron field and A represents the
photon field.

Our objective in this section will be to compare the
loop expansion and the 5 expansion of the Green's func-
tions for the Lagrangian L in (2.1). For simplicity we will
consider two Green's functions, the photon. propagator
and the electron propagator. We will show that for the
case of the photon propagator the one-electron-loop ex-
pansion is identical with the 5 expansion to first order.
On the other hand, the leading term in the electron-loop
expansion for the electron propagator bears little resem-
blance to the 5 expansion of this Green's function.

A. Loop expansion for the photon propagator

(2.2)

We sum all these amplitudes with respect to n to obtain
the exact one-electron-loop contribution to the electron

It is easy to read ofF the Feynman rules for the weak-
coupling expansion of the Lagrangian in (2.1): The am-

plitude for an electron propagator, represented by a thick
line, is 1/m, the amplitude for a photon propagator,
represented by a thin line, is 1/p~, and the amplitude for
a photon-electron-electron vertex is g. The graphs for the
one-electron-loop expansion of the photon propagator are
shown in Fig. 1. Note that there is one graph of order g,
two graphs of order g, nine graphs of order g, and so
on. The sum of the symmetry numbers for all one-loop
graphs having 2n vertices is given by the simple formula
(2n —1)!!/2. Let us consider the amplitude of all one-

loop 2n-vertex graphs contributing to the photon propa-
gator. Such graphs have 2n electron lines and n + 1 pho-
ton lines. Thus, the amplitude for the sum of all such

graphs is
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propagator:
n

(2) — l l 2grP,'...=, , y r n+—
P v~„ pm

(2.3)

order g'

where we have expressed the double factorial in terms of
a I function. This series is formally divergent, but we
can use the integral representation of the I function,

order g4

I n +—= dt exp( t)—t"
2 0

(2.4) order g'

to perform a Borel sum of the series in (2.3):

g ~ exp( t)&t-
om &n 0 1 —2gt/(pm )

(2.5)

B. 5 expansion for the photon propagator

To solve for the Green's functions of X in (2.1) we in-
troduce the parameter 5 in a manner similar to that used
in (1.2):

Ls= —,'p A + ,'Mg[(m—+gA )/M] P . (2.6)

The vacuum functional for this Geld theory in the pres-
I

We point out that this integral only has a formal ex-
istence because the path of integration passes through a
simple pole. The origin of this divergence is simply that
the Hamiltonian for this theory is not bounded below and
thus the vacuum functional for this theory is a divergent
integral.

ence of external sources J and rt for the A and g field is

Z[J,ri]= f f dfdA exp( Ls+J—A +r)P) . (2.7)

Since we are only interested in the Green's functions to
first order in 5 we expand Z [J,r)] in (2.7) in powers of 5
and neglect terms of order 5 . The result is

FIG. 1. One-electron-loop weak-coupling graphs contribut-
ing to the photon propagator. There is one graph of order g,
two graphs of order g, and nine graphs of order g .

Z[J, r)]=f fdgdA 1 ——M5$ ln
2 M

exp ——p A ——Mg +JA +rtg
2 2

(2.8)

(2.9)

We substitute (2.8) into (2.9},expand to first order in 5, and evaluate the Gaussian integrals to obtain

To compute the connected two-point photon Green s function we differentiate lnZ [J,ri] twice with respect to J and set
the sources J and g to zero. The result is

ZJJ[0,0] Zi[0, 0]
Z [0,0] Z [0,0]

I ' '= 1 — — dt(t 1)ln — exp( t l2)—1 5 ~ m+ t/
p' &Sn. M

(2.10)

The integral in (2.10) can be rewritten by adding it to itself after making the change of integration variable t ~ t—
1 5 m — t/pI s

'=
2

1 — f dt (t 1)ln — exp( t /2)—
p v 32vr — M2

l

(2.11)

Finally, we perform an integration by parts using the
identity

(t 1}exp(—t l2)= ———[t exp( —t /2)] .d
dt

The result, after the change of variable x =
—,
' t, is

I

Observe that the parameter M has completely disap-
peared from this integral representation. Tg leading or-
der in 5 the result in (2.12) is the zero-electron-loop con-
tribution to the photon propagator that comes from the
simple graph consisting of a single photon line. To first
order in 5 the result in (2.12} is the contribution from all
one-electron-loop graphs as given in (2.5).

2
r(p) 1 5g d

&x

p p4m &m. 0 1 —2g x/(p m )

(2.12)

C. Loop expansion for the electron propagator

For simplicity, we compute only the zero-electron-loop
contribution to the electron propagator. Using the same
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Feynman rules that we followed in Sec. IIA we can
evaluate all graphs of the form shown in Fig. 2. The re-
sulting Green s function, obtained by multiplying togeth-
er the symmetry number and amplitude for each graph
and summing over all graphs, is

order go

1
"

1yr n+-
m&n „

'n
2g

m p
(2.13)

order g4

We can obtain the Borel sum of this series by using the
integral representation (2.4) for the I function. The re-
sult is

(2) 1 ~ dt —t 1

m+n o +t 1 —2g t/(p 2m)
(2.14)

D. 5 expansion for the electron propagator

Z„„[0,0]
Z [0,0]

Z„[0,0]
Z [0,0]

(2.15)

Substituting (2.8) into (2.15) and evaluating the Gaussian
integrals we obtain to first order in 5

