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We present a model independent amplitude analysis of reaction m+n~ ~a.+m p at 5.98 and 11.85
GeV/c using Saclay data obtained with a transversely polarized deuteron target at the CERN Proton
Synchrotron. The analysis makes use of the data in two sets of binnings to examine the dependence of
amplitudes on momentum transfer t [ t 1.0—(GeV/c )2] in the po mass region and their dependence on
dipion mass below 1000 MeV for momentum transfers —t=0.2-0.4 (GeV/c)~. The analysis is per-
formed in both t-channel and s-channel helicity frames of the dimeson state and it is verified by compar-
ison with linear bounds on the moduli. The data yield two solutions for 8 moduli and 6 cosines of rela-
tive phases of nucleon transversity amplitudes with dimeson spin J=O (S wave) and J=1 (P wave). The
two solutions differ mainly in the S-wave contributions. Both solutions require nonzero nucleon
helicity-nonflip amplitudes (A l exchange) with phases different from phases of nucleon helicity-Hip am-

plitudes (~ exchange). Natural exchange amplitudes (A2 exchange) with opposite nucleon transversities
show a crossover in their t dependence at —t, =0.4-0.5 (GeV/c)~ which has not been observed in the
earlier amplitude analysis of m. p~ ~m m n at 17.2 GeV/c. We suggest this difference may signal the
influence of composite structure of hadrons and nonperturbative @CD effects in pion production. Al-

though the mass dependence of partial-wave cross sections averaged over nucleon spins is smooth, we
observe large and systematic structures in moduli squared of nucleon transversity amplitudes which re-
veal the essential role of nucleon spin in the pion production process. This behavior of moduli does not
support the hypothesis of factorization of mass and t dependence of production amplitudes previously
used in studies of meson-meson scattering. The mass dependence of S-wave amplitudes suggests the ex-
istence of a scalar state I=O 0++(750) with a width of 100—150 MeV. Our results emphasize the need
for a systematic study of pion production on the level of amplitudes in a new generation of dedicated ex-
periments with spin at the recently proposed high-intensity hadron facilities.

PACS number(s): 13.75.Gx, 13.85.Hd, 13.88.+e

I. INTRODUCTION

The idea to construct scattering amplitudes from data
obtained in measurements using polarized targets, polar-
ized beams, and recoil nucleon rescattering was first pro-
posed [1,2] by Bethe in 1958. Such experimental acquisi-
tion of scattering amplitudes is known as amplitude
analysis. It provides model-independent information
about the t structure of amplitudes, their dependence on
energy, spin states of particles, etc. The first amplitude
analysis [3—6] was possible for two-body scattering,
namely, in mN~mN at 6 GeV/c. It allowed an isolation
of p-exchange amplitudes which showed unexpected
structures in their dependence on momentum transfer.
This information led to major revisions of Regge models.
Later measurements of polarization in E+n ~K p at 6
CxeV/c allowed the first construction of A2 exchange am-
plitudes in KN two-body scattering [7,8], which also
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showed an unexpected behavior. Similarly motivated ex-
periments with polarized proton beams enabled ampli-
tude analyses of nucleon-nucleon two-body scattering
[9,10], also at 6 GeV/c. These important experimental
results prompted new developments of spin formalism to
describe and analyze complete measurements, e.g., in
pion photoproduction [11]and NN scattering [12,13]. Of
particular interest became the study of optimal spin ex-
periments [14].

In 1964, Gottfried and Jackson pointed out that mea-
surements of angular correlations of particles produced
in multiparticle production processes provided direct in-
formation about the particle production mechanism [15].
In 1978, Lutz and Rybicky showed [16] that in a single
experiment, mN& ~me.N or EN& ~KmN on a transverse-
ly polarized target, the measured spin-density-matrix
(SDM) elements describing the produced dimeson state
provide enough observables for performing an almost
complete amplitude analysis in the kinematic region
where the produced dirneson state has total angular
momentum J =0 (S wave) and J= 1 (P wave). Experi-
mentally, the pion production is dominated by S- and P-
wave dimeson states for dimeson masses m ~ 1000 MeV.
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For higher invariant masses, the dimeson states with
J =2 (D wave) and higher angular momentum are impor-
tant contributions. The increase in the number of pro-
duction amplitudes renders the amplitude analysis some-
what model dependent when only data on transversely
polarized targets are available [16].

The first measurement of the reaction ~ p& ~m. ~+n
on a polarized target was done at CERN at 17.2 GeV/c.
The data enabled a model-independent amplitude
analysis in two kinematic regions of momentum-transfer
squared —t and dipion mass m, looking at the
momentum-transfer dependence of amplitudes in p mass
region [17,18],

0~ —t 1.0 (GeV/c) with m =710—830 MeV,

and at their mass dependence [17—20] at small t:

600+ m +900 MeV with —t =0.005 —0.2 (GeV/c)

(1.2)

In this report we present the results of model-
independent amplitude analysis of the Saclay data for
vr+nt~m+m p at 5.98 and 11.85 GeV/c in the (m, t)
binnings (1.3) and (1.4} in both s- and t-channel dipion
helicity frames. Preliminary results [32,33], tables with
final results [34], and partial results [35—38] were pub-
lished earlier elsewhere.

The paper is organized in six sections. The kinematics,
observables, and pion production amplitudes are intro-
duced in Sec. II. The method of amplitude analysis is de-
scribed in Sec. III. In Sec. IV we present our results and
verify our analysis in comparison with linear bounds on
the moduli. In Sec. V we discuss a Regge model for t
dependence in p mass region, factorizatioa hypothesis
for m dependence of amplitudes, and possible effects of
hadron structure. The Appendix describes the method
for calculation of relative phases between natural and un-
natural exchange amplitudes. Section VI closes the paper
with a summary.

