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Two-dimensional gravity as the gauge theory of the Clifford algebra
for an even-dimensional generalized Chem-Simons action
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We investigate the two-dimensional version of the Chem-Simons action derived from the recently pro-

posed even-dimensional generalized Chem-Simons action. We show that the two-dimensional topologi-

cal gravity emerges if we choose the Clifford algebra as a nonstandard gauge symmetry algebra required

from the generalized Chem-Simons action. We find a "hidden order parameter" which differentiates the

gravity phase and nongravity phase.

PACS number(s): 11.15.—q, 02.40.+m, 04.20.—q

I. INTRODUCTION

Three-dimensional Einstein gravity has been formulat-
ed as an ISO(2, 1) gauge theory of the standard three-
dimensional Chem-Simons action by Witten [1]. It has
also been recognized that three-dimensional conformal
gravity can be formulated by the SO(3,2) gauge theory of
the Chem-Simons action [2]. It is a very natural but non-
trivial question if we can extend the three-dimensional
treatment to other dimensions. At first thought, it is im-
possible to extend the three-dimensional Chem-Simons
action into other dimensions naively. Recently we have
proposed the generalized Chem-Simons actions which
are formulated in arbitrary dimensions [3]. In this paper
we investigate two-dimensional gravity by the newly pro-
posed even-dimensional generalized Chem-Simons ac-
tion.

In generalizing the standard Chem-Simons formula-
tion, we have introduced "quaternion algebra" to accom-
modate even forms, odd forms, fermions, and bosons. In
other words, the gauge field is not a standard one-form
anymore but includes higher forms whose coefficients of
the wedge products may be fermionic and bosonic. As a
result the constructed generalized Chem-Simons action
has an unusual gauge symmetry which includes anticom-
mutators in the gauge transformation not because of the
fermions but because of the fermionic nature of the forms
and the quaternion. In this paper we omit introducing
fermions while the general formulation to include fer-
mions in the generalized Chem-Simons action has been
given in our recent papers [3].

In standard Chem-Simons theory, the relation between
the action and the topological quantity such as the Chem
character is clear, where the gauge algebra is an SU(N)
Lie algebra [4]. In our generalized Chem-Simons formu-
lation, although similar algebraic relations hold as in the
standard case, the topological meanings of the new
theory are not yet established where the gauge algebra is
the Clifford algebra, as we will show in this paper. In the
three-dimensional gravity analyses by the standard
Chem-Simons action with an ISO(2, 1) or SO(3,2) gauge
group the topological nature of the action is related to
the locally flat nature of the three-dimensional gravity.
In other words, the gauge theory formulation of the

three-dimensional gravity does not contain dynamical de-
grees of freedom. It is likely that the two-dimensional
gravity formulated by the generalized Chem-Simons ac-
tion does not contain dynamical degrees of freedom ei-
ther. In fact we show that some of the equations of
motion of the two-dimensional gravity formulated by the
generalized Chem-Simons action coincide with a particu-
lar gauge-choice version of the two-dimensional topologi-
cal gravity [5,6]. It is an interesting question how the
dynamical degrees of freedom appear after the natural
breaking of the full gauge symmetry.

It is generally believed that the vierbein which gen-
erates the metric in the realistic gravity, when it is formu-
lated as a gauge theory of some gauge symmetry, con-
tains dynamical degrees of freedom and gets nonzero
values and thus the gauge symmetry will be broken. The
notion of the broken phase and unbroken phase into the
gravity has been introduced by Witten [7]. In this paper
we identify the gauge symmetry as the one induced by the
Clifford algebra and investigate the classical solutions of
the equations of motion of the generalized Chem-Simons
action. In identifying two-dimensional gravity, we

gauged away the gauge fields to be consistent with the
equations of motion. We then find classical solutions
which could be interpreted as a nonvanishing zweibein of
"broken phase" in certain cases. In our formulation we,
however, have a zero-form gauge field which gets a non-
vanishing classical value in certain cases and discriminate
the gravity phase and the nongravity phase. We claim
that there exists a "hidden order parameter" which
differentiates the gravity phase and the nongravity phase.

Here we describe how the formulation and the results
of this paper could be related to previous works. One of
the aims of this paper is to show that the two-
dimensional generalized Chem-Simons action with a
Clifford algebra leads to a two-dimensional topological
gravity, which is contrasted with the three-dimensional
case where the three-dimensional standard Chem-Simons
action with an ISO(2, 1) gauge group has led to the three-
dimensional Einstein-Hilbert action [1] while the SO(3,2)
gauge group has led to the three-dimensional conformal
gravity [2]. The notion of topological gravity was first in-
troduced by Witten, after the formulation of topological
field theory [7]. It was recognized later that topological
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field theory can be reproduced by a particular gauge
fixing of the vanishing Lagrangian [5]. This has triggered
many investigations of topological field theory and topo-
logical gravity from the gauge-fixing point of view [6]. In
particular, two-dimensional topological gravity has also
been investigated [5,6]. In a certain choice of gauge
Clifford algebra, we obtain one version of two-
dimensional topological gravity from the two-
dimensional generalized Chem-Simons action. Since the
important developments of two-dimensional gravity by
the matrix model formulation [8,9], it has been recog-
nized that two-dimensional topological gravity is the
starting basis of two-dimensional gravity with a matter
field [10].

In the meantime topological field theories have been
developed from different points of view. In particular, to-
pological meanings and the quantization of the BF [the
action being the product of a curvature two-form F and
(d —2)-form B] system have been investigated by many
people [11]where higher-order forms were introduced to
construct the higher-dimensional topological invariants.
The topological invariant of the Abelian version of the
BF system is related to the linking number and the non-
Abe1ian extension has been intensively studied [11]. Part
of our action coincides with the non-Abelian version of
the BF system. Our original action, however, includes a
"quaternion" which leads to a clear difference between
the BF action and the generalized Chem-Simons action.
In other words the anticommutators in the gauge trans-
formation can never be induced by the coupled BF sys-
tem.

In formulating the generalized Chem-Simons action,
we introduce higher-order forms. Myers and Periwal
have introduced higher-order odd forms to formulate an
odd-dimensional version of the Chem-Simons action [12]
while we need to introduce both even forms and odd
forms and furthermore a "quaternion algebra" to obtain
the even-dimensional version of the generalized Chern-
Simons action. As a result the gauge transformation in-

cludes anticommutators in addition to the standard com-
mutator, which necessitates the Clifford algebra, while
the odd-dimensional extension only includes commuta-
tors and thus the adjoint representation of the Lie algebra
closes the gauge transformation. The introduction of a
"quaternion algebra" together with the higher-order
forms has led to the new gauge symmetry whose special
example can be realized by the Clifford algebra. These
are the most unusual aspects of our formulation.