To compute the connected two-point electron Green's
function we differentiate the generating function
lnZ[J, rt] in (2.8) twice with respect to rI and set the
sources J and g to zero. The result is

(2n —1)!!graphs in
OI'CleI' g

FIG. 2. Zero-electron-loop weak-coupling graphs contribut-
ing to the electron propagator. There are exactly (2n —1)!!
graphs of order g'".

t4 = 1 — dt ln exp( t /2)—1 5 ~ m+ t/
M v'2~ —m M

(2.16)

The integral in (2.16) can be rewritten by adding it to it-
self after making the change of integration variable
t —+ —t

b, ~&
'= 1 —51n(m/M) — —f dt in[1 g t /(p m —)]exp( —t /2)

M &s~
(2.17)

Unlike the case of the photon propagator, this expression is distinctly different from that in (2.14). Moreover, after we

set 5= 1 the expression in (2.17) still depends on the mass parameter M. Recall that this parameter was not present in
the final expression for the photon propagator in (2.12).

Previous investigations have had to address the appearance of the mass parameter M in the coefficients of the 5 ex-
pansion. In general, if one calculates to first order in 5, one finds that after setting 5= 1 the mass parameter M remains.
To eliminate the dependence on this mass parameter one can use the method of minimal sensitivity; to wit, one argues
that since the exact theory is independent of M when 5=1 the optimal value of M for the approximate theory (the 5
series truncated at some finite order) is that for which the series is least sensitive to variations in M [11]. Thus, our pro-
cedure is to set 5= 1 in the 5 series and find the value of M for which the derivative of this series with respect to M van-

ishes. Applying this procedure to the formula in (2.17) with 5= 1 gives the following value for M:

M=m exp f dt in[1 g t /(p m )]exp—( —t /2)
&s~

(2.18)

Now, substituting this value of M into (2.17) with 5= 1 gives

b, ~s ', =—exp — f dt in[1 g t /(p m )]exp( ——t /2)
m &8~

(2.19)

The form of this expression indicates that the 5 expansion is nonperturbative in character. Furthermore, the result in

(2.19) is totally different from the result of the loop expansion given in (2.14). This clearly demonstrates that the 5 ex-
pansion and the loop expansion are inequivalent computational schemes. The large-g behavior of this result is discussed
in the next section.
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III. SPECULATIVE COMPUTATION OF THE FERMION
CONDENSATE IN THE MASSIVE SCHWINGER MODEL

643

In the previous section we used the 5 expansion to compute a leading-order approximation to the electron propaga-
tor. The result is given in (2.19). The result in (2.19) has a nonperturbative structure; it is not a series in powers of g. It
is therefore interesting to examine this structure in the strong-coupling limit. In the limit of large g, the formula in
(2.19) has a simple asymptotic behavior:

g(2) P yn (g )
v'2

lg

where we have used the identity

1 ~dt
lnt e '= 1 2 = —y —21n2,v'~ o vg

where y =0.577 215. . . is Euler's constant. The asymptotic behavior in (3.1) is nonperturbative because it contains the
coupling constant g to the power —1. Such a result could never be obtained from a weak-coupling expansion to any
finite order because every Feynman graph contributing to the fermion propagator is proportional to an even power of g.

The result in (3.1) bears a striking similarity to the formula for the fermion condensate in the limit of large g for the
massive Schwinger model [12]. The exact result for this quantity is known to be

(3.2)

The similarity of the two formulas in (3.1) and (3.2) encourages us to attempt a direct calculation of the strong-coupling
behavior of the fermion condensate in the massive Schwinger model using 5 expansion techniques. We present the cal-
culation below.

The Lagrangian for the massive Schwinger model (two-dimensional quantum electrodynamics) is

,'(F"") +——,'—p (A") +g(m+i8 gA)—g,
where we have given the photon a mass IM. We introduce the parameter 5 as follows:

's

Xs= ,'(F""—) +—'p(A")—+M/

(3.3)

(3.4)

Treating 5 as a small parameter, we expand (3.4) to first order in 5:

'(F" ) + '—(—A") +M—gf+5Mgln /+0(5 ) (3.5)

The fermion condensate can be expressed as a ratio of two functional integrals:

f2)A2)$$$ g(0)g(0)exp —fdxXs
(lip) =

f2)A2)$2)/exp —fdxL&
(3.6)

Next, we substitute (3.5) into (3.6) and expand the functional integrals in the numerator and denominator to first order
in 5. Also, because we are interested in the strong-coupling (g ~ ao ) behavior of (3.6), we neglect the terms m +i 8 in
comparison with gA. In addition, we make a further intuitive approximation based on the fact that the limit g —+ 00 is
equivalent to the massless limit m ~0. In this limit the photon propagator has a pole at g /~. We will be working in
the approximation where there are no fermion loops; thus, to maintain the essential content of the theory, we make the
identification p =g /vr. Thus, we will treat p as large and neglect —,'(F" ) in comparison with —,'p A . Thus,

f2)A2)&2)g P(0)g(0)exp ,'p f dx—A—Mf dxPg—

5M f2)A2)$2)gg—(0)g(0)exp ,'p f dx—A——M fdxgf fdygln( —gA/M)g

X f2) A2)$2)f exp —
—,'p fdx A M fdx Q—Q

—5M f2)A 2)$2)P exp ,' p fdx A —M—fdx gg f—dy g ln( —g A /M )g (gazoo) . (3.7)
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Before we begin the evaluation of this ratio of functional integrals, we perform an important simplification. We re-
place the term ln( —gA /M) by —,

' ln(g A /M ). This simplification eliminates the y matrices from the integrands in

(3.7).
Our objective is now to evaluate the functional integrals in (3.7). To do so we must discretize space-time. This

discretization reduces functional integrals to products of ordinary integrals, which we will be able to evaluate in closed
form. However, this discretization involves the introduction of a lattice spacing a, which regulates the theory. We will
choose the value of a to be consistent with the phase space (uncertainty) relation dx dp /2m = 1:

Qg =277 . (3.&)

Here, a, the unit of distance on the lattice, plays the role of dx and g plays the role of the basic mass or momentum unit,
dp.