II. BASIC FORMALISM

Model-dependent analyses with contributions from
higher spin states were also performed for higher masses
[19,20] 900 m ~ 1780 MeV at small r0.2 (GeV—/c)
as well as at larger momentum transfers [20—23]. The re-
sults provided evidence for significant contributions from
helicity-nonflip amplitudes with A

&
exchange quantum

numbers (J =1, J =1++}which had long been as-
sumed to be absent and suggested a possible existence of
non-qq meson states [20—23]. Evidence for A t exchange
came independently also from amplitude analyses of
nucleon-nucleon two-body scattering [9,10]. The impor-
tance of A

&
exchange in nucleon-nucleon scattering was

theoretically anticipated earlier by Blackman and Gold-
stein [24].

The first measurement of m. +n
&
~~+a. p on a polar-

ized deuteron target was done at 5.98 and 11.85 GeV/c at
CERN by the Saclay group [25—30]. The experiment
covered the kinematic region of 0. 10~ —t ~ 1.0
(GeV/c) and 360~ m ~ 1040 MeV. Average values of 14
normalized S- and P-wave spin-density-matrix elements
were obtained [28,30] in four sets of (m, t) binnings in
both s- and t-channel dipion helicity frames [31]. The
first two sets

A. Kinematics

The kinematical variables used to describe the dimeson
production on a polarized nucleon target at rest are
(s, t, m, 8, qr, g, 5) [39,40]. Here s is the center-of-mass-
system energy squared, t is the four-momentum-transfer
squared, and m is the m+m. invariant mass. The angles
(y, 8) describe the direction of the m+ in the m+vr rest
frame. The angles ($,5) describe the direction of the tar-
get nucleon polarization P in the target nucleon rest
frame. The angle P is the angle between the direction of
the transverse component of target polarization, P T, and
the normal n to the production plane [29]. The angle 5 is
the angle between the target polarization P and its trans-
verse component P T with respect to the incident momen-

tum [29]. The direction of normal n is defined according
to the Basel convention by p Xp, where p„and p„are
the incident pion and dimeson momenta in the target
neutron rest frame.

Our amplitude analysis is carried out in both the s-

channel and the t-channel helicity frames for the m+vr

dimeson system. The helicities of the initial and final nu-

cleons are always defined in the s-channel helicity frame.

0. 1 ~ t ~ 1.0 (G—ev/c) with m =720—820 MeV B. Observables

and

360~ m ~ 1040 MeV with —t =0.2 —0.4 (GeV/c)

(1.3) %'hen the polarization of the recoil nucleon is not ob-
served, the angular distribution I(8,y, 1(,5) of m+m pro-
duction on polarized nucleons at rest can be expressed in
terms of the normalized distribution W(8, y, g, 5):

(1.4) I(8,y, g, 5)= W(8, (p, $,5)d o/(dt dm), (2.1)

provide information about the t dependence of pion pro-
duction in the p mass region and about its dependence
on dipion mass in the interval of larger momentum
transfers as compared to (1.2). The other two sets of bin-

nings cover broader region of m and t, allowing the study
of the t evolution of mass dependence of measured ob-
servables and amplitudes.

where

G CT = f I(8,qr, $,5)d0dgd( —sin5)
dt dm

(2.2)

is the m+m production cross section at fixed values of s,
r, and m. The distribution W(8, y, g, 5) can be written as
a sum of four terms:
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W(8, (p, g, 5)= Wo(8, (p)+Prcosg 8'~(8, q)) p=p +Prcosfp)'+Pzsingp" +PL p' . (2.4)

+Prsing W„(8,tp)+Pt W, (8,(p), (2.3}
where Pz-=P cos5 and PI =P sin5 are the transverse and
longitudinal components of target polarization P with
respect to the incident momentum in the reference frame
of target nucleon at rest [29]. Only Wo(Q) is measured in

experiments on unpolarized targets. Parity conservation
requires that Wo and W ( W„and W, ) be symmetric (an-
tisymmetric) in (p.

The m+m system is not produced, in general, in a
state of definite spin, helicity, and parity. The polariza-
tion of the m+n . system is described [16] by the spin-
density matrix with complex matrix elements p&&., where
J,J' and A, , I,

' are the dimeson spins and helicities, respec-
tively. Omitting the indices J,J', A, , l,

' for clarity, the
SDM elements p&& for the ~+a production on a polar-
ized target have the general form [16,41—45]

The components of angular distribution, Wk (8,g),
k =O,y, x,z, can be expressed in terms of the matrix ele-
ments of the corresponding component p of the SDM
elements [16]

Wk(Q)=g g pqq. Yq(Q)Yq. (Q), (2.5)

where Yz(Q) are spherical harmonics. It is understood

that in (2.5) there are real parts Rep" and imaginary parts
Imp" of SDM elements for k =O,y and k =x,z, respec-
tively.

The Saclay experiment did not measure W, (Q) since

the longitudinal component of polarization PL =0. As-

suming S- and P-wave dominance, the explicit form of
the n.+ angular distributions in terms of the m. +n. SDM
elements at fixed values of s, t, m reads as

4m. WO(Q) = (p„+poo+2p»)+(p()0—p, , )[3cos (8)—1]—p, ,3 sin (8)cos(2q&)

—Rep)03''2sin(28)cos((p)+Repo, 2&3cos(8)—Rep„2v 6sin(8)cos((p),

4n W (Q) = (p)', +poo+2g»)+(pt)0 —p", , )[3cos (8}—1]—pi, 3 sin (8)cos(2(p)

—Rep",03''2sin( 28)cos((p ) +Rep(), 2~3cos( 8)—Rep"„2&6sin(8}cos((p),
4m. W„(Q)=Imp( i3 sin (8)sin(2(p)+ Imp)03&2sin(28)sin((p)+ Imp), 2&6sin(28)sin((}()) .