This paper is organized as follows. In Sec. II we derive
a pure bosonic version of the even-dimensional general-
ized Chem-Simons action. In Sec. III we provide the
general formulations of the Clifford algebra, which are
used in the generalized Chem-Simons formulation as a
gauge algebra. We first analyze the case of the simplest
algebra in Sec. IV. We then extend the analysis into the
next nontrivial algebra where we obtain the two-
dimensional topological gravity in Sec. V. Here we inves-
tigate several cases of the gauge algebra for Euclidean
and Minkowskian gravities. In Sec. VI we investigate the
case of a two-dimensional conformal algebra which is ex-
tended to include the Poincare symmetry. In Sec. VII we

then try to interpret the classical solutions obtained in
the previous sections. In particular the meaning of the
hidden order parameter and the classical gravity phase
space are discussed. We then provide a conclusion and
discussions in the last section.

Q=jd
V=it 1+ai,

(2.1)

where d =dx "0„. A and a consist of odd forms while A

and 8 consist of even forms. The gauge fields and param-
eters A, A, 8, and a carry an index of a certain gauge
algebra. More explicitly the gauge fields can be expressed
as

A[ ] +—A~ ] dx~n, dx.+A. ~Q 1

2 pv

A = A"'dx" +—A' 'dx" R, dx h, dx~'+
T 1

2 PVP

.(2.2)

where A „' '. . .„denotes a bosonic p-rank tensor and T, is
Pl Pp

a generator of the gauge algebra. The degree of the
highest form of A or A coincides with the dimension of
space-time. The gauge parameters & and a have similar
forms as the gauge fields. As a base manifold we consider
an N-dimensional compact manifold without boundary.
1,i, j,k carry "quaternionic structure" which is defined as

1'= l, i'=~, 1, j '=e, l, k'= &]&21,

ij= —ji=k, jk= —kj= —e2i, ki= —ik= E'&j

(2.3)

where (E„E2)= (
—1, —1),( —1, + 1),(+ 1, —1),(+ 1, + 1).

In the case (e„e2)=( —1, —1), l, i, j,k satisfy the algebra
of the quaternion. For the rest of the three cases, l, i, j,k
satisfy the general linear Lie algebra gl(2, R).

The even-dimensional generalized Chem-Simons ac-
tion is defined by

Sb =ITr„(—,'A. QA+ —,'A'),

where Trk picks up the kth component and takes the
trace of the gauge algebra. The action (2.4) is invariant
under the gauge transformation

6A =QV+[A, V] .

To prove the gauge in variance of the generalized
Chem-Simons action, we need the following settings. We
first introduce two types of gauge fields and parameters:
A, , =(even form)1+(odd form)i&A, and 2& =(odd

II. DERIVATION OF TWO-DIMENSIONAL
GENERALIZED CHERN-SIMONS ACTION

In this section we summarize the derivation of the pure
bo sonic version of the even-dimensional generalized
Chem-Simons action. The formulation can be straight-
forwardly extended to include fermions, which have been
given in our previous papers [3].

We introduce a gauge field A, an exterior derivative
operator Q, and a gauge parameter V as

A=Aj+Ak,
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form) j+ (even form)k E Ak. In particular VE A, and

A, Q C Ak. In case 1,i, j,k satisfy the "quaternion alge-
bra, "we can show the following relations.

(i) A, A, -A„A,Ak-Ak, AkAk-A, ,

A —co

A =e2(P+e,B),
8 =v +E)b

(2.10)

The arrow denotes the differential operation on all fields
and parameters to the right of the arrow. Using the
above relations, it is easy to show the gauge invariance of
the action (2.4) under the gauge transformation (2.5).
The reason why we take the kth component of the trace
for the action comes from relation (iii); i.e., cyclic invari-
ance in the trace is valid only for the kth component.

The equation of motion derived from the action (2.4) is

P=QA+A'=0, (2.6)

where the first equation means the following: if
A,

&
EA

&
then A,

&
A, ]EA

&
and similarly for the other two

equations;

(ii) [Q,Ak]=QAk, [Q,A, , ]=QA,

where Q =0 and Q G Ak',

(iii) Tr&(kk A, , ) =Tr&(A, &Ak ) . S2 =fTr[ P( d cv+ cv ) P—B],
which is invariant under the gauge transformations

(2.11)

50=[((}v]

5cv=dv+ [co,v]+ [P, u ],
5B=du+ [co,u ] +[B,v]+[/, b] .

(2.12a)

(2.12b)

(2.12c)

It should be noted that the [P,u ] term is a special term
which causes the nonclosure of the gauge algebra within
commutators. The equations of motion derived from the
action (2.11}are

0 = 6)E'2Q

where P, co, and B are zero-, one-, and two-form gauge
fields while v, u, and b are zero-, one-, and two-form
gauge parameters, respectively. By substituting the ex-
pressions (2.10) into (2.7), we obtain the explicit form of
two-dimensional generalized Chem-Simons action:

S, =ezfTr[A(dA+ A )
—

—,'e, A ] . (2.7)

In the integrand, we pick up the forms whose degrees
coincide with dimension N. The above action is invariant
under the gauge transformation

5A =dit+[A, it] —e, I A, a j,
5A = —da —

t A, a]+[A,it],
(2.8)

where [, ] and [, ] are commutator and anticommutator,
respectively. The same order of the forms in Eq. (2.8)
should be equated. It should be noted that the term
[A,a] makes it impossible to close the gauge algebra
within the adjoint representation. We need the gauge
algebra which is closed under not only commutators but
also anticommutators. The equations of motion for A
and A have the form

dg+g2 —p g 2=p

dA +[A, A ]=0,
(2.9)

which are derived from (2.6) by using (2.1) or from (2.7)
directly.

We now obtain very explicit expressions of two-
dimensional action. The gauge fields and parameters are
expressed as

where V is a curvature and thus the above equation of
motion is nothing but a flat connection condition.

Introducing the defining relations of (2.1) into Eqs.
(2.4) and (2.5), we obtain the explicit form of the pure bo-
sonic version of even-dimensional generalized Chern-
Simons action:

2 —p 7

d p+ [co,p] =0,
dco+cv [$,B J =0,

(2.13a}

(2.13b)

(2.13c)

which are also derived from (2.9). In this paper we study
the equations of motion (2.13) and the gauge transforma-
tions (2.12) at the classical level. We will find some classi-
cal solutions of Eqs. (2.13}modulo the gauge transforma-
tions (2.12).

III. REPRESENTATIONS OF ALGEBRA

To carry out the explicit analyses, we need to specify
the representations of the gauge algebra which are used
in the generalized Chem-Simons theory. As we have
pointed out in the preceding section, the gauge symmetry
which we are concerned with is an unusual one. The
gauge algebra represented by generators T, has to be
closed under both commutators and anticommutators:

[T„Tb]=f,t, 'T, ,

[7„&b]=dgb &, .
(3.1)

In other words the algebra has to be closed under multi-
plications

T, Tb —k,b'T, . (3.2)

We also require the associativity of T; however, we need
not require the existence of an inverse element for any
T, . A semigroup algebra is an algebra which satisfies
(3.2). Each element of a semigroup algebra is constructed
by a linear combination of elements which are the multi-
plication of an element of a field K and an element of the
semigroup so as to satisfy the distributive law. In this pa-
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c(k, 2 —k ): l, y„y,
c(k, 4—k): l, y, r b yy r
c(k, 6—k): l, y„yQb7rgb+fryQb/yyg

(3.3a)

(3.3b)

(3.3c)

per we consider K as a set of real numbers, and products
of y matrices as the elements of the semigroup.