We now perform each of the lattice fermion integrals in turn. The simplest such integral occurs in the first term in
the denominator of (3.7):

f2)QSgexp M f—dxPg =g f dP;dg; exp( Ma—P, P,).
=gdet( —Ma )=(M a ) (3.9)

where X is the number of lattice sites.
Next we evaluate the fermion integral in the first term in the numerator of (3.7):

fnynyq(0)y(0)exp M f dx—PP =P f dP, d$, $0$. 0exp( Ma'P—, P,).
=+ det( —Ma )( —2Ma )=(M a )

2 4 N

i%0 Ma

We continue by evaluating the fermion integral in the second term in the denominator of (3.7):

(3.10)

f2)@)gfdye(y) ,'ln[g A—(y)/M ]g(y)exp —M fdxfP = ga —'ln[g A /M ] g f dg;dg;i7ijg exp( Ma g;g;)—
J

= pa —,
' ln[g A~/M ] P det( Ma )( ——2Ma )

J i'
=(M a ) — gln[g A, /M ]2 4 X

J
(3.11)

Fin'ally, we evaluate the fermion integral in the second term in the numerator of (3.7):

f2)$2)gg(0)g(0) f dying(y) ,'ln[g A—(y)/M ]g(y)exp( M f d—xfg)

=pa —,'ln[g A /M ]P fdP;dP;Pgkg, P exp( Ma P;g;—)

=(M a ) g ln[g AJ /M ]+ ln[g A0/M ]
2 2 2

M a j~O

We insert the results of the above four fermion integrations into (3.7) to obtain

(3.12)

(PP) — f2)A exp — p f dx—A
Ma

1—5M fSA
2 exp ——p f dxA 2 & ln(g A /M )+in(g A0/M )

M a

X fXlA exp — p fdxA— +5M fXlA exp ——p2f dxA g ln[g2A2/M2]
J

Next, we proceed to the evaluation of the integrals over the photon field. On the lattice we replace

(gazoo) .

(3.13)
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f2)A exp ——p fdxA

by

g f dx;dy; exp ——'a
IM (x;+y; )

I

where we have written the components of the vector A" as x and y. We then make analogous replacements for each of
the functional integrals in (3.13). Before evaluating the resulting products of ordinary integrals it is useful to expand
the resulting ratio to first order in 5. When this is done, we see that an enormous simplification occurs; all of the in-

tegrals but one cancel from the numerator and denominator leaving a simple ratio of double integrals:

fdx dy exp[ —
—,'a p (x +y )]ln[g (x +y )/M ]

(~~) 2
1

5
Mg2 2 f dx dy exp[ —

—,'a p (x +y )]
(gazoo) . (3.14)

We evaluate the elementary integrals in (3.14}by intro-
ducing polar coordinates:

( 1f g ) ——
I 1 —5 ln[g+2/(Ma p) ]+5y/2]

M

To simplify this expression we replace p by g/&nas dis.-

cussed above after (3.6) and we eliminate the lattice spac-
ing a in favor of 2m /g according to (3.8):

2

(Pg) —— [1—51n[g/(M&2m )]+5y/2]
2M'

Finally, we impose the principle of minimal sensitivity
as we did at the beginning of this section for the case of
zero dimensions. We set 5=1 and differentiate (3.16}
with respect to M to determine that value of M for which
(3.16) is stationary:

M= g e&" (3.17)

Substituting M in (3.17) back into (3.16) gives our final re-
sult for the first order in 5 calculation of the electron con-
densate in the strong-coupling limit:

(3.18)

This result is similar in structure to the exact answer in
(3.2) and is larger numerically by about 6%. Of course,
the coefficient of g in (3.18) is sensitive to the manner in
which the theory is regulated. However, the accuracy of
the result and the simplicity of the calculation encourages
us to apply 5 expansion techniques to other nonperturba-
tive problems in the context of gauge theories.

IV. DIAGRAMMATIC RULES FOR THE 5 EXPANSION
IN ABELIAN GAUGE THEORIES

The speculative calculation presented in Sec. III lends
support to the use of the 5 expansion for nonperturbative
calculations in gauge theories. However, we must em-
phasize that the above calculation was particularly easy
because it was carried out in the limit of strong coupling.

—5M' (m —
gf ) (4.1)

There are N vertices having one photon line [see Fig.
3(b)]. For each of these vertices momentum p +k

&
enters

on one electron line, momentum p exits on the other elec-
tron line, and momentum k& exits on the photon line. A
representative vertex amplitude is

e5M' (m —P —k', )
' 'y (m —P )', (4.2)

I

In this region we were able to make powerful asymptotic
approximations that enabled us to evaluate the functional
integrals directly. In general, these sorts of asymptotic
approximations are not possible and it is necessary to
determine the 5 expansion systematically by using di-
agrammatic rules. We discuss these rules for quantum
electrodynamics in this section.