(2.6a}

(2.6b)

(2.6c)

Pss+Poo+2P1 i

pss+poo+2pii = ~
(2.7)

In Eqs. (2.6), the indices JJ' were omitted and the helicity
A, of m+m. system is A, =s and A. = —1,0, +1 for the S
wave and P wave, respectively. There are two linear rela-
tions among the matrix elements in (2.6):

0—&+ 0+ i+.
2 2

0--'+
2 2

Ho+, 0+ ~0 ~

0

0Ho+ 0 =S, ,
1&0+,0+ =Lo

(2.9a)

with definite t-channel exchange naturality. The nucleon
s-channel helicity amplitudes describing the production
of the (n.+n. ) system in the S- and P-wave states are

where A is the polarized target asymmetry.
The unpolarized SDM elements (2.6a) were previously

measured in experiments on unpolarized targets. The ex-
periments using transversely polarized targets add polar-
ized SDM elements (2.6b) and (2.6c) to SDM elements
(2.6a) in a single measurement.

Ho+, o- =Li1

0+Uo
H 2 1+,0+

Ni+Ui
H+1+ 0— &2

(2.9b)

C. Amplitudes

The reaction m n ~m.+~ p is described by pion pro-
duction amplitudes H) 0& (s, t, m, 8, ()()), where A. and A,

„p' n

are the helicities of the proton and neutron, respectively.
The production amplitudes can be expressed in terms of
production amplitudes corresponding to definite dimeson
spin J using an angular expansion

oo +J
H)„og = g g (2J+1)' H)g Og (s, t, m)d~o(8)e'"

J=0 A. = —J
(2.8)

where J is the spin and A, the helicity of the (m+n )

dimeson system. The "partial-wave" amplitudes H&& 0&p' n

can be expressed in terms of nucleon helicity amplitudes

~(S~) ~(S2)
1374)A172 ~ 74A4 72A2 A3A4)A I)A2

A2y A4

(2.10)

At large s, the amplitudes No and N, are both dominated

by natural A2 exchange. The amplitudes S„,L„,U„,
n =0, 1 are dominated by unnatural exchanges: A& ex-
change for n =0 and m exchange for n =1. The index
n = iA,„—Az i

is nucleon helicity flip.
The observables obtained in experiments on a trans-

versely polarized nucleon target in which recoil nucleon
polarization is not observed are most simply related to
nucleon transversity amplitudes (NTA) of definite na-
turality. In general, in a reaction 1+2~3+4, mixed
helicity-transversity amplitudes T& & are defined in34' I 2

terms of helicity amplitudes H& & & z as
3 4' 1' 2
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where l)z, ' are rotation matrices describing the transver-
sity frame first defined by Kotanski [46,47] (see also the
Appendix of Ref. [31]). We note that the use of transver-
sity in the study of p production goes back many years
[48] and that hybrid amplitudes mixing helicity and
transversity were also used in the analyses of pion pho-
toproduction [49].

For S- and I'-wave amplitudes in the reaction
~+n ~m+~ p, we define the following NTA of definite
naturality:

amplitudes U, U, X,X do not distinguish between the
dimeson helicity states with A, = + 1 or —1. Also,
dimeson production with helicity A, =O is forbidden by
parity conservation when the initial and final nucleons
have the same transversities.

D. Observables in terms of normalized amplitudes

The spin-density-matrix elements pii [Eq. (2.4)] are
defined in terms of amplitudes (2.8) as follows [16]:

1 . 1S = —(So+iS] )= — —To]]Io],
2

k, JJ' J k J'e
p»' ~=TX X H]&,o&„ i. ].' ],],o],'

n n p' n

p

(2.13)

1 . 1S= (So —iS, )=+ —To]'o],
2

1 IL = —(Lo+iL] ): —To't o]2 V2
1 . i

v'2 (Lo iL])=+ —To] o]v'2

(2.11a)

(2. 11b)

where o. —:1 and o. , k =x,y, z are the Pauli matrices. In
our normalization, the integrated cross section
X—:d o. /dm dt is given by

Is I +IL I +IU I +IN I

n =0, 1

= Isl'+ Isl'+ ILI'+ IL I'

1U= —(Uo+iU] )= iT/]$ o$ =+iT ]$ o]
+

I
Ul'+

I
UI'+ INi'+ INI' . (2.14)

1
(Uo iU])=+iT+]] o] = ]'T ]]ot

(1) — ~ (1)
(2.11c} In the Saclay experiment the cross section has not been

measured. Consequently, we will work with normalized
amplitudes corresponding to

1N= —(No iN])=T+]] oi =T ]]o] |(1) — (1)

1N= (No+iN] ) = T'+I ] o] = T "]]o]

(2. 11d)

The symbols 1 and $ in Eqs. (2.11) denote the nucleon
transversities parallel (or "up") and antiparallel (or
"down" ) to the normal n of the production plane, respec-
tively. The following table summarizes the transversity
states of target neutrons and recoil protons, and the
dimeson helicity is corresponding to the amplitudes
(2.11):

n ==0, 1

&2 Rep, o= g Re( U„L„*),
n=—0, 1

(2.16a)

d 0X= =1 . (2.15)
dm dt

Using (2.13) and (2.15), the relations for SDM elements in
terms of normalized helicity amplitudes read as follows.

Unpolarized SDM elements:

p„+poo+2p]]= y IS„I'+IL„I'+IU„I'+IN„I',
n =0, 1

pw+p»= g IL. I' ——,'(IN. I'+IU„I'),
n =0, 1

S,L
S,L

U
U
N
N

0
0

+1 or —1

+1 or —1

+1 or —1

+1 or —1

&2 Rep„= g Re( U„S„'),
n =0, 1

Repo, = g Re(L„S„').
n =0, 1

Polarized SDM elements:

(2 12) p]', +poo+2p]] =2 Im(S]]S]*+Li]L] + Uo U,*+Ni]N*, ),

Table (2.12) shows that the transversity amplitudes S, L,
U, X (S,L, U, X) describe the production of the dimeson
state with the recoil nucleon transversity down (up) rela-
tive to the production plane. The amplitudes
S,S,L,L, U, U correspond to nucleon transversity Aip
while N and N are nucleon transversity nonAip ampli-
tudes.