The simplest examples which satisfy (3.2} are the
Clifford algebras. The bases of the Clifford algebra
c(k, n —k ) are constructed from y matrices which satisfy

I y. , y, j =271.b w1th 71.b =diag(1, . . . , I, —1, . . . ,
—1).

The indices a and b run from 1 to n, where n is an in-

teger. The y matrices are represented by 2" X2"
matrices. The k in c(k, n —k) denotes the number of
positive metric with 71„=1 while n —k in c( k, n —k )

denotes the number of negative metric with g„=—1.
In the case of n =(even integer), the bases of the

Clifford algebras c(k, n —k ) are, for example,

c(0,3)=—c(0,2),
c(2, 1)=—c(2,0)—=c(1,1),
c(5,0)—=c(4,0),
c(1,4) -=c(1,3)=-c(0,4),
c(3,2)—=c(3, 1)=—c(2,2),
c(6, 1)-=c(6,0)—=c(5, 1),
c(2, 5)—=c(2,4) =—c(1,5),
c(4, 3)=-c(4,2) =-c(3,3),
c(0,7)=c(0,6) .

(3.7)

It is easy to check the isomorphisms (3.7) because there is
a correspondence between (y„y) (a =1, . . . , n) in (3.3)
and y, (a = 1, . . . , n + I) in (3.6).

We find other isomorphisms:

sc(k, 2 —k): l, y,
sc(k, 4—k ): l, y,b, y,
sc(k, 6 —k): l, y,b, yy, b, y,

(3.4a)

(3.4b)

(3.4c)

where y, b =(y, yb yb—y, )/2, y,b, =[V,yby, +yby, y,
+y, y, y b (a ~—b ) ]/6, and y =y, y „. The above
representations are closed under multiplications explicit-
ly. One can also obtain the special Clifford algebras
sc(k, n —k ).

sc+(1,1)—=gl(1,E),
c(0,3 )

-=sc+(4,0),
c(2, 1)—=sc+(2, 2) -=gl(2, E),
c(5,0) -=c(1,4) -=sc+(5, 1),
c(3,2) =-sc+(3, 3) -=gl(4, E),
c(6, 1)=—c(2,5),
c(4,3)—=c(0,7)—=gl(8, E},

(3.8)

where the special Clifford algebras include the products
of only an even number of y matrices. It should be noted
that sc(k, n —k) is isomorphic to sc(n —k, k). These
generators are also closed under multiplications. When

y =1, i.e., 71» 7I„„=(—1)"'" ", there exist two
chiral projection operators P +—=(1+y)/2 which satisfy
(P ) =P*. Using the projection operator P+, we can
obtain the chiral version of the special Clifford algebra:

sc+(1,1): P+,
sc+(4,0),sc+(2, 2) P+ P+y

sc+(5, 1),sc+(3, 3): P+,P+y,b,

(3.5a)

(3.5b)

(3.5c}

c(k, 3 —k): l, y, ,

c(k, 5 —k ): 1,y„y,b,
c(k, 7 —k): 1,~.,~.b, ~.b, ,

(3.6a)

(3.6b)

(3.6c)

where y, . . . y „has to be 1 or —1, i.e.,
(
—1)"'" " = —

(
—1)" in order to be closed under mul-

tiplications. The Clifford algebras defined in (3.6) are iso-
morphic to those in (3.3) as

whose number of elements is half of the special Clifford
algebra. Like the special Clifford algebra, sc+( kn

—k)
is isomorphic to sc (n —k, k). Similarly sc (k, n —k) is
obtained by using P instead of P . sc (k, n —k) is al-

ways isomorphic to sc+(k, n —k ).
In the case of n = (odd integer), the bases of the

Clifford algebras are

where gl(n, E) is the Lie algebra of the general linear Lie
group GL(n, E). One finds the above isomorphisms from
the following correspondences:

rl r2 r3
1

sc+(4, o}: Pr, 4, Pr2. ,Py3. ,

c(2, 1): y»y2, y3

sc+(2, 2): Py, 4, Py24, Py34,

c(5,0): yl y2 V3 y4 y5

(»: r»r12 Y13 V14y15

Y16 Y26 Y36 y46 Pr56+

c(3,2): y1, 'V2 'Y3 'V4 ys

sc'(3, 3): Pr«Pr26 PY36 Py46 PY56

c(6, 1): y1, y2 'Y3 y4 'Vs y6 y7

c(2 5): r1y2 V345 V456 V563 Y634y7

c(o,7): y1 r2, y3, r4 y5, yb, r7

(»: r123r234 Y341 Y412 y5 r6 y7

(3.9)

Those correspondences assure that the above representa-
tions in the same category satisfy the same anticommuta-
tion relations and the metric structure as the bases of the
algebras.

The Clifford algebras defined in (3.4) are isomorphic to
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gl{n, C} in the case y = —1:

sc(2,0)—=gl(1, C),
sc(3, 1)=—gl(2, C),
sc(6,0)=—sc(4, 2) =-gl(4, C) .

(3.10)
sc(6 0) Yl6 Y26 y36 y46 Y56

y14 y24 y3 Fy45 46

(3.11)

n Xn matrices with real elements ER and complex
elements EC, respectively. The isomorphism
sc(6,0)—=sc(4, 2) can be confirmed by the correspondence

P behaves as the imaginary unit i because its square is
—1 and it is commutative with all elements.

The special ClifFord algebra sc(k, n —k ) with P 2=1 is

the direct sum of sc+(k, n —k } and sc (k, n —k),
i.e., sc( k, n —k ) =- sc+ (k, n —k ) sc (k, n —k }. General
linear algebras gl(n, R) and gl(n, C} are represented by

Finally, we should note that the above-mentioned bases
of the ClifFord algebra are constructed by the direct prod-
uct of the bases of c(0,3) and c(2,1). The bases of c(0,3)
and c(2,1) algebra are constructed by the following 2X2
matrices:

i 0
1= 0 —i

1 0
c(0,3): 1=

I

1 0 1
c{2,1}: 1'=

0 1, i'=

0
0

0 1

1 0

0 1

—1 0

0 1

—1 0

(3.12a)

(3.12b)

One can then construct the bases of the Clifford algebras by the direct product of c{0,3} and c{2,1} bases, as

c(0,3}ec(2,1)e 8c(2, 1) or c(2,1)e 8c{2,1):

and

c(0,2): Yi =i,y2= j
c(0,4): y, =i1', y2=j1', y3=ki', y4=kj',
c(2,4): y, =ie1'81', y2=je 1'81',y3=kei'81', y4=kej'81', y, =kek'ei', y6=kek'ej',

c(2,0): yi=i', y2=j',
c(2,2): y, =i'81', y2=j'81', y3=k'ei', y4=k'8j',

c(4,2): y, =i'el'el', y, =j'el'e 1',y, =k'ei'el', y, =k'ej'el', y, =k'ek'ei', y, =k'ek'ej' .