It is easiest to express the graphical rules for the 5 ex-
pansion in momentum space. In this section we will state
the rules for performing calculations to first order in 5.
We will then use these rules in Sec. V to calculate the
two-point photon Green's function to first order in 5. We
will see in Sec. V that this approximation to the two-
point photon Green's function is identical to the sum of
all one-fermion-loop weak-coupling Feynman graphs
contributing to this Green's function. (There are an
infinite number of such graphs. )

We read off the graphical rules of the 5 expansion to
first order in 5 from the provisional Lagrangian in (1.5)
written in d-dimensional momentum space. The ampli-
tude for an electron propagator, represented by a thick
line, is 1/M. The amplitude, D""(k), for a photon propa-
gator, represented by a thin line, is identical to that in the
weak-coupling expansion; for example, in the Feynman
gauge it has the form g" /k . There are many vertices,
all proportional to the small parameter 5. Each vertex
has two fermion lines and any number of photon lines
ranging from 0 to N. We find the amplitudes for all of
the vertices by expanding the expression

5M' 1t(m —P —eg) g

as a polynomial in A. Thus, the amplitude for a vertex
having n photon lines is proportional to e". Some of the
vertex amplitudes are shown on Fig. 3. The simplest ver-
tex [Fig. 3(a)] has no photon lines. Its amplitude is
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b lVI' '-(m —ff)
'

%F I'

k2

be~1I' (m —Q —gl) 'P" (m —P)

(a: , 0 ~N —1)

2II 1 —N(, g if p )N b —a —2—A

x(m P If-, )b &—~(m-—g)

+k, +k2
(a: O~X —6 —2, 6 0~ N —2)

+ k)

kg

ki

be'M' "(m —-g - I(, F. —(f2)'—

x( 9 If —-t-f )'~"(m-8-I(l)
xp (m —$)'

(a. : 0 ~N —b —c —3,

0~ N —3)

e) ki

4M1 —N
( g If If If (f )

Jv —a —b c—d —3—

xz" (m - ff - If, —g, ij,)'&~-
x(m —$ —if, —Pz)'p (m —g —If, )

P + k) ~k2"'
I(+ I(

xq (m —Jf)'

(a: 0~N —b —c —d —4, b; 0~X —c —d —4,

c: O~N —d —4 d: O~N —4)

FIG. 3. Vertices for the 5 expansion in order 6. Shown are (a) the vertex having no photon lines, (b) vertices having one photon
line, (c) vertices having two photon lines, (d) vertices having three photon lines, and (e) vertices having four photon lines.

(4.3)
I

where a is an integer that ranges from 0 to N —1.
There are N(N —1)/2 vertices having two photon

lines [see Fig. 3(c)]. For each of these vertices momen-
tum p +k

&
+kz enters on one electron line, momentum p

exits on the other electron line, and momenta k, and k2
exit on the photon lines. A representative vertex ampli-
tude is

2gM 1 N( p kt
—k. }N

—a —b —2

Xy"(m —
gf

—
fE, ) y"(m —gf)',

where a is an integer that ranges from 0 to N —2 —b and
b is an integer that ranges from 0 to N —2.

There are N(N —1)(N —2}/6 vertices having three
photon lines [see Fig. 3(d)]. For each of these vertices
momentum p+k, +k2+k3 enters on one electron line,
momentum p exits on the other electron line, and mo-
menta k, , kz, and k3 exit on the photon lines. A
representative vertex amplitude is

e 5M' (m gf
—k', ——k2 —k3) ' ' y"(m —p' —k, —k~)' y(m —p —k', ) y (m —gf)', (4.4)

where a is an integer that ranges from 0 to N —3 —b —c, b is an integer that ranges from 0 to N —3 —c, and c is an in-

teger that ranges from 0 to N —3.
In Fig. 3(e) a vertex having four photon lines is shown. The amplitude for this vertex is

—e 5M' (m —
gf

—k', —lf! —k —k )
' " ' " y"(m —p —k', —k' —k' )"y"(m —

gf
—k', —g }'

Xy (m —
gf

—g, ) y (m —P)'. (4.5)

V. PHOTON PROPAGATOR TO FIRST ORDER IN 5

The graphical rules described in Sec. IV allow us to calculate straightforwardly any Green's function to 6rst order in

5. However, the calculation is necessarily long and tedious because the 5 expansion is nonperturbative; it contains an
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enormous amount of information (equivalent to an infinite number of ordinary weak-coupling Feynman diagrams) in

every order in 5. The purpose of this section is to illustrate the use of the graphical rules described in Sec. IV by begin-

ning the calculation of the two-point photon Green's function to first order in 5; we will confine our attention to just the
e contribution to the photon propagator. Specifically, we will consider only the vertices of order e shown in Fig. 3(c).
There are two contributions to the Green's function arising from these vertices. The first is

N —2N —b —2 dd
5e M' & g f „Tr(m —gf)

' y"(m —P —g) y"(m —P)' .
b=o ~=o (2m}" M

(5.1)