In (2.11) we assumed P-parity conservation. Parity
conservation requires that, in the transversity frame, the
dimeson production with helicities A, =+1 depends only
on the transversities of the initial and final nucleons. The

poo pi]=Im(2LoL] NoN*, —UoU] )—,

p", , =Im(NoN] UoUi )

V'2 Rep,"o=Im( Ui]L,* —U, L]] ),
&2 Rep"„=Im( Ui]S*, —U]So ),
Repo = Im(LoS i L ]So )

—Imp', , =Im(N]]U] +N, Ui] ),
&2Imp]o=Im(ÃoL*] +N, Lo },
&2 Imp„=Im(XoS', +X,So ) .

{2.16b)

(2.16c)
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Only the polarization-dependent SDM elements measure
the nucleon helicity flip-nonflip interference. The observ-
ables (2.16b) and (2.16c) measure the interference between
the amplitudes of the same and opposite naturalities, re-
spectively.

To express the observables in terms of normalized nu-
cleon transversity amplitudes (2.11), we first introduce
partial-wave cross sections o( A) and partial-wave polar-
izations r( A ) defined for amplitudes A =S,L, U, N as

a, =-,'[1—~]= IS I'+ IL I'+
I
Ul'+ INI',

a2 = [(poo pii } (poo pii }]

=2IL
I

—
I Ul —INI

a3 = [pi —i
—pi —i]= INI' —

I
Ul'

a4= —[«pio «pio] =
I UI IL Icos(y UL, )

2

(2.22a)

~(&)=l &OI'+ I & I'=I&l'+l~ I',
r( a) =2e lm( A, a ', ) = I

a I' —
I
& I', (2.17)

a5 = —[Rep„—Rep"„]=I Ul IS Icos(y Us), (2.22b)
2

a6 =
—,
' [Repo, —Repo ]= IL I Is Icos(yr, s }

where a=+1 for A =S,L, U and e= —1 for A =¹ In
our normalization the reaction cross section is

& =~r(s)+a (L)+a ( U)+o (N) =1 . (2.18)

Then the relations for SDM elements (2.16a) and (2.16b)
in terms of normalized nucleon transversity amplitudes
(2.11) and quantities (2.17) read

p„+poo+2p»=o (S)+0(L)+o ( U)+cr(N),

pixi
—p» =o (L)——,

' [o ( U)+ o (N) ],
p, , = —

—,
' [a ( U) —cr (N ) ],

p +poo+ 2pi i
= 1 (S) + r( L ) + '7( U) 1 ( N ),

p~)
—p"„=r(L)——,

' [r( U) —r(N)],

p", , = —
—,
' [r( U)+r(N)],

v'2 Rep, a=Re( UL *+UL'),
V2 Rep„=Re(US'+ US*),

Repo, =Re(LS*+LS*),
V'2 Rep",&=Re( UL ' —UL*),

V 2 Rep"„=Re( US ' —US*),

(2.19a)

(2.19b)

(2.20a)

(2.20b)

a, =
—,'(1+ ~ ) = ISI'+ IL I'+

I
Ul'+ IN I',

[(Poo P» ) + (poo pi i ) I

, =[p, , +p, , ]= INI' —IUI',

(2.21a)

1a4= —[Rep, o+Rep', 0]= I Ul ILlcos(y UL },
1

a5 = —[Repi, +Repi, ]= I Ul ISlcos(y Uz ), (2.21b)V'2

a6= —,'[Repo, +Repo, ]=ILllslcos(yLs) .

Similar equations relate the difference of SDM elements
to amplitudes of opposite transversity. The second group
of observables is defined as

Repo, =Re(LS* LS') . —
The relations (2.19) and (2.20) suggest the introduction of
new observables which are the sum and difference of the
SDM elements (2.16a) and (2.16b). Using the notation of
(2.7), the first group of new observables reads

In Eqs. (2.21b) and (2.22b), we have introduced explicitly
the cosines of relative phases between the nucleon
transversity amplitudes.

The SDM elements (2.16c) form the third group of ob-
servables. In terms of normalized nucleon transversity
amplitudes, we have

b, = —Impi, =Re(NU* NU' }, —

b2 =V'21mpiii= Re(NL NL' ),—
b3=V'21mpi, =Re(NS' NS') . —

(2.23)

While the observables a,.,a;,i = 1,2, . . . , 6 are determined

by the transverse-polarization component Prcosg per-
pendicular to the scattering plane, the observables in
(2.23) are determined by the transverse-polarization com-
ponent PTsing in the scattering plane. In the Saclay ex-
periment, PTsing was small and b „b2,b3 were thus mea-
sured with a lesser precision than the observables (2.21)
and (2.22).

Relations for observables in terms of unnormalized am-
plitudes can be obtained by multiplying the left-hand
sides of (2.16)—(2.23) by the measured reaction cross sec-
tion X. The unnormalized amplitudes have the same rel-
ative phases as the normalized amplitudes, but their
moduli are given by I Aol &, I

~ i I
X or by I

A
I » I

A
I

&

for A =S,L, U,¹ In this paper we will work only with
normalized amplitudes.

III. THE METHOD OF ANALYSIS

The observables measured in m+nt —+a++ p on a
transversely polarized target organize themselves into
three distinct groups (2.21), (2.22), and (2.23) in the
kinematical region of (m, t) where only the S and P waves
dominate. The first group (2.21) involves four moduli

I UI, and INI and three cosines of relative
phases cos(yzL), cos(yzU), and cos(yzU). The second
group (2.22) involves the same amplitudes but with oppo-
site nucleon transversities. The third group (2.23) adds
two new phases relative to the only two natural exchange
amplitudes invo1ved, N and ¹ It is convenient to choose
@zan and y&z because they are helicity frame invariant.

The relative phase between the two groups of ampli-
tudes of opposite nucleon transversities does not enter at
all into the measured observables (2.21), (2.22), and (2.23),
and it is therefore unknown. Its determination requires
measurements of recoil nucleon polarization.
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Our task is to express amplitudes in terms of observ-
ables. In the following sections we do this for the four
moduli and the three cosines in Eqs. (2.21} and (2.22).
The analytical solution has a twofold ambiguity. We dis-
cuss some of its properties and limitations on its experi-
mental determination.