(3.13a)

(3.13b)

(3.13c}

(3.14a)

(3.14b}

(3.14c}

It should be noted that the Clifford algebras constructed
in (3.14) are manifestly equivalent to gl(n, R).

case the equation of motion (2.13a) leads to

,=0, (4.3a)

IV. gl(1, R) AND gl(1, C) MODELS

We consider the simplest example in this section. The
generator is composed of only one scalar representation,

which satisfies (2.13b} automatically. Then Eq. (2.13c)
leads to

(4.1}
dcils=0 . (4.3b)

and thus field and parameter components can be ex-
pressed simply by

Under the condition (4.3a), the gauge transformations
(2.12) become

(4.2) 5$,=0, (4.4a}

v= —'v u= —'u b= —'b
Ss 2

It is apparent that the generator (4.1} is closed within
commutator and anticommutator by itself. We may say
that the scalar representation is commutative but not an-
ticommutative. In other words, the gauge transformation
of co, includes a —,

' Ig„u, ) =P,u, term. Thus the gauge

symmetry is not the standard Abelian one but a new type
of gauge symmetry. The gauge algebra is isomorphic to
the gl(1, R)=—sc+(1,1) algebra in the present case. In this

563,=du, , (4.4b)

5B,=du, . (4.4c)

In order to investigate the solution of co, and B, we
need to introduce de Rham cohomology. The de Rham
cohomology is the set of equivalence classes of closed
forms which differ only by exact forms. The p-form de
Rham cohomology group HIa is defined by
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HIR =ZIR /BI
Zg() —

I
g(P). d g(P) —0 I

BI()
I
g(P). g(P) —da(P —1)

~

(4.5)

which satisfies (2.13b). Then Eq. (2.13c}leads to

dt's —dcos —0 .

The gauge transformations (2.12) are

(4.11b)

where ZIR and Bgz denote sets of the closed p forms and
the exact p forms, respectively. The most important
property to define the cohomology is the nilpotency of
the derivative operator, i.e., d =0. Equation (4.3b)
means that cv, belongs to ZdR while Eq. (4.4b) means that
co, is modulo B„"R. Therefore co, belongs to Hd„'. We also
find B, belongs to HdR.

If the base manifold is a compact manifold without
boundary, de Rham cohomology group is represented by
harmonic functions. In order to define harmonic func-
tions we need to introduce the metric. We consider the
Euclidean flat metric. The adjoint of the exterior deriva-
tive is defined by d* = —+ d e, where e is the Hodge star
operator. Both d and d* are nilpotent, i.e., d =d* =0.
A p-form harmonic function h,' ' is defined so as to satisfy

dh' '=0 d*h' '=0 .S 7 S (4.6)

Using the Hodge decomposition theorem, we can ex-
plicitly show that the solutions of the equations of motion
modulo gauge transformations are harmonic functions
and thus elements of the cohomology group HIR. The
gauge fields co, and B, are decomposed into

~ =da' ) /d~p( )+$ ("

S S s

(4.7)

where a', ', a,"', and p', ' denote zero-, one-, two-form
functions, respectively, while hs'" and hs' ' denote one-
and two-form harmonic functions defined by (4.6), respec-
tively. Equation (4.3b) leads to d'p,' '=0 while the gauge
transformations (4.4b) and (4.4c) make it possible to fix
the gauge as a,' '=0 and a,"'=0. Thus we obtain the
gauge-fixed solution (4.3a) and harmonic functions:

=0
S

~ =h"'
s s

B =I"'.
S S

(4.8a)

(4.8b)

(4.8c)

In the case that the two-dimensional manifold is a con-
nected Riemann surface with genus g, the dimension of
one-form harmonic functions is 2g and that of two-form
harmonic function is one.

Next we consider the model with gl(1, C) algebra. This
algebra is represented by the generators

5$,=5/, =0,
5',=du„5', =d8, ,

5B,=du„5B,=du, .

(4.12a)

(4.12b)

(4.12c)

Therefore the gl(1, C) model is the direct product of two
gl(1, R) models at the classical level.

It is important to recognize that the equations of
motion over the genus g Riemann surface with the new
type of gauge symmetry pick up the important topologi-
cal information to specify the Riemann surface. The
equation of motion of the even-dimensional generalized
Chem-Simons action is equivalent to the flat connection
condition. It is this new type of gauge symmetry with the
flat connection condition that specifies the topological na-
ture of the base manifold even with the simplest symme-
try.

V. MODELS OF c(0,3) AND c(2,1) CLIFFORD ALGEBRAS

T, = lI, r, ~

a=1, 2, 3 I.

y matrices satisfy the properties

(5.1)

We next consider implementing two-dimensional gravi-
ty in the present framework. In order to investigate two-
dimensional gravity from the gauge theory point of view,
we need the gauge symmetry which accommodates the
zweibein and the spin connection as gauge fields. We
show that the gauge symmetry with c(0,3) and c(2, 1) alge-
bra can do the job in the two-dimensional generalized
Chem-Simons formulation. This is in contrast with the
three-dimensional gravity of the standard Chem-Simons
action where the ISO(3) and ISO(2, 1) Poincare gauge
symmetry or SO(4, 1) and SO(3,2) gauge symmetry did the
job [1,2]. Just to accommodate the zweibein and the spin
connection as gauge fields, we simply need SO(3), SO(2, 1),
or ISO(1,1) gauge symmetry for two-dimensional gravity.
We, however, need the gauge symmetry with the c(0,3) or
c(2,1} representation to close the gauge algebra of the
two-dimensional generalized Chem-Simons action. In
other words, we need one singlet representation in addi-
tion to an adjoint representation of SO(3), SO(2, 1) to close
the algebra (3.1). We will discuss ISO(1,1) Poincare
gauge symmetry in the next section.

As shown in Sec. III, the c(0,3) or c(2,1) algebra in-

cludes the generators

T, =
I l, i I .

The gauge fields and parameters are decomposed as

P= —,'(P, +i(t), ), (v= ,'(co, +ice, ),—B=—,'(B,+iB,),

v= —,'(v, +iv, ), u =
—,'(u, +iu, ), b= ,'(b, +ib, ) . —

(4.9)

(4.10)

Ir. rb1 =2m. b

I.r. rb i=2&.b, r'
(5.2)

where e,23 1. The square of y, y2y3 = 1 leads to
YJ J ] f22 f33

—1 . Therefore the above system is classified
into the following two types:

Equation (2.13a) leads to

P, =y, =o, (4.11a)

'g) )
= '))q2 =g33 = —1 for c(0,3 ) algebra,

')))) ='))F2=1, '))33= —1, for c(2, 1) algebra .
(5.3)
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In the case of c(2,1) algebra we have assigned the
indefinite metric to the third direction without a loss of
generality. c(0,3) and c(2, 1) algebras include SO(3) and
SO(2, 1) symmetry, respectively. We decompose the
gauge fields as follows:

and

5$,=0,
s dVs

5B,=du, .