The second contribution comes from the crossed graph; that is, the amplitude in (5.1) with~ and A, interchanged and
with k replaced by —k. To obtain (5.1) we have used the vertex amplitude given in (4.3) and proceed as follows. First,
we take k =k& = k2 to be the momentum Qowing through the graph. Second, we connect the electron lines together
with the electron propagator I /M and integrate over the electron momentum p. This electron loop is associated with a
trace and a factor of —1. Note that the momentum integral over p appears to be strongly divergent because the power
of p in the integrand is positive. This amplitude can be represented by a graph having one vertex to which one fermion

loop and two external photon lines are attached (see Fig. 4).
The expression in (5.1) can be simplified dramatically using the cyclic property of the trace to combine the first and

last factors in the trace. The resulting integrand no longer depends on the summation variable a. This allows us to per-
form the sum on a:

N —2 dd
5e M' g (N b —1)f— d

Tr(m —gf) y (m —P g) y" —.
b p (2n)d M

(5.2)

The result in (5.2) simplifies further if we combine it with that for the crossed graph. To obtain the simplification we

make the change of summation variable b ~N —b —2 and the change of integration variable p ~p +k in the ampli-

tude for the crossed graph. The result, after using the cyclic property of the trace, is

N —2 d 1
5e M' g (b+1)f „Tr(m —gf)

"
y (m gf

——|t!)y"
b=0 (2n. )" M

(5.3)

This expression differs only slightly from that in (5.2);
namely, the factor (N b —1) i—s replaced by (b+1).
Now, when we combine (5.2) and (5.3) we obtain a result
proportional to N:

N —2 dd
5e2NM Ng f I T—r(m P )N

—b —2

b p (2m)

Now, if we evaluate S (N) at N =0, we obtain

S(0}=—a

Using this result, we reduce the expression in (5.4) to

dd
5e f— d

Tr(m —P) 'y (m —P k) '—y" .
(2n )

(5.6)

(5.7)

Xy~(m —
gf

—k') y" . (5.4)

The fact that (5.4) is proportional to N is crucial because
we must differentiate with respect to N and set N=O.
This procedure removes the factor of N and evaluates the
sum at N =0. Thus, we must understand what it means
to evaluate a sum whose limits range from b =0 to
b =N —2 at N =0. To do so we consider the following
generic sum S (N):

N —2

S(N)= g ab .
b=0

(5.5}

We rewrite S (N) by adding and subtracting the
b =N —1 and b =N terms:

N
S(N}=—ax —a~-i+ g ab .

b=0

Apart from the factor of 5, this amplitude is precisely
the lowest-order one-fermion-loop contribution to the
photon propagator in the conventional weak-coupling ex-
pansion. The graph representing this amplitude is shown
in Fig. 5. We make several observations. First, the graph
in Fig. 5 has two vertices; this is in distinct contrast with
the one-vertex graph in Fig. 4. The usual weak-coupling
amplitude for the electron propagator seems to have ma-
terialized from the elaborate structure of the vertex am-
plitude in the 5 expansion. Second, while the momentum
integral in (5.1) appeared to be horribly divergent, we
now see that it is no more divergent than the one-loop
graph in Fig. 5. We control the divergence of the integral
by differentiating with respect to N before attempting to
perform the momentum integration. Third, while (5.1)
appears to depend on the mass parameter M, it is actually
independent of M. The disappearance of this parameter

Ja
k ~

FIG. 4. Graph contributing to the photon propagator in or-
der 5e2.

FIG. 5. Lowest-order one-fermion-loop contribution to the
photon propagator in the conventional weak-coupling expan-
sion.
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is the signal that the 5 expansion reduces to an ordinary
weak-coupling expansion. The parameter M does not
drop out if the Green's function has external electron
lines, as we wiH see in Sec. VI when we calculate the elec-
tron propagator to order 5. For such a case the 6 expan-
sion is not equivalent to another approximation scheme;
it provides a new nonperturbative window on the theory.

VI. ELECTRON PROPAGATOR TO FIRST ORDER IN 5

—5M' (m —P ) (6.1)

We must differentiate the expression in (6.1) with respect
l

In this section we continue with the approach of the
previous section. Our objective here will be to perform a
calculation of the electron propagator to leading order in

5, but only to order e . The vertices shown in Figs. 3(a)
and 3(c) contribute to the amplitude.

The graph arising from the vertex in Fig. 3(a) is shown
in Fig. 6(a). The amplitude for this graph is

to N and set N =0. The result is simply

—5M in[(m —gf)/M] . (6.2)

The graphs arising from the vertices in Fig. 3(c) are
shown in Fig. 6(b). There are actually two graphs to con-
sider. The first has the amplitude

FIG. 6. Graphs contributing to the electron propagator in
order 5. Shown are (a) the graph of order e and (b) the graph
of order e .

N —2.V —6 —2 d dk—e 5M' g g J dDq„(k)(m gf) —' " r (m gf
——k) r"(m —P)',

b =0 =0 (2')
(6.3)

where D&„ is the free photon propagator. The second graph is the crossed graph, whose amplitude is obtained from
(6.3) by replacing p by —p.

