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We discuss the extension of a version of quaternion quantum mechanics to field theory and in particu-
lar to the simplest example, the free scalar field. A previous difficulty with the conservation of four-
momentum for the "anomalous" bosonic particles is resolved.
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I. INTRODUCTION

(Alb)+—= A+b . (2)

This requirement follows from the fact that A, 4, and
possibly even b may be noncommuting quaternions. In
particular the momentum operator (Hermitian for the
complex scalar product) is defined by

(3)

The quaternion y matrices satisfy the standard Dirac
condition'

(4)

and have 2X2 irreducible quaternion representations.
Our positioning of the imaginary i factors together with
the Hermiticity of the Hamiltonian H =(a p+Pm)
guarantees the conservation of the norm and the commu-
tativity of H with p. We emphasize that a characteristic
of this formalism is the absolute need of a complex scalar
product (ql, @), defined in terms of the quaternion coun-
terpart (%,4) by

(4,4), —:—,
' [(%,4)—i (%,4)i] .

~This condition actually "defines" the Dirac equation; we re-
call that other conditions such as that of the formally similar
Duffin-Kemmer equation also exist.

Among the various suggestions for adapting relativistic
quantum mechanics to the use of an underlying quater-
nion number system [l —4] the one proposed by one of the
authors [5] claims a number of positive aspects and some
negative ones. Working in first quantization, the free-
particle Dirac equation can be written as

(y"B„~i —m)4 =0,
where by definition all quaternion operators must be
decomposed into a left/right structure A

~
b such that

All matrix elements must be given as complex scalar
products, first introduced in 1984 by Horwitz and
Biedenharn [4] in order to define consistently multiparti-
cle quaternion states.

Among the positive features of this formalism we wish
to list three.

(l) The appearance of all four standard Dirac free-
particle solutions notwithstanding the two-component
structure of the wave function (an example of the dou-
bling of solutions with quaternions).

(2) The reproduction in quaternion calculations of the
standard QED results. A nontrivial result given the ex-
plicit differences in certain spinor identities and the
necessary modification of the trace theorems [6].

(3) The appearance in the nonrelativistic Schrodinger
equation of two complex orthogonal solutions corre-
sponding to spin up and spin down, without the need to
pass "by hand" to the Schrodinger-Pauli equation. A be-
lated theoretical discovery ofspin.

This last point would be an impressive argument in
favor of the use of quaternions if this doubling of solu-
tions did not occur also in bosonic equations, where it has
obviously nothing to do with spin. For example, we find
two solutions (for a given four-momentum) for the
Klein-Gordon equation and idem for the Maxwell equa-
tion, with the result that, in addition to the normal pho-
ton, we "discover" an anomalous photon. Anomalous
because it appeared up to now that this photon violated
the conservation of four-momentum [6].

In this paper we extend our studies to field theory for
two reasons. First, because only field theory provides a
consistent formal structure for particle physics and
second, because it will permit us to clearly explain and
correct the above-mentioned difficulty with four-
momentum conservation for the anomalous photon. For
simplicity we shall restrict our attention to the scalar field
but the results are immediately applicable to the vector
field and in particular to the massless Maxwell field.

In the next section we recall briefly the theory of the
noninteracting scalar field. In the subsequent section we
generalize it to the quaternion fields, and in particular to
the anomalous scalar field, by means of a non-Herrnitian
association. In Sec. IV we describe how to define a Her-
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mitian anomalous field. Our conclusions are drawn in
Sec. V.

II. THE SCALAR FIELD

In standard field theory [7] one begins by assuming a
unique vacuum ~0) satisfying

the canonical commutation relations for the annihilation
and creation operators:

(21)

and these in turn may be used to calculate the general
(not necessarily equal-time) field commutation relations:

p„~o)=o, (6) [P(x ), P(y) ]= i h—(x —y) (22)

z„„io)=o,

q ~0)=o,

(7)

(8)

where h(x) is the well-known Schwinger function.
At this stage, in order to eliminate unwanted negative-

energy solutions, one imposes the condition

Dio&=o, (9) c„io)=o . (23}

where P„and J„are the generators of the Poincare
group, y represents any charge operator and D a generic
discrete operator. This state is also assumed normalized:

As a consequence, the Hamiltonian is positive definite
and is given by

(ohio& =1. (10)
H , g (—Ck—Ck+CkCk)haik .

k

(24)

(0+m )P(x)=0

and the "conjugate momentum"

(12)

The Hermitian free scalar field is assigned the Lagrangian
density

Z= —
—,'(m y

—a„ya"q),

which upon variation yields the Klein-Gordon field equa-
tion

The zero energy of the vacuum contained in this expres-
sion is eliminated by normal ordering of the fields in the
Lagrangian and elsewhere, and henceforth this will al-
ways be implicitly assumed.

Of particular importance for us in what follows is the
observation that the field equations, while very impor-
tant, are not the dynamical equations of motion in second
quantization. Since the fields are operators this privilege
is reserved for the Heisenberg (first-order) equations

=a~y(x) .
aa„y

(13)
—ia„y(x) = [p„,y(x)],

in particular,

(25)

The fields are assumed to satisfy the canonical equal-
tirne commutation relations i B —= [H, P(x) ] .P(x)

at
(26)

[P(x),iI'i(y)]„=» = —i5 (x—y),

[P(x),P(y)]„=» =0,

[P(x),P(y)]„=, =0 .

The energy-momentum density tensor is given by

T""=d"QB'P+ ,'g""m P 'g"—"B$d iti . ——

Consequently,

H:p= f T d x —= ,' f (B„JB—„Q+miti )d x,
p'= f ja'yd'x,

(14)

(16)

(17)

(18)

(19)

1
k( C e

—ikx+ Cte ikx)
k (20)

where the field has been normalized within a box of
volume V and k =cok=+k +m . Only the operators
Ck and Ck appear because p is a Hermitian field. The
field equal-time commutation relations then determine

where H and p' are the energy and momentum generators
for translations in four-dimensional space-time.

Expanding P(x } in terms of first-quantized solutions of
the field equations (which for the scalar field corresponds
formally to the Fourier decomposition) we obtain

Notice what would happen if we make the "wrong"
operator-frequency assignments:

(Cte —ikx+( ikx) .1 1

v 1 /2
(27)

this corresponds to the interchange Ck~Ck everywhere.
Formally H does not change, but P' would not then satis-

fy the Heisenberg equations. This is readily corrected;
we need only change the sign ofX and hence of H. Then,
however, we would recognize that P' corresponds to only
negative-energy states. In other words, the sign and more
generally the multiplicative coefficients in the Lagrangian
densities are determined uniquely by the Heisenberg
equations, while they are completely arbitrary as far as
the field equations are concerned. We emphasize the
highly restrictive nature of the requirement that negative
energies be excluded. In the above case P' is a nonaccept-
able solution of the field equations. We shall base some
of our subsequent results on this principle.

We finally recall that while this Hermitian field P is by
itself chargeless, a couple of Hermitian fields P, , and Pz
with the same mass, may be combined in non-Hermitian
complex fields P(x)WP (x) with the Lagrangian density

X=—(m P P B„ititBi"P), — (28)

energy-momentum tensor
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and Hermitian charge operator

ie—f($$—PP)d x.

(29)

(30)

number field (commutation with the complex numbers
has always been implicitly assumed). In fact, in order to
maintain the canonical commutation relations for these
creation-annihilation operators, we must assume either
commutation or anticommutation relations with j:

In the presence of an interaction term -P p+H. c. the
field equation becomes

(CI+m )P(x)=p(x) (31)

III. THE QUATERNION SCALAR FIELD

There are two solutions to the Klein-Gordon equation
in first quantization. The first is the standard solution

and if P is non-Hermitian, the source term p(x) must also
be non-Hermitian.

For vector fields this results in the fact that Hermitian
bosonic fields such as the Maxwell field A~ couple to
Hermitian currents J", while non-Hermitian bosonic
fields such as W„* couple to non-Hermitian currents J„.
Thus electromagnetic matrix elements have the structure
JJ, while weak interactions have the well-known J~J
form. Of course the latter would coincide with the form-
er if J were Herrnitian. The importance of this observa-
tion lies in the fact that the anomalous scalar will be
identified with a neutral but non-Hermitian field in the
next section.