(S.1 la)

(5.11b)

(5.11c)
,'(—4.+)'.4'»

CO
—

&(CO +P CO ),
B=—,'(B,+y, B') .

(5.4)

P, +P'((},=0,
(5.5)

which lead to

,=0, (5.6a)

Other equations (2.13b) and (2.13c) lead to

d(()'+E' 'co (t) =0

dco, P'B, =0-,
d~a+ ( Eabc~ yaB 0

(5.6b)

(5.6c)

(5.6d)

(5.6e)

Using the solution of the equation of motion (5.6a), we
obtain the explicit forms of the gauge transformation:

5$,=0,
gya —Eabcy

5co, =dv, +(}t'u, ,

5co dv +E c—obvc+P us

5B,=du, ,

5B'=du'+E'"'(cobu, +Bbv, +ebb, ) .

(5.7a}

(5.7b)

(5.7c)

(5.7d}

(5.7e)

(5.7fl

Using the generators (5.1), we can rewrite the equation of
motion (2.13a) as

The singlet components p„co„and B, turn out to satisfy
the same equations of motion and gauge transformations
and thus pick up the same important topological infor-
mation of the space-time as the gl(1, R) model in Sec. IV.
Therefore, in the rest of this section we concentrate on
Eqs. (5.8) with the transformations (5.10). Equation
(5.8b) is the flat connection condition of SO(3) gauge sym-
metry or equivalently the curvature of the gauge symme-
try vanishes. The corresponding transformation (5.10b)
is the SO(3) gauge transformation.

In this model we can introduce the non-Abelian ver-
sion of de Rham cohomology as

H g' =Z g' /B g',
Zg() —

{g(P).Dg(P) —
P)

Bg() —
{g(P). g(P) —D &(P 1)

~

(5.12)

where D =d+co is the SO(3)-covariant derivative opera-
tor and satisfies D =0, i.e., the vanishing curvature of
SO(3) indicated by (5.8b). The B' modulo the gauge
transformation (5.10c) is considered to belong to the
two-form cohomology class 8&&, which is based on simi-
lar arguments as B, in Sec. IV. If the base manifold is a
compact manifold without boundary, the cohomology
class (5.12) is isomorphic to the set of harmonic func-
tions. Thus B' can be expressed as B'=h' ' after gauge
fixing, where h' ' is a harmonic function which satisfies
D*h' '=0 with a definition D'= —eD e. It now
remains to be interpreted for the one-form gauge field co'.

To investigate two-dimensional gravity from the gauge
theory point of view, we need to assign the zweibein e'
(a=1,2) and the spin connection co' to certain gauge
fields. For SO(3) gauge symmetry, we take the assign-
ment

A. c(0,3) model e —N e —co

12 3
(5.13)

a 0

The remaining equations are

(5.8a)

(5.8b)

First we consider a model with c(0,3) algebra. In this
case Eq. (5.6b) can be solved: with the Euclidean metric ri,b=diag(1, 1). As in the

present case we, hereafter, use the different sign assign-
ment of the two-dimensional metric from the original as-
signment of (5.3) by using the overall sign freedom for the
metric. Then Eq. (5.8b) can be decomposed into two
equations:

and

d COs (5.9)

de'+co be =0,
drab e ae =0

(5.14a)

(5.14b)
The gauge transformations are

5$'=0,
5N =dV +6 CObV~

M'=du'+E' '(cobu, +Bbv, ),

(5.10a)

(5.10b}

(5.10c)

In order to interpret e' as the zweibein, we need to as-
sume that e' is invertible at any point on the manifold ex-
cept for some points. The invertibility of e' can be
defined as dete„'%0 or equivalently e'e %0. We recog-
nize that the metric is not defined at the noninvertible
points. Equation (5.14a) is the standard torsionless con-
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dition. By using the scalar curvature R =e" e bR„'
where R'~=dao' and e" e„=6, we can rewrite Eq.
(5.14b) as

e ' =co', e'=co2,
12 1

(5.21)

R =+1 .
we find a torsionless condition and

5.15

Considering the fact that (I/2') fR =2(1—g) =Euler
number, we can identify the manifold in consideration as
a sphere (g=0). This is a very natural conclusion be-
cause the manifold with SO(3) isotropy is a sphere. Note
that this fact means one can make the zweibein e' inverti-
ble at any point on a sphere; in other words, there exist
some points where e' is not invertible unless the base
manifold is a sphere. If e is not invertible, Eqs. (5.14)
lead to

o3'= k'coo (k'=any constant parameters), (5.16)

where coo is a nonzero one-form and satisfies d~0=0.
The gauge transformation (5.10b) breaks the relation
(5.16) in general. We can thus always make e' invertible
locally. However, we cannot remove the points where e'
is not invertible from the manifold. The gauge transfor-
mation only transfers such points.

B. c(2,1) model

Next we consider a model with c(2,1) algebra. In this
case Eq. (5.6b) has a nonzero solution. We first consider
the solution with P'=0, and study the case of P'%0 later.
When P'=0, we obtain Eqs. (4.3) and (5.8) with the gauge
transformations (4.4) and (5.10). We find the same con-
clusion as that of the c(0,3) model except that there is
SO(2, 1) gauge symmetry instead of the SO(3) one. For
the c(0,3) model we have found Euclidean gravity with
the condition (5.15) if the manifold is a sphere; however,
for the c(2, 1) model we will encounter not only Euclidean
gravity but also Minkowskian gravity because SO(2, 1) in-
cludes both SO(2) and SO(1,1) symmetries. If we assign

R=+1 . (5.22)

This puzzling difference originates from the fact that
(5.20) and (5.22) are derived from SO(2, 1) and SO(1,2) fiat
connection conditions, respectively, while SO(2, 1) and
SO(1,2) are isomorphic. In other words, there is no
difference between de Sitter space and anti —de Sitter
space in two-dimensional Minkowskian gravity. This
means the sign of the cosmological constant is irrelevant
in two-dimensional Minkowskian gravity. It should be
noted that the different sign assignments of the zweibein
do not alter the invertibility. On the other hand it is
known that the Minkowskian metric cannot be defined
globally on the Riemann surface except for the g =1
torus. In the case of g =1 torus, nonvanishing constant
curvature cannot be defined globally in the Minkowskian
metric.

In the rest of this section we consider the solution with
P'WO for the c(2,1) model. From Eq. (5.6b) we find
(P3)~=(P') +(P ) %0 in this case. Using the gauge pa-
rameter v, we can always let P =0 by the gauge trans-
formation (5.7b). We then obtain

P'=+/ WO . (5.23)

Since the residual gauge transformation is the local scal-
ing

Qp3 —+ p3 2

we can always make P' =+/ constant, i.e.,

dP'=+dP =0 .