We must now differentiate the results in (6.3) and the crossed amplitude with respect to N and set N =0. This pro-
cedure is more complicated than it was for the photon propagator because there are eight cases to consider, depending
on whether N, a, and b are even or odd. Here, we just consider one of these cases to illustrate what is involved in the
calculation. Let us take N, a, and b to be even:

N=2n, a=2a, b=2P.
Also, we will make a further simplification by setting m =0. With these replacements, (6.3) becomes

n —1n —p —1 ddk
(k) ~ &( ~)" & ~[( +k)~]~rra s

Summing on a gives

d "k—e 5M' "(p )" 'f dD&„(k)r r" g (n —P)[(p+k) /p ]~.
(2n )

"
p=o

Next, we perform the sum over P using the identity

(6.4)

(6.5)

n —1

g (n —P)z~=
p=o

1 [n(1 —z) —z(1 —z")] .
(z —1)

(6.6)

Note that this quantity vanishes when N =n =0. Thus, the only contribution comes when we differentiate (6.6) with

respect to n and we may set n =0 elsewhere in (6.5). Our final result for the contribution to the electron propagator is

d 2 +k—e 5 D (k) " —( +k) —( +k) ln (6.7)

It is apparent that the 0(5) contributions to the electron propagator in (6.2) and (6.7) bear no resemblance to the

weak-coupling graphical expansion of the electron propagator to order e . Furthermore, these 5 expansion amplitudes
have a nontrivial dependence on the mass parameter M. When the value of M is determined by the principle of
minimal sensitivity, as in Secs. II and III, the resulting expressions involve exponentials of the coupling constant and
are truly nonperturbative in character.

VII. EQUIVALENCE OF THE 5 AND FERMION-LOOP EXPANSIONS
IN THE PHOTON SECTOR TO FIRST ORDER IN 5

In this section we generalize the calculation in Sec. V to higher orders in e. We show that the order-6 term in the 6
expansion in the photon sector (by the photon sector we mean those Green's functions whose external lines are photon
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lines) is equivalent to the sum of all one-fermion-loop weak-coupling Feynman diagrams for that Green s function.
The approach used in this section is based on considering only graphs in the 5 expansion having no photon loops. To

illustrate our procedure we begin by examining a one-fermion-loop graph in the weak-coupling expansion having four
external photon lines. This graph is shown in Fig. 7. The amplitude for this graph from the conventional Feynman
rules is

d

e „Tr m — 'y m — —
&

'y" m — —
~

—
2 X™ r 2 (7.1)

Let us reconstruct this amplitude using the 5 expansion. To do so use the vertex shown in Fig. 3(e), whose amplitude is
given in (4.5). Recall that in Sec. V it was necessary to combine two graphs, (5.1) and its crossed graph to establish the
equivajence in order e of the 5 expansion and the conventional weak-coupling expansion. To higher order in e we will
see that in the 5 expansion a set of n distinct graphs (related by cyclic permutation of the labeling of the photon lines) is
needed to obtain each weak-coupling graph in the loop expansion of the n-point function. For the graph in Fig. 7 the
appropriate four 5-expansion graphs are depicted in Figs. 8(a)—8(d). For example, the amplitudes for the graphs in
Figs. 8(a) and 8(b) are

dd
4M 1 Nf — P

(2m } M O&a+b+c+d
p)N

—4 —a b —c —d—h, (m p k' )d

Xy~(m —p —k', —k', )'y"(m —p —k', k,—k',—)'y (m —p)' (7.2)

and

dd
5 M' f dP 1 g Tr(m —p) a c a(m —p —g )d

0~ah+c+d+N~—4

X(m —P —k', ) y"(m —P —k', —k'2)'y"(m —P —k, —k~ —k3) y, (7.4)
d

Nf ~ g (N 3 b —c —d—)Tr(m —p—) y "(m —p —
k& )'y"

O~b+c+d~N —4

Xy (m —p —g4 —g, )'y"(p —k4 —k', k, ) y—"(m —p)' . (7.3)

First, we use the cyclic property of the trace to combine the first and last factors therein and carry out the now trivial
summation over a in each of these amplitudes. This introduces into each amplitude a factor of N —3 —b —c —d and
changes the range of the summation to O~b+c+d N —4. Then we again use the cyclic property of the trace to
align the y matrices in the four amplitudes of the 5 expansion according to the order in (7.1). To make each factor in
between the y matrices coincident with those in (7.1) we shift the integration variable of the momentum integral in each
amplitude accordingly and use conservation of momentum k, +k2+k3+ k4 =0. That is, we leave the integration over

p in (7.2) unchanged, shift p ~p —k4 in (7.3), and so on. Now the four amplitudes are

yd
5e M f g (N 3 b —c—d—)Tr(m ——P)

O~b+c+d~N —4

X(m —p —k', —k' ) y"(m —p —g, —k' —g )
" '

y
d

5e4M Nf ~ g (N —3 b —c d—)Tr(m——p)'y (m —p —k, ) y"
O~b+c+d~N —4

X(m —P —k, —k )
" ' y(m —P —k, —k —k')y

and

d

5e M f d g (N 3 b —c d—)Tr—(m ——gf) y (m —
gf

—1|!,) ' y"
0 b+ ~+d cN —4~

(7.5)

(7.6)

X(m —
gf

—k, —k'z) y"(m —p —k, —k2 —k'3)'y . (7.7)

We redefine the summation variables and add the four amplitudes in (7.4) —(7.7) to obtain

5.4NM "f P„-y Tr(m P)N ' —' '-y'-(m- -P~, )dy~-d

bO+d c+~4N

X(m —P —k', —g2)'y"(m —gf —k', —k'~ —k, ) y . (7.8)

Again, we observe that, as in (5.4), the sum of the amplitudes of the cyclically permuted graphs in the 5 expansion is
proportional to N. Difi'erentiating (7.8) with respect to N at N =0 removes the factor of N and requires us to evaluate
the sum at N =0. Using the generalization (Al) of (5.6), which we have proved in the Appendix, yields

d
5e f „Tr(m —P) 'y (m —P —k'& ) 'y"(m —P —k'& —k'2) 'y"(m —

gf
—g, —kz —k3) 'y (7.9)
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k2

p+k)

p+ k) k2

p + k. + k2+ kg

k,

FIG. 9. One-fermion-loop contribution to the two-point pho-
ton Green's function having one internal photon line.

k)

FIG. 7. Lowest-order one-fermion-loop contribution to the
four-point photon Green's function in the weak-coupling expan-
sion.

application of (7.10), to graphs that include an arbitrary
number of internal photon lines.