Equations (2.23) are solved for sines and cosines of rel-
ative phases y&s and y&s in the Appendix. The obtained
analytical solution has a 32-fold ambiguity. Because of
this fact and because the input data b, , b2, b3 have large
errors in the Saclay experiment, we have not calculated
these relative phases in our amplitude analysis.

A. The system of equations

Equations (2.19a) can be solved for three mixed nor-
malized partial-wave cross sections:

+(NL —4's }=O

y UL y—US+yLS= (4U 0L—) ('PU 4s}

+((t'L —4's) =o .

(3.4)

These conditions lead to nonlinear relations between the
cosines:

cos (y UL )+cos (y Us )+cos (yLs )

—2 cosy UL cosy Us y Ls
(3.&)

Evidently, each set requires one additional equation for
its moduli.

The additional equations are provided by the relative
phases which are not independent:

YUL ) Us+3 LS ((t'U 0L ) (0U OS

cr(L)+ —,'cr(S) =
—,'[1+2(poo+p, i }],

o ( U)+ ,'o (S)=—,' [1—
(p—oo

—p„)] p, —

«»+ l «S}=
l [1—

(Poo Pi & }]+Pi—i .

(3.1a)

cos (y UL }+cos (y Us )+cos (y Ls }

—2 cosy UL cosy Us yLS 1 .

Similar relations also hold for the sines. Substituting
from (3.3) into (3.5) gives

With the notation of (2.7), we similarly get from (2.19b)
three mixed partial-wave polarizations: a ISI +a ILI +a IUI —ISI ILI IUI =2a a a

r(L)+ —,'r(s) =
—,
'

[ A +2(poo —p"„)],
w( U)+ —,

' r(s) =
—,
'

[ A —
(poo pit }] pi

—~(X)+ —,
' r( S)= —,

' [ A —
(poo

—p"„)]+p",

(3.1b)
a ISI +a IL I

+a IUI —ISI IL I IUI =2a a a

(3.6a)

(3.6b)

Using the notation of (2.21) and (2.22) for sums and
differences of SDM elements, we can calculate from (3.1)
the following combinations of moduli squared:

The two sets of equations (3.2a), (3.6a), and (3.2b), (3.6b)
are now both complete and solvable for the moduli. The
known moduli then determine cosines from (3.3a) and
(3.3b).

ILI + —,'ISI =
—,'(ai+ai),

IUI + —,'ISI =
—,'(2a, —az —3a3),

IX I'+ —,
' ISI'=-,'(2a& —a, +3a3),

II. I'+-,'lsl'=-, '(a, +a, ),
IUI'+ —,'IXI'=-,'(2a, a, —3a, ),—

I&l'+-,' ISI'=-,'(2ai —ap+3a3)

(3.2a)

(3.2b)

B. Analytical solution for moduli

We first use the relations (3.2a) to obtain

ISI'=(a, +a, }—3ILI',

IUI'=ILI' —
—,'«+a }, (3.7)

From (2.21b) and (2.22b) we get cosines in terms of three
moduli

Substituting (3.7) into (3.6a) we get a cubic equation for
ILI'=—x:

cos(y UL ) =
a4 ax +bx +cx +d =0,

where

(3.8}

IUllsl'
'" " ILllsl

'

Q4

a5 a6
cos( y Us )=, cos( yLs }=

IUllsl L s

(3.3b)

a =3

b = —3[—,'(a&+a&)+ —,'(a2+a3)],

c =
—,'(a, +a2)(az+a3) —3a4+a~+a6,2

d =(ai+a»a4 &(a2+a3}a6 2a4a5a62

To solve (3.8) we write

The relations (3.2a), (3.3a) and (3.2b), (3.3b) provide two
sets of six equations, each for four moduli and three
cosines of amplitudes of opposite nucleon transversities.

x =g Pp

and require that {3.8) transforms to a form

(3.9)



45 AMPLITUDE ANALYSIS OF REACTION m.+n
~
~m. +m p AT. . . 61

y +3Py+2Q =0.
This is accomplished with

(3 10) tween the two solutions

hx =x, —x2=2v'3R sin (3.15)
bgP=
3

b

3Q
+

3Q
(3.11)

is also small and positive. The two solutions are equal
when /=0, i.e., when

(3.16)

b

3Q
2P+ — +—.

3Q Q

We now define

R =sgn(Q)v'IPI,

V=
3
~0.

R

(3.12)

3

3

+v'3R sin
3

—&3R sin
3

3'p

(3.13)

are always ordered

X) X2 (3.14)

for positive R. In our kinematic region both solutions are
generally positive and close.

For real solutions (3.13) we have 0& cos(() & 1. The two
solutions are close when P is small. Then the distance be-

There are three categories of solutions [50] of cubic equa-
tions (3.10) and (3.8). They are given in the Table I.

In most (m, t) bins in the kinematic regions (1.3) and
(1.4) we found R &0 and negative values for the third
solution x3=r3 —yp, irrespective of which category of
solution the mean values of input data yield in a given
(m, t) bin. This negative solution for x—:lLl is rejected.

The three solutions of cubic equation (3.8) are all real
only when P &0 and Q +P &0. The two solutions of
interest,

C. Physical solution

The physical solutions of cubic equation (3.8) for lLl
must be real and positive, but that is not the only require-
ment. The solution for lL l

also must be normalized,

(3.17a)

and it must produce physical solutions for the moduli
(3.7) and the cosines (3.3a):

0&lal'&1, a =S, U, S,
0 & (cosyk ) & 1, k = UL, US, LS .

(3.17b)

(3.17c)

There are similar constraints on the solutions for lL
l

in
the second group.