J [CkiCk']J J5kk'J

[ JCkJ —J'Ck J'] =5kk

=—jC~j =WC~,

i.e., the possibility

—jCgj=+C~

is excluded.
It is to be noted that P is not Hermitian; in fact,

y+ y (( t —kx+( 'kx)1 —1

V i /2

(3g)

(39)

(40)

this follows from the fact that the formal solution of the
equation

This field has the "wrong" frequency associations. We
recall the example of P' in the previous section. With
quaternions the Heisenberg equations of motion become

(41)

iI)(x) =e

while its quaternion companion is given by

P(x) =je

(32)

(33) is given by

(42)

X=—
—,'(m P—B„QB"P) . (34)

However, this assumed a Hermitian field and we immedi-
ately see that the Hermitian of the negative frequency

(Je ikx )1' Je ikx— (35)

does not yield the positive-frequency term.
After various attempts it becomes obvious that we

must employ the more general form

X = —
—,'(m P P

—B„P 8"P) (36)

which reduces to the previous form if P is Hermitian.
The field P is now dined (here C& refers to the anoma-
lous particle) as

(Ckje ' +CkJ'e' ) .
2 „

(37)

We assume that C&, Ck commute with the quaternion

The position of the j factor is fixed by the requirement
that P correspond to an eigenstate of four-momentum
with eigenvalues k„.

For the second-quantized field we should expand in
both, but for simplicity let us consider only the anoma-
lous field. Our sole constraint will be that the Lagrangian
density be unique and valid both for P and P. Hence we
must employ that given in the previous section:

%(t)=e "%(0) (43)

so that in practice we must replace iH by H~i in all
relevant equations, and hence ip, by p, ~i.

Assuming that the i on the right-hand side (RHS) of
Eq. (41) commutes with the vacuum (and hence with all
physical states) we note that while P satisfies the Heisen-
berg equations, P does not. Again P resembles the iII' of
the previous section. Furthermore, the structure iI) P
brings the j factors in direct contact, so that the Lagrang-
ian density is formally equivalent to the standard struc-
ture (see Sec. II). Since P is not Hermitian it couples to
non-Hermitian sources. In analogy, the interaction ma-
trix elements of the anomalous photon will resemble
those of weak interactions -J J and again the trouble-
some j factors will cancel directly or complex conjugate
all the exponential factors. In either case, standard four-
momentum conservation is obtained. We recall that it
was the assumption of the photoniclike JJ structure for
the anomalous photon which led to a jJjJ anomalous in-
teraction and consequent difficulties with four-
momentum conservation.

Needless to say, the Hamiltonian is the same as for the
standard Hermitian scalar field P. Less obvious is the
fact that the charge is still zero with a non-Hermitian P.
This can most easily be seen by noting that, unlike the
case of the complex scalar field, we have only one type of
particle operator in P while the charge operator in stan-
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IV. THE HERMITIAN ANOMALOUS FIELD

There is one aspect of quaternion field theory that we
have ignored in the previous section. It was perhaps al-
ready evident in the modified form of the Heisenberg
equation. The field operators must be defined in general
as "bared" operators, so that the Heisenberg equations
are meaningful operator identities. Now from its explicit
form H is evidently a left-acting operator. So r)„iI) must
bring down the right-acting i. Thus our fields should
have been written as

(C„~e ikx+ C—t
~e

ikx)1 1

y 1 /2
(44)

and for the anomalous field (here we employ a tilde to
distinguish the creation-annihilation operators) as

(45)

or alternatively as

—'k +Ct ~jeik )
V 1 /2

(46)

For this anomalous scalar field the choice may be made
so as to reobtain the canonical field commutation rela-
tions; i.e., we can choose the iI) structure [Eq. (45)] so as
to keep separate the j factor from the exponential plane-
wave functions. Then, using the fact that

(A~a)(B~b)= AB~ab (47)

we find that, when a and b are commuting functions
(complex in this case),

[A(a, B~b)=[A,B]~ab . (48)

Since j has been assumed to commute with the Ck(Ck )

the commutation reduces to that of the Ck, and the stan-
dard result is obtained up to an overall sign due to the j
factor. Even this sign difference may be avoided by
redefining iI) as

dard field theory is essentially due to cross terms
i (C1C2 —C2C1) which vanish when C, =C2.