Setting 6 = 1 we reproduce the corresponding one-loop
weak-coupling amplitude in (7.1) and the observations
following (5.7) apply accordingly. It is now easy to see
how the above procedure generalizes to the n-point
Green's function in the photon sector for any n. Thus,
we will forego here the general proof of the equivalence.

It remains to show how the equivalence between the 5
and the loop expansion to first order in the photon sector
can be extended for the case of internal photon lines. Be-
cause the amplitude of the photon propagator in the 6 ex-
pansion is identical to that in the weak-coupling expan-
sion, if we link external photon lines to make internal
photon lines the equivalence between the two expansions
continues to hold. For example, if we link two external
photon lines of the weak-coupling graph in Fig. 7 by
operating with

d "k2 d "k4f f „(2m)"5d(k~+k4)D" (k2) (7.10)
(2n ) (2')"

on (7.1), we obtain the amplitude for the graph in Fig. 9.
It is immediately clear that this amplitude is equal to the
sum of the amplitudes for the graphs in Figs. 10(a)—10(d),
which are obtained by operating with (7.10) on the ampli-
tudes of the graphs in Figs. 8(a) —8(d). It is now obvious
how the equivalence that we proved above for graphs
with only external photon lines extends, through repeated

VIII. EQUIVALENCE OF THE 5 AND FERMION-LOOP
EXPANSIONS IN THE PHOTON SECTOR TO SECOND

ORDER IN 5

In Ref. [1] a derivation of diagrammatic rules for
higher orders in the 5 expansion for Lagrangians such as
those in (1.1) and (1.2) was given. For example, expand-
ing (1.2) to all orders in 5 gives

Xs= ,'(F"') +—M—gg+Xr, (8.1)

oo gk
Xz=MP g, [1 [n(m+iP eg —)/M]] "P .

kt
(8.2)

To a given order E in the 5 expansion the interaction
part of the provisional Lagrangian is

K

Xz =MP g [(m+i8 eA )/M—) "Pq 'P .
k=1

(8 3)

The Kth-order provisional Lagrangian has a diagrammat-
ic interpretation if all ak are regarded as integers. The
Green's functions of the original theory in (8.1) to order
5 can be obtained from those of the provisional La-
grangian, whose interaction term is given in (8.3), by ap-
plying the derivative operator

where we define the interaction part of the Lagrangian
Xz to be

k2
k) k~

b)

k2

b)

k)

Ip Ip

c)

k,
k3 k)

d)

k,

c)

k,
k~ kl

d)

Ip Ip

FIG. 8. The four graphs, related by cyclic permutation of the
labeling of the photon lines, in the 6 expansion corresponding to
the weak-coupling graph in Fig. 7.

FIG. 10. The four graphs in the 6 expansion corresponding
to the weak-coupling graph in Fig. 9.
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1 exp[2lrij(1 —k) /K] 8

j=l k=1 Jl Oak
(8.4) b)

at a&=a2= . =a+=0. For X=1, we find P& =5,(&)—

and the procedure reduces to the one given in Sec. I. For
E =2, P& =5+5 and P2 = —5+5 . In this case we

get from (8.3)

X =M(5+5 )g[(m+i8 eA—)/M] g

+M( 5+—5 )P[(m+irl e—A /)M]~g, (8.5)

and from (8.4)

c)

D (2) —1

2 Ba
(8.6)

d)

A diagrammatic interpretation of (8.5) is straightfor-
ward. Two different types of vertices appear, one propor-
tional to 5+5, and the other proportional to —5+5 .
In the photon sector of the theory we consider four types
of graphs, as depicted in Fig. 11. The two graphs in Figs.
11(a) and 11(b) have one vertex each and yield amplitudes
that contribute to first as well as to second order in 5.
The two graphs in Figs. 11(c) and 11(d) contain both
types of vertices and contribute only to second order in 5.
Note that in Fig. 11(c}there is a fermion loop at each ver-
tex whereas in Fig. 11(d) a single fermion loop connects
the two vertices.

For the 5 and loop expansion to be equivalent order by
order, it is necessary that the one-fermion-loop contribu-
tions from the graphs in Figs. 11(a), 11(b), and 11(d) all
cancel in second order in 5. This is most easily shown by
examining the expansion of the exponential of the pro-
visional action:

FIG. 11. Four graphs in the 5 expansion that contribute to
the four-point photon Green's function to second order in 5.

grangian in (8.5). It is convenient to define

T(x,a) =M/(x)[ [m +i/ eg —(x)]M } hatt(x), (8.8)

and to rewrite (8.5) as

Xi(x)=5[T(x,a) T(x,P—)]+5 [T(x,a)+T(x, i3)] .