We will show elsewhere [51] how Eqs. (3.2a) and (3.3a)
transform the conditions (3.17) into stricter inequalities.
The physical solutions for lLl and lLl are then confined
to certain intervals within the closed interval [0,1]:

0&x,„&ILl'&x,„&1,
(3.18)

This case has not occurred for the mean values of input
data in the kinematic regions (1.3) and (1.4). We there-
fore treat both solutions (3.13) as distinct.

The two solutions (3.13) for lLl lead to two solutions
for the moduli (3.7) and the cosines, (3.3a). The system of
equations (3.2b), (3.6b), and (3.3b) for four moduli and
three cosines of opposite transversities is solved similarly.
As a result, there are two pairs of solutions for each
group of transversity amplitudes which we label in accor-
dance with (3.14) as solutions 1 and 2.

P&0
Q +P'&0
V =cos(P)

TABLE I. Three categories of solutions of Eq. (3.10).

P&0
Q'+P'&0
V =cosh(P)

P&0
V =sinh(P)

r, =+2R cos
3

c, =R cosh + +iv'3Rsinh
3 3

cz =R sinh + +iv 3R cosh
3 3

r, =+2R cos
m. +d

3
C) C2

.,=-2R-. +
3

r' = —2R cosh3 3
r" = —2R sinh

3
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Originating in the requirement of self-consistency of
physical conditions (3.17) with the system of equations
(3.2a) and (3.3a), the new bounds imply five linear and
one nonlinear independent inequality constraints on the
observables a, , i =1, . . . , 6. The constraints read [51]

for their physical interpretation.
From (2.11) we obtain

2I A I'=
I Aol'+

I A, I'+2~I AOI I
A

x l»n(4o —4i)

2IA I'=IAOI'+IA)l' —2~IAollA&l»n(40 —0&»
(3.22)

—,'(a, +a2) 1,
—,'(a2+a3) & 1,

—,'(a&+a2) —
—,'a2,

1 —[-,'(a g + a 2)—
—,'ay ],

—,'Ia I
&gl —

—,'(a +a ),
2~- la, l

&
—,'(a)+a, )

—
—,'(a, +a3),V'3

—,'(a, +a, ) .
3

(3.19)

where @=+I for A =S,L, U and e= —1 for A =N.
and P& are phases of helicity amplitudes Ao and A, , re-
spectively. It follows from (3.22) that when

then
I Ao IWO, I A, I%0, and $0—$,%0 .

(3.23)

In particular, when one of the moduli of transversity am-
plitudes A and A is zero or small, the modulus of the am-
plitude with opposite transversity attains its maximum or
near maximum value. %hen

then either
I AOI or

I A, I
=0

(3.20)

while higher-rank positivity conditions lead to nonlinear
relations between partial-wave cross sections [51,52].
The significance of these constraints is in coupling the
selection of solutions for ILI with the selection of solu-
tions for IL I

[which in (3.18) were made independently].
These constraints also lead to nonlinear conditions on
SDM elements.

The requirement that the solutions of (3.8) be all real
for Q )0 imposes additional nonlinear constraints

P &0, Q'+P'&0,
P &0, Q'+P'&0 .

(3.21)

In principle, all constraints on SDM elements from (3.19),
Schwartz inequalities, positivity, and reality (3.21) should
be imposed during experimental data analysis on the
maximum-likelihood function. This requires use of
methods for constrained optimization [53,54] and special
programs such as MINos 5.o, developed recently at Stan-
ford University [55]. Imposing nonlinear constraints re-
quires bins of small size, and thus experiments with very
high statistics.

Similar constraints hold for the observables a, ,
i = 1, . . . , 6.

Additional constraints on the solutions of the cubic
equation (3.8) come from the requirement of positivity of
spin-density matrix and from Schwartz inequalities for
certain unpolarized SDM elements. Neither requirement
imposes new conditions on ILI and ILI separately, but
rather on their sum [51], i.e., on a partial-wave cross sec-
tion a(L)=ILI + IL I

. Combining Schwartz inequalities
with (2.7) from the assumption S- and P-wave dominance
leads to conditions

(but not both), or $0
—$, =0 . (3.24)

Note that
I Ao I

=
I A, I

=0 only when
I
A

I

=
I
A

I
=0. The

partial-wave polarization defined in (2.17),

r(A)=
I
AI' —

I
A I'=2~1 AOII A ( l»n(yo —y)), (3.25)

21A
I

=
I Al +

I
A

I +2@i Al I
A Icos(t)) —gY),

3.26)
21A, I

=
I Al +

I
A

I

—2el All A Icos(P —P),
where P and P are the phases of transversity amplitudes
A and A, respectively. From (3.26) we get

~( A) =
I
Aol' —

I A ) I'=2~I A II A Icos(P —P) . (3.27)

The relative magnitude of moduli
I Aol and

I A, I of heli-
city amplitudes is thus related to the relative phase P —P
between the transversity amplitudes with recoil nucleon
spin "down" and "up." The relative phases P —P are not
determined in experiments using only transversely polar-
ized targets. It follows from the inverse relations (3.26)
that the moduli I

A o I
and

I A, I
of helicity amplitudes are

unknown, and, in general, I AOIAI A, I. However, the re-
lations (3.26) imply that, when

I
Al or I

A
I
=0, then

I
A (3.28)

Although the moduli
I Aol and

I A, I
are unknown, the

physical values of cos(P —P) impose bounds:

determines the sign of relative phase Po
—P, . A crossover

of moduli
I
A

I and I A I
of transversity amplitudes gives

rise to a change of sign in ~ and in the relative phase of
corresponding helicity amplitudes. The ambiguity in
(3.24) cannot be resolved when the polarization r has a
zero without change of sign (a double zero).