(5.24)

(5.25)

Taking into account the constraint (5.23), we rewrite the
gauge transformations (5.7) which include P and P':

2 ~2

12 3
7

(5.17)

and define the Euclidean metric g &=diag(1, 1), we ob-

tain a torsionless condition (5.14a) and

5co, =+) (u'+u )+
5(co'+co )=+2/ u, +

5B =P (b'+b )+
5(B'+B )= 2$b +—

(5.26a)

(5.26b)

(5.26c)

(5.26d)

R= —1.
Equation (5.18) means one can always make e' invertible
at any point on the Riemann surface with g ~2. It is a
well-known fact that R = —1 can be satisfied globally at
any point on the Riemann surface of g ~ 2.

In order to find Minkowskian gravity, we assign

From these transformations we can fix the gauge as

co, =O, cu'+co =0, 8 =0, 8'+8 =0, (5.27)

using the parameters u '+ u, u„b '+ b, b, respective-
ly. Under the conditions (5.27), Eqs. (5.6) lead to

e —co e —co ct) —0, co'+co =0, 8,=0, 8'+8 =0 . (5.28)

12 1
(5.19)

and define the Minkowskian metric q,&=diag(1, —1).
Then, we find a torsionless condition and

Therefore we find that all the components of co and 8
vanish.

To summarize, we obtain the following type of the
nontrivial classical solution:

(5.20)

If we, however, change the assignment of the zweibein as

P'=+/ =nonzero constant,

other fields=0 .
(5.29)
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In this solution all the zweibein and the spin connection
vanish.

VI. MODELS OF sc(4,0), sc(3,1),
AND sc(2,2) SPECIAL CLIFFORD ALGEBRAS

0= ,'(-4.+yk. + ,'r-.b0"»
co —2(los+red + &r beg ),
B=

—,'(B,+yB,+ ,'y,—bB'b) .

Under the decomposition (6.5), Eq. (2.13a) leads to

(6.5}

T.= [ I,y, y.b lu, b =1,»»4], (6.1)

where y, b and y are defined by

In the analyses of the preceding section, two-
dimensional Poincare symmetry ISO(l, l) has not been
realized because the symmetry algebra was too small to
accommodate it. We need to extend the symmetry alge-
bra to include ISO(1,1). Since the conformal symmetry is
a minimal extension to close the algebra, we consider the
two-dimensional conformal gravity. sc(3,1) and sc(2,2)
special Clifford algebras include the I.ie algebras of
SO(3,1) and SO(2,2) groups, respectively, to realize Eu-
clidean and Minkowskian conformal gravity. This is in
contrast with the three-dimensional case where ISO(2, 1)
Poincare symmetry is extended to SO(3,2) gauge symme-

try to investigate the three-dimensional conformal gravi-
ty [1,2]. We also consider sc(4,0) special Cliff'ord algebra
which includes the Lie algebra of SO(4) symmetry.

The generators of sc(4,0), sc(3,1), and sc(2,2) algebras
are represented by the following y matrices:

0'+rid. ,'0—"—4.b
=o

4.ct.+ ,'&.b,-d4 "0"=o

which are found to be equivalent to

(6.6)

(6.7a)

yabycd p

(6.7b)

(6.7c)

Other Eqs. (2.13b) and (2.13c) in the present case are

drab+ a ycb b yca p

dao, + ,'P' B,b =—0,

dao ——'e dP' B' =0
ab+ a ~cb yabB + 1+&abcdy B —p

(6.7d)

(6.7e)

(6.7f)

(6.7g)

The explicit forms of the gauge transformations (2.12) are

yab p [ya Yb ] ~

r =~&r2r3r4

while y matrices satisfy the standard relation

(6.2a)
5$,=5/, =0,
5yab yacU b abc—

U
a

5co, =du, ,'P u b
—~—

(6.8a)

(6.8b)

(6.8c)

Ir. rb]=2m. b . (6.2b)

[3 ab Ycd ] 2(9acrbd+ 1bd Yac 9bc Yad lad Ybc }

The generators in (6.1) satisfy the following commutation
and anticommutation relations:

5cos dU ~ + 4 Ea—bcd P u

5ua =dva +m' v' —m v'
C C

+p' u 'Qe'b'dp,
d

u—, —,

(6.8d)

(6.8e)

[r.»y]=[r.»l]=[y y]=[y 1]=[11]=0

[ Yah& Ycd ] ( 9ac gbd abc gad }+ abcdy

[3 ab~ Y ] )~abcd3 ~ [yah~ i Yab

[r I] =2r [I I]=2

(6.3)

5B,=du, ,

5B,=du, ,

gg ab d+ ah+ ~a + cb b + ca
C C

+Ba Ucb Bb U ca+pa bcb yb bca

(6.8f)

(6.8g)

(6.8h)

where e&234 1 and g=g»g22g33g44. The above system is
classified as

g» =
q2z

=g» =
g44

= 1 for sc(4, 0} algebra,

rif $ 7)22 7)33 1, g44 = —1 for sc( 3, 1 ) algebra

g»=rI22=1, g33=g44= —1 for sc(2, 2) algebra . (6.4)

With respect to the assignment of the indefinite metric, it
is sufhcient to consider the above three cases without a
loss of generality. sc(4,0), sc(3,1), and sc(2,2) algebras in-
clude the Lie algebras of SO(4), SO(3, 1), and SO(2,2)
gauge symmetry, respectively. The gauge fields are
decomposed as

]+@
2

+ (6.9)

which satisfy P+ =P+, where y =r)=l for sc(4,0) and
sc(2,2) algebras. Using P+ we can rewrite the generators
as

T,+= [P+,P+y, 4la =1,2,3] . (6.10)

One should notice that T, + and T, are decoupled un-
der multiplications. T, + and T, as generators satisfy
the same algebra as (5.1). This comes from the fact that

As is pointed out in Sec. III, there exist chiral projection
operators for sc(4,0}and sc(2,2) algebras. The chiral pro-
jection operators P+ and P are defined by
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sc(4,0)=sc+ (4,0)6sc (4,0)-=c(0,3)6c(0,3) and sc(2,2)
=—sc+(2,2)esc (2,2) -=c(2,1)ec(2,1), where sc+(4,0)
=—sc (4,0)—=c(0,3) and sc+(2,2}—=sc (2,2)=—c(2,1), as is
discussed in Sec. III. Therefore sc(4,0) and sc(2,2) alge-
bras in this section are equivalent to the product of two
c(0,3) algebras and the product of two c(2,1) algebras, re-
spectively.

We first investigate a model with the sc(4,0) algebra.
As discussed above, the ac{4,0) algebra is equivalent to
the product of two c(0,3) algebras of Sec. III. Thus we
find all the components of P vanish from (5.8) and the
analysis of co and B is the same as the c(0,3) model. Since
the sc(4,0) model has an SO(3) one-form gauge field, Eu-
clidean gravity with R =+ 1 exists when the base mani-
fold is a sphere.