We also observe that the presence of the j factors
modifies the field commutation relations. This raises a
major diSculty with quaternion field theory. The pres-
ence of noncommuting wave functions means that we
cannot maintain simultaneously the canonical field com-
mutation relations and the canonical creation-
annihilation operator commutation relations. One of
these must be abandoned. In order to reproduce the
spin-statistics relation and in particular the Pauli ex-
clusion principle we choose to retain the latter (con-
sidered as more fundamental) and to relinquish the
canonical field commutation relations. This complicates
numerous proofs, but does not invalidate demonstrations
such as causality, etc. In the next section we shall bypass
this diSculty for the scalar field but we warn that it will
represent a "trick" that is not extendable to fermion
fields.

(C„j~ie '""+Ckj~ie'"") .1 1

I/1/2
(49)

(53)

for any ~g), ~P). Thus,

(A~a)t=At~a' . (54)

We also note that now Pk has the correct frequency as-
signments (the j factor no longer complex conjugates the
plane wave factors) and thus satisfies the corresponding
Heisenberg equations.

With this definition of the anomalous scalar field P (the
bar in P is of little interest) we no longer have the solu-
tion of the four-momentum conservation propounded in
the last section, but in compensation the j factors never
pass through the plain wave functions since the corre-
sponding currents take the form

(55)

The reason that we present this second solution as
merely an alternative and not necessarily the solution is
because this neat separation of complex and quaternion
(j,k) factors breaks down for fermion fields, where it is
impossible to maintain the canonical field commutation
relations. The solution given in the previous section has
the advantage of avoiding bars and distinguishes the
anomalous field by its non-Hermiticity.

V. CONCLUSIONS

In this paper we have taken a tentative step within the
realm of quaternion quantum field theory. Our con-
siderations have been limited to the neutral (not neces-
sarily Hermitian) free scalar field. As a result we have
resolved a previous problem (four-momentum nonconser-
vation) of the anomalous photon. Indeed we have
presented two alternative definitions of the anomalous
scalar field which lead to four-momentum conservation.
These results are immediately extendable to the anoma-
lous photon.

The first conclusion that we have to make is that the
anomalous fields do not disappear in field theory unlike
the negative-energy solutions. So we are obliged to take
them seriously. We then observe that there is no evi-
dence to date for any anomalous photon. The simplest
argument for this is the normalization of blackbody
radiation —the well-known factor 2 that counts the pho-
ton degrees of freedom. If two photons existed this factor
should be four. There is a way to avoid this conclusion,

~One of us (P.R.) thanks Prof. Massimo Testa for this observa-

tion.

We note that with this definition P has become corn-
plex Hermitian. In fact, by the definition of complex
Hermiticity (complex a),

(5O)

(51)

(52)
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identical to that which would permit a very small photon
mass, i.e., a third longitudinal helicity state, namely the
unknown thermalization time for any missing degree of
freedom. This is equivalent to saying that the anomalous
photon could have a very small coupling to standard
matter and hence be both rare and practically invisible to
observation.

There is however another possibility which merits con-
sideration. In the Salam-Weinberg theory one begins
with two massless "photons, " one of which picks up its
mass from spontaneous symmetry breaking. The ques-
tion posed is if our anomalous photon can be identified
with the Z particle or, at least, can our anomalous vec-
tor be given suScient mass by the same mechanism to ex-
plain its nonobservation?

With reference to the Salam-Weinberg model we wish
to note that group invariance of a given Lagrangian den-
sity naturally takes the form of a tensor product with
quater nions

AL B~, (56}

U (1)-e ' '+@+r"' (a,P, y&R),
-SU, (2} .

This possibility is currently under investigation.

(57)

(58}

where AL and B~ are left and right group elements, re-
spectively. The standard group SU(2)U(1), which is of
course for complex representations, reads Ue(1}U, (1}
for quaternions, where
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