The inverse relations read

D. Nucleon helicity amplitudes —( I
A I+ I

A
I ), (3.29)

Before we present and discuss our results, we shall note
several relations between the moduli of nucleon transver-
sity amplitudes I Al and I

A I, and the moduli of nucleon
helicity amplitudes I Aol and

I A, I, which will be useful

where n =0, 1. The bounds (3.29) can be narrowed given
the sign of cos(P —P). For instance, with cos(P —$))0,
we have
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—(I A I+ I
A

I ),
2

(3.30)

IV. RESULTS

In the Saclay experiment, the spin-density-matrix ele-
ments (2.6) were obtained using the usual method of un-
constrained optimization of maximum-likelihood func-
tion in experimental data analysis. For both incident mo-
menta of 5.98 and 11.85 GeV/c, the amplitude analysis
was performed in two distinct kinematic regions:

0. 1 &
I tl & 1.0 (GeV/c), 720 & m & 820 MeV,

2

For cos( P —P) & 0, the positions of moduli
I
A o I

and
I
A

& I

in the inequalities (3.30) are reversed.

o(A)= cr„—(i j)=
I A(i)l +

I A(j)l

r( A) —=r„(ij)=
I
A (i) I' —

I
A (j)I' .

(4.3)

errors on moduli and cosines in many cases.
In the following figures, the results for solutions 1 and

2 are represented by symbols + and 0, respectively.
Solution 0 is represented by symbol 0 without error bars.
The errors on solution 0 are comparable to errors on
nearby real solutions. The figures for cosines do not
show some results with unphysical values.

Using the ordering of (3.14), we now denote the two
solutions for transversity amplitudes as A (i) and A(j)
with i = 1,2 and j = 1,2. The solutions for the two
groups of amplitudes with opposite transversities given
by (2.21) and (2.22) are entirely independent. As the re-
sult, there is a fourfold ambiguity in the partial-wave
cross sections and polarizations. Using the above indices
i and j to label the four solutions, we get

0.2 & ltl & 0.4 (GeV/c) 360 & m & 1040 MeV .

(4.2)

Then for A =L, U, X,

o „(1,1)~ o „(1,2), cr „(2,1)~ o „(2,2),
r„(1,2) ~ r„(1,1), r„(2,2) ~ r„(2,1) .

(4.4)

There are 7 t bins in (4.1) to study the t dependence of
moduli and cosines at fixed mass interval near p mass.
In (4.2) there are 12 mass bins to study the mass depen-
dence of the same amplitudes in the fixed interval of —t.
In each case the amplitude analysis was carried out in
both s- and t-channel helicity frames for the dimeson sys-
tem.

The first run of amplitude analysis produced solutions
of cubic equations for ILI and IL I

which were all real in
some (m, t) bins. In other bins at least one of moduli

I LI
and IL I

had a complex solution. The (m, t) bins with
complex solutions were subjected to secondary runs with
small modifications of observables, within errors, to satis-
fy a subset of linear inequalities from (3.19) and to yield
real solutions while minimizing a y function.

In each (m, t) bin one of the solutions is large and nega-
tive, and it is rejected (solution 3 of Table I). The remain-
ing two real and positive solutions are labeled solution 1

and solution 2, with solution 1 being the larger of the two
in agreement with (3.14). In some cases the solutions lead
to small negative values of other moduli, or to cosines
with absolute values larger than 1 . In general, these re-
sults are still compatible with physical values within er-
rors, and left unchanged.

In certain cases, especially at 1 1.85 GeV/c, we have
not obtained real solutions by small modifications of in-
put data in the vicinity of their original mean values. In
such cases we accept the real part of the complex-
conjugate solutions as an approximate double solution la-
beled solution 0. This procedure is justified by the fact
that the imaginary parts are, in general, small.

The experimental data analysis used optimization pro-
gram FUMILI [56) and the produced error matrix was
used in error calculations in the amplitude analysis. A
linear approximation for error propagation was used to
evaluate errors on solutions of the cubic equations. We
believe that this procedure tends to overestimate the final

For A =S, all inequality signs in (4.4) are reversed.
There are four solutions for the unnormalized partial-
wave cross sections:

I„(t,j)=o'„(i,j)X,
where X is the reaction cross section.

(4.5)

A. t dependence of solutions
in the mass region of p resonance

Our results for the moduli of nucleon transversity am-
plitudes and the cosines of relative phases in the kinemat-
ic region 0. 1 & ltl & 1.0 (GeV/c) and 720& m & 820 MeV
are shown in Figs. 1 and 2 for p&,b

=5.98 and 1 1.85
GeV/c, respectively. Each figure shows the results of in-
dependent analysis in the t- and s-channel helicity frames.
Figure 3 shows the partial-wave polarizations r(1,2) and
r(2, 1) at 5.98 GeV/c. The solutions r(1,1) and r(2,2) are
within the bounds of ~(1,2) and 7(2, 1) and show similar
behavior.

In the t-channel helicity frame, the ~+~ production
at small t is dominated by the amplitude IL I, and the

state is thus produced predominantly with longitu-
dinal helicity A, =O. The decrease of IL I

with increasing
momentum transfer is compensated by the increase in
amplitudes

I Ul and especially IXI, which dominates the
~+a production at larger t. There is also an increase of
ISI with t in solution 2. This behavior of the moduli
gives rise to a crossover for the amplitudes with opposite
transversities. From Fig. 3 we observe that ISI = IS I

for
t =0.45 —0.55 (GeV/c—), ILI = IL I

at —t =0.6
(GeV/c), I Ul =

I Ul at —t =0.5 (GeV/c) and
I XI = IX I

near —t= —0. 5 (GeV/c) . For —t &0.25 (GeV/c) and—t ~ 0.4 (GeV/c), the m+a production proceeds
predominantly with recoil nucleon spin "up."

In m.N ~~ m N reactions, the helicity amplitudes So,
Lo Uo and S&, L „U,are associated with t-channeI ex-
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change quantum numbers of A& and m. mesons, respec-
tively. The large differences between ILI and IL I

for
t—~0.5 and ISI and ISI for t—~0.5 are a clear signal

for strong and nontrivial "A&" exchange contributions
with phases different from the "~"exchange amplitudes.

A comparison of the behavior of v&, ~L, and zU in Fig. 3
indicates that the corresponding pairs of "A," and "m"
exchange amplitudes have nonsimilar relative phases
which change signs at the crossover points.