Next we study the sc(2,2) model. The sc(2,2) algebra is
equivalent to the product of two c(2, 1) algebras of Sec.
III. Thus the analysis is the same as in the c(2, 1) model.
If all components of P vanish, we find a two-dimensional
Minkowskian conformal gravity which has SO(2,2) gauge
symmetry. If the components of P, which correspond to
either the generator T, + or T, , do not vanish and other
components of P vanish, we find a nonvanishing SO(2, 1)
one-form gauge field in one of the c{2,1) sectors. There-
fore we obtain two-dimensional Euclidean gravity with
R = —1 when the base manifold has g)2. The argu-
ments on the Minkowskian gravity go parallel to the
c(2, 1) model. If the components of (() which correspond
to the generators both T, + and T, do not vanish, we
find all the components of co and B become zero.

We next investigate the sc(3,1) model. When P' =0,
we get two-dimensional Euclidean conformal gravity
which has SO(3,1}gauge symmetry. co, and co, belong to
one-form de Rham cohomology class, B, and B, belong
to two-form de Rham cohomology class, and B' belongs
to the SO(3, 1) version of the de Rham cohomology class.

For the solution with P' %0 we have to solve the equa-
tions carefully. The way of gauge fixing is as follows.
First, by using the parameters v and v' we fix the
gauge as P' =P =0. Next, by the residual gauge pa-
rameter v' we fix as P =0. From Eq. (6.7b) we find
P' %0 because some components of P'" have to be
nonzero. Thus, we find P =0 from Eq. (6.7c). Finally,
we obtain the nonzero components P' and P

' which
satisfy (P' ) =(P '), i.e.,

y12 —gy41~0 (6.11)

gy12 —+ y
1 2 24 (6.12)

we can make P' =kP ' constant, i.e.,

dy'&=+dy4i =() (6.13)

Taking into account the constraint (6.11), we obtain the
explicit forms of the gauge transformations (6.8) as

y12(u i2+ u 4i
) +

—F12( & 34+ 23)+. . .

(6.14a)

(6.14b)

Since the residual gauge transformation becomes the lo-
cal scaling

5(co' +co ')=2/' u +
5(co34+co23) = —2P'2u, +. . .

gB24 +F12(b 12+ b 4i
) +

$B i3 = + yi2(b + b 23)+

fi(B 12+B 41 ) + 2y12b 24+

5(B +B )=+2/' b' +

(6.14c)

(6.14d)

(6.14e)

(6.14f)

(6.14g)

(6.1411)

From the above transformations, we can fix the gauge as

QP —N —0 6) +N —co +6) —0S S

=0 B +B =B +B =Q
7

(6.15)

B =B =0 8' +B '=B +B =0
S S

(6.16)

We thus find that all the components of co and 8 vanish.
To summarize the present analysis, we have obtained

the following type of nontrivial classical solution:

P' =+/ '=nonzero constant,

other fields=Q .
(6.17)

In this solution all the zweibein and the spin connection
vanish like the case of the c(2, 1) model.

Finally we comment on how we obtain the gravity in-
terpretations from those analyses. In particular two-
dimensional Poincare gravity emerges in a natural way.
One should note that SO(4), SO(3, 1), and SO(2,2) include
the symmetries

SO(4) DSO(3),

SO(3, 1)MISO(2, 0),SO(3),SO(2, 1),
SO(2, 2) D ISO(1, 1),SO(2, 1) .

(6.18)

Here we consider the solution with P' =0. When P' =0,
Eqs. (6.7) lead to

s dt's

de +CO CO
—0C

(6.19a)

(6.19b)

If we reduce the full gauge symmetry by letting
=Q pr ~ =co =cg =Q, we obtain the flat

connection condition of SO(3) or SO(2, 1) gauge symmetry
from (6.19b). The interpretation of such solutions as
gravity is similar as in the preceding section. The Poin-
care gravity with ISO(2,0) or ISO(1,1) symmetry is ob-
tained by letting co' =co, co' =co, and co' =0.
ISO(2,0) and ISO(1,1) Poincare symmetries lead to Eu-
clidean gravity and Minkowskian gravity, respectively.
In the present examples we find the torsionless condition
and a vanishing scalar curvature (R =0). In the case of
Euclidean gravity with R =0, one can make the zweibein
invertible at any point if and only if the base manifold is a
torus (g= 1). For other base manifolds, we expect to

by using the gauge parameters u' +u ', u +u, u„
u„b' +b ', b +b b and O' . With the gauge
fixing conditions (6.15), Eqs. (6.7) lead to

24 13 0 12 + 41 34 + 23 0
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have the regions where the metric does not exist. The
zweibein of Minkowskian gravity with R =0 can also be-
come invertible at any point on a torus.

(C) P'=+/ =(P) =nonzero constant,

other fields=O . (7.2c)

VII. HIDDEN ORDER PARAMETER AND
TWO-DIMENSIONAL TOPOLOGICAL GRAVITY

P'=0, T'=0, R = —1 .

(B) g b =diag(1, —1)

P'=0, T'=0, R =+1 .

(7.2a)

(7.2b)

In identifying the two-dimensional gravity, we have
gauged away the gauge fields as many as possible to be
consistent with the equations of motion. We have then
tried to find the simplest possible equations of motion. It
turns out that most of the components of the zero-form
gauge field could be either gauged away or set to zero by
equations of motion except two of the components which
could possess a nonvanishing constant value. In other
words, there is a constant "hidden parameter" in the
zero-form sector, which could not be gauged away and
could be interpreted as a solution of equations of motion.
We have found the equations of motion of the two-
dimensional gravity, the torsion free condition, and the
constant curvature condition, in case the "hidden param-
eter" vanishes, i.e., all the zero-form components vanish.
On the other hand the zweibein and the spin connection
could be gauged away in case the "hidden parameter"
does not vanish. We could then call this "hidden param-
eter" the "hidden order parameter" to discriminate the
gravity phase and the nongravity phase. It should be not-
ed that these equations of motion could be identified as a
particular version of the equations of motion of the two-
dimensional topological gravity which has been intensive-
ly investigated [5,6, 10].

In considering quantum gravity, we need to identify
the classical phase space which can be identified as the
space of all solutions of the classical equations, modulo
gauge transformations [13]. Although we are not con-
cerned with quantum gravity in this paper, it is impor-
tant to recognize that the classical solutions of the equa-
tions of motion of the two-dimensional generalized
Chem-Simons action with a particular choice of the
Clifford algebra define the classical phase space of two-
dimensional gravity. The remaining equations of motion
together with the classical solutions are representatives of
those that belong to the same equivalence class modulo
gauge transformations.

Among the classical solutions and a part of equations
of motion given in the previous sections, we summarize
the results of three models where we omit describing the
singlet and two-form components:

(i) c(0,3) model with g &
=diag(1, 1)

a 0 7

(7.1)T'=de'+co be =0, R =+1 .

(ii) c(2, 1) model

(A) g b=diag(1, 1)

(iii) sc(3, 1) model

(A) P' =0,

two-dimensional Euclidean conforrnal gravity

with SO(3, 1) [MISO(2, 0),SO(3),SO(2, 1)]

gauge symmetry with symmetry reductions,

(7.3a)

0 for ISO(2, 0),
T'=0, R = +1 for SO(3),

—1 for SO(2, 1)

with ri, &
=diag(1, 1) .