(8.9)

Utilizing the symmetries and antisymmetries in the vari-
ables a and 13 at a =P=O of (8.6) and (8.9), we derive

S=1—f d xXI(x)+ —,
' f fd xd yÃj(x)XI(y)+

(8.7)

1 8[D' 'Xj(x)] jj 0= 5 +—5 T(x,a}
Ba 2 a=O

(8.10a)

where Xj is the interaction term in the provisional La- and, to order 5,

[D'"Zi(x)ZI(y)].=p=0=5' T(x,a)T(y, P)Ba 8

We combine the results in (8.10) to obtain to order 5

a=P=O
(8.10b}

S —1=(D' 'S) jl o=—

with

1 8
Ba 2 ila2 '

0 2 Ba 8 a=P=O
(8.11a)

and

S,(a)=M f ddxg(x)I [m+i8 eA( )x]—/M} g(x) (8.11b)

Sz( aP)= Mf f d"xd yg(x)[[m+iP eP( )]/xM} P—(x)P(y)[[m+iP eA(y)]/M}~g(y) . — (8.11c)

In this form it is obvious that the contractions on Sl give graphs of the types shown in Figs. 11(a) and 11(b). Note
that the distinction between the two graphs disappears because of the action of D' '. Observe from (8.11a) that these
graphs contribute to first as well as to second order in 5. The contractions on S2 in the photon sector lead to the two
types of graphs in Figs. 11(c)and 11(d):
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S2(a,p)=M f f d xd yp(x){[m+ip eA—(x)]/M] g(x)p(y){[m +i8 —eA(y)]/M]~p(y) (8.12a)

and

S2(aP)=M f f d"xd yg(x){[m +i8 e—A(x)]/M] g( x)g(y){[m +i8 e A(y)]/M]~t/r(y) . (8.12b)

S z in (8.12a) contains the desired result that the second-order term in the 5 expansion corresponds to the sum of all
two-loop graphs. We will see that the contributions of S2 in (8.12b) cancel. From the momentum-space Feynman am-
plitude for the electron propagator 1/M we have

g(x)P(y)= 5 (x —y) .
M (8.13)

Using (8.13) we simplify S 2 by eliminating one integration and combining {[m +i' eA —(x) ] /M ] {[m +i 8—e A (x ) ]/M ]
~=

{[m +i d eA—(x) ] /M ]
+~. Applying the derivative operator D' ' we find that

8 8 bS2(a,p)
Ba a a=P=O

S, (a)
Ba a=O

(8.14)

which cancels the first 0 (5 ) term in (8.1 la). Thus, in the photon sector of the original theory in (1.1) we obtain

S =1+ 1+—
0 2

a—5
Ba a=P=O

(8.15)

which proves the equivalence to second order.
Several remarks appear to be in order here. First, it

should be noted that nowhere in this section have we

used the particular form of the minimal coupling term
(m+i8 eA )/—M. This indicates that the equivalence
between the loop and the 5 expansions extends to all to-
pologically similar theories as long as the electron propa-
gator is a constant in momentum space. This equivalence
holds to all orders in 5. Finally, we note that no extra
consideration was given to the case of internal photon
lines because the observation at the end of Sec. VII re-

garding internal photon lines applies trivially to all or-
ders. This result and (8.13) lead to the practical observa-
tion that, even if external electron lines are present, the
Feynman rules will never be any more complicated than
those given in Sec. IV despite the increasingly complex
form of the interaction in (8.3). That is, no 5 vertex will

ever be connected to any other by an electron line. It
thus is possible to assemble any n-vertex graph in the 5
expansion from one-vertex graphs by linking photon lines

according to the operation of (7.10).

APPENDIX

=( —1)" 'f ( —1, , —1) (A 1)

We establish (Al} by induction. First, note that (5.6} is
precisely (Al) when n =2. Now suppose that we have
verified (Al) for all numbers smaller than n. We rewrite

f (x2, . . . , x„)
O~x + . . +x„~N—n2

(A2)

by separating off the summation over x„:
N —& x2 xn —1

For the proof in Sec. VII it is necessary to generalize
the result of (5.6) to apply to multiple summations.
Hence, we must show that for any number n & 1 and for
any function f of n —1 variables

f(x, , . . . , x„)~„,
O~x + +x„~N —n2

ACKNOWLEDGMENTS
0 x + . . +xn N —n2 n —1

x„=O
f(x2, . . . , x„) .
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(A3)

The expression in (A3) can now be split into two terms:

O~x +. . . x ~ V —(n —1)2 n —
1

N —n —x —.. . —x2 n —1

f(x2, . . . , x„,,a)

x + . . -+x =N —(n —1)2 n —1

N —n —x — -- —x2 n —1

a=O
f (x~, . . . , x„,,a) . (A4)
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The second term in (A4} vanishes. To show this we add a
term to the sum for which a=N —(n —1}—xz—x„,and subtract it again. Because of the con-
straint x&+ . . +x„,=N —(n —1) the sum reduces to

0

X2 . . . , X ) A
x + . . +x =N —(n —1) a=O

2 n —1

N —2

( 1) g f( 1.. . la)~~ o
a=0

(A6)

Again, we apply the induction assumption for n =2 in
(Al) on (A6) and find that (A2) at N =0 is equal to

The first term in (A4) at N =0 fulfills the induction as-
sumption for n —1. Thus, (A4) at N =0 is

f (x—z, . . . ,x„„0) . (A5)
( —1)" 'f( —1, . . . , —1} .

This completes the proof by induction.

(A7)
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