(B) P' =+/ '=(P)=nonzero constant,

other fields=O .
(7.3b)

As pointed out in the preceding section, we should get
rid of the noninvertible zweibein, which are of "measure
zero" but change the topology of field space (and of the
space of gauge transformations) and permit the oc-
currence of global anomalies [1].

Concerning the constraints of the scalar curvature in
the above examples, the base manifold could be chosen
without metric singularities and global anomalies to be
compatible with the invertibility as follows: (i) sphere,
(ii A) Riemann surface with g 2, (ii B) nonexisting,
(iiiA) torus (g =1) for ISO(2,0), sphere for SO(3), and
Riemann surface with g )2 for SO(2, 1). In other words,
if the base manifold is chosen otherwise as mentioned
above we expect to have metric singularities and/or glo-
bal anomalies.

As we can see in the above examples, the classical
phase space corresponding to the two-dimensional gravi-
ty is obtained only when the zero-form gauge fields van-
ish. In the case of nonvanishing zero-form gauge fields,
the classical phase space has nothing to do with the grav-
ity. In other words, the zweibein and the spin connection
would be gauged away. In cases (ii) and (iii), there are
two types of solutions which are characterized by the
"hidden parameter" (P). ($)%0 specifies the nongravi-
ty phase space while (P) =0 specifies the phase space of
the gravity. In this sense the "hidden order parameter"
specifies the classical solutions of the two-dimensional
gravity. Even if (P) =0, nonsingular classical solutions
of the gravity may not exist unless the base manifold is
correctly chosen.

'When we investigate the gravity by the gauge theory
point of view, there is the following folklore stressed by
Witten [7]: The perturbative classical vacuum corre-
sponding to the vanishing vielbein and spin connection
may play an important role in considering quantum grav-
ity and is related to the unbroken symmetry. On the oth-
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er hand in the realistic gravity, nonvanishing vielbein
leading to the nonvanishing metric corresponds to the
broken symmetry. We may expect that there exists some
order parameter to differentiate the two different phases
just like the vacuum expectation value of the scalar field
in the standard gauge theory.

It is interesting to recognize that the hidden parameter
{P ) plays a similar role as the vacuum expectation value
of the scalar field in the Nambu-Goldstone mechanism.
One important difference from the order parameter of
unbroken and broken symmetry is that the hidden pa-
rameter (P) does not specify the breakdown of the gauge
symmetry but the different equivalence classes of the clas-
sical solutions (or classical phase space) of the gravity
modulo gauge transformations. In our formulation of
gravity, the gauge symmetry in consideration is unbroken
in the case of A=coj+e2(P+e, B)k=0, and broken in
the case of AAO, respectively. The gauge symmetry is,
of course, broken in the case (P )%0.

VIII. CONCLUSION AND DISCUSSIONS

We have given the derivation of pure bosonic version
of the even-dimensional generalized Chem-Simons ac-
tion, which has the unusual gauge symmetry including
the anticommutator. We have shown that the gauge
symmetry can be realized by Clifford-algebra-valued
gauge fields and parameters. It has been shown that the
two-dimensional generalized Chem-Simons action with a
particular choice of the Clifford algebra leads to two-
dimensional topological gravity, which should be con-
trasted to the three-dimensional case where the three-
dimensional standard Chem-Simons action with an
ISO(2, 1) gauge group and SO(3,2) gauge group led to the
three-dimensional version of the Einstein-Hilbert action
and the conformal gravity, respectively [1,2]. We have
investigated the classical solutions for various cases of the
Clifford algebra and found the intimate relations between
the value of the scalar curvature and the possible base
manifold to define nonsingular two-dimensional gravity.
In a special case of the classical solutions, we found the
nongravity solution which includes a nonvanishing zero-
form even after any possible gauging away. We claim to
interpret this nonvanishing zero-form value as a "hidden
order parameter" to differentiate the gravitational and
nongravitational classical phase spaces, or gravity phase
and nongravity phase.

We have identified the gravity theory by reducing the
equations of motion to the simplest form by using gauge
freedom. In this sense, two-dimensional gravity is repro-
duced in the special gauge choice. Following from the
arguments that the classical solutions modulo gauge
transformation define the classical phase space, we claim
that the equations of motion of two-dimensional gravity
obtained in this way define the classical phase space of
the gravity as an equivalence class of the gauge symme-
try.

The constant value of the scalar curvature as one of the
equations of motion has specified the possible base mani-

fold compatible with the invertibility of the zweibein on
the Riemann surface. In the case that the indefinite
metric is assigned to the Riemann surface, a sign ambi-

guity appears for the constant scalar curvature because of
the peculiarity of the isomorphism between SO(2, 1) and
SO(1,2). Furthermore a theorem says that the Min-
kowskian metric cannot be defined globally on the
Riemann surface except for the g =1 torus. It is interest-
ing to note that the Minkowskian gravity can be defined
on the g =1 torus without noninvertible points when the
cosmological constant vanishes.

We have found a new formulation to treat even-
dimensional gravity theories and applied to two-
dimensional gravity at the classical level. It is a quite
natural and important question to ask if we can carry out
similar analyses in four dimensions as in the two-
dimensional case. In fact in a separate paper [14], we
have shown that we can obtain four-dimensional confor-
mal gravity from a four-dimensional generalized Chern-
Simons action. As pointed out above, the classical gravi-
ty theory in four dimensions is also defined as the
equivalence class of the equations of motion modulo
gauge transformation. The next natural question is how
we quantize these gravity theories. Since we have formu-
lated two-dimensional gravity as a gauge theory from the
generalized Chem-Simons formulation, we expect the
quantization can be carried out as in the three-
dimensional gravity of the standard Chem-Simons action
[1,2].

In the standard three-dimensional Chem-Simons ac-
tion, the relations between the action and the topological
index with the help of the Chem character is clear. In
the generalized Chem-Simons action, the algebraic rela-
tions hold quite parallel with the standard relations. We,
however, do not yet have a clear understanding of the to-
pological meaning of the generalized Chem-Simons
theory where the gauge algebra is the Clifford a1gebra un-
like the standard SU(N) Lie algebra. We believe that it is
a mathematically very interesting subject to clear the to-
pological meaning of the generalized Chem-Simons
theory. As was pointed out in our previous paper, there
is already an interesting relation between the generalized
Chem-Simons theory and the topological particle field
theory which may provide new insight into the relations
between the algebra and fermions [3].

Although the topological meaning of the generalized
Chem-Simons theory is not yet established, it has a clear
connection with topological two-dimensional gravity. It
is general folklore that the topological gravity does not
contain the dynamical degrees of freedom. It is then an
interesting question how the dynamical degrees appear
with a natural breaking of the full gauge symmetry of the
Clifford algebra. We believe that the analyses of the
breaking pattern of the gauge symmetry and finding
dynamical degrees of freedom would help us to under-
stand the Einstein gravity which certainly includes
dynamical degrees of freedom in four dimensions.
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