The helicity amplitudes No and N, both exchange A z
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FKJ. 1. The t dependence of moduh squared of normalized nucleon transversity amplitudes and cosines of their relative phases for
dimeson masses in p mass region m =720—820 MeV at m+ incident momentum of 5.98 GeV/c. The symbols +, , and 0 denote

solution 1, solution 2, and solution 0 (real part of complex solution), respectively.
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quantum numbers. The crossing of INI and IN I near
t—=0.5 (GeV/c) is due to the change of sign in the rel-

ative phase of No and N &. We And a similar crossover of
lNI and INI also at 11.85 GeV/c (Fig. 2). We note that
the data on polarization in n. p ~qn at 7.85 GeV/c, a re-
action which proceeds by pure "A2" exchange, also show
such change of sign [57]. The construction [7,8) of "Az"

exchange amplitudes from EN and XN charge-exchange
data at 6 GeV/c produces a nonflip amplitude with ReNO
changing sign and Im&0 having a double zero in the in-
terval —t =0.4—0. 5 (GeV/c) . The same conclusion was
reached from a simultaneous analysis [58] of reactions
~ p ~a n, m. p ~gn, and E p ~E n at 6 GeV/c. Our
data suggest that Xo in m. +n —+m. +m p has a similar
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FIG. 2. The t dependence of moduli squared of normalized nucleon transversity amplitude and cosines of their relative phases for
dimeson masses in p mass region m =720—820 MeV at m. + incident momentum of 11.85 GeV/c. The symbols are as in Fig. 1.
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FIG. 3. The t dependence of partial-wave recoil nucleon po-
larizations ~ in p mass region m =720-820 MeV at incident
z+ mornenturn of 5.98 GeV/c in the dimeson t- and s-channel
helicity frames.

structure.
The relative phases between transversity amplitudes

exhibit similar behavior for both solutions. The ampli-
tudes S and L appear approximately in phase, awhile S
and L have their phases diverging nearly by 180' with in-
creasing —t and with their relative phase passing through
90' at t =0.6 (GeV—/c) . The relative phases yLU and

yi U both undergo a 180' change from near +180' to near
0', passing through +90' at —t =0.6. While the phases
of S and L diverge, the phases of L and U, and L and U
converge with increasing t for t—5 1.0 (GeV/—c) . The
amplitudes S and U appear approximately 180' out of
phase, at least for solution 1.

The results at 11.85 GeV/c in the t-channel helicity
frame (Fig. 2) are similar to those at 5.98 (GeV/c). There
is some indication for a smaller contribution by IL I

and
larger contributions by ISI and IUI . This would indi-
cate that the erat'ective Regge trajectories of the normal-
ized amplitudes IL I and ISI, I UI are negative and posi-
tive, respectively. %'e also observe the crossover between
INI and INI at —t =0.5 as in data at 5.98 GeV/c.

Our results in the t channel can be compared with the
results of amplitude analysis of ~ p&~~ ~+n at 17.2
GeV/c, also performed in the t channel in the p mass re-
gion of 710~ m ~ 830 MeV and 0( —t (1.0 (GeV/c)
(Figs. 8 and 9 in Ref. [18]). In the kinematic region of
overlap, we find a qualitative agreement but also some in-

teresting differences. In particular, solution 2 for the IS I

amplitude is substantially larger at 5.98 and 11.85 GeV/c
than both solutions for IS I

at 17.2 GeV/c. There is also
no crossover of INI and INI at —t=0. 5 (GeV/c), but

- t [(GeV/c)2] -t [(GeV/c) ]

FIG. 4. The t dependence of unnormalized partial-wave cross
sections in p mass region m =720-820 MeV at incident m+

momentum of 5.98 GeV/c in the dimeson t- and s-channel heli-

city frames of reference. The units are arbitrary but are the
same in both helicity frames.

it may occur near t =0.7 —0—.8 (GeV/c) . The ampli-
tudes INI and IN I

have a different behavior and relative
magnitudes at 17.2 GeV/c in comparison with 5.98
GeV/c. The relative phases ysL, ysL, and yLU are very
similar at 5.98 and 17.2 GeV/c, but FLU appears constant
at 17.2 GeV without the 180' change seen at 5.98 GeV/c.

The moduli ISI, ISI, INI, and IN I
are helicity frame

invariant. A comparison of our results in the t- and s-
channel helicity frames in Figs. 1 —3 confirms this expec-
tation. We also notice that, in our kinematic region, the
t- to s-channel crossing is approximately equal to a
change of L~+Uand U~ —L.

To calculate the unnormalized partial-wave cross sec-
tions I„(i,j), A =S,L, U, N and i,j =1,2, we have used
for the reaction cross section X an estimate based on our
experiment and described in Ref. [29]. The solutions
I„(1,1) and Iz (2, 2), A =S,L, U, N, are presented in Fig.
4. The behavior of IL shows the expected forward peak
due to the pion-exchange dominance. The forward be-
havior of IU in the s channel reveals the importance of
helicity-flip amplitude U, in the s channel. The rather
flat slope of Iz counter indicates a strong influence of the
nearby pion pole in the helicity-flip amplitude S&. The
solution Is(2,2) may have a dip at —t =0.45 (GeV/c) .
The cross section on I~ peaks at —t =0.45 (GeV/c),
and its behavior at smaller —t suggest a dominant contri-
bution of helicity-flip amplitude N&, or a possible dip at
—t = —0. 15 (GeV/c) . The shape of Iz at 5.98 GeV/c is
substantially di8'erent from the cross section for
m. p~gn at 6 GeV/c (see Fig. 13 in Ref. [8]), a process
which is also dominated by pure "A2" exchange helicity
amplitudes.
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B. The mass dependence of solutions

for —t =0.2—0.4 (GeV/c)

The mass dependence of the moduli of NTA and
cosines of relative phases in the mass intervalI =360—1040 MeV and in the single t bin —t =0.2—0.4
(GeV/c) is shown in Figs. 5 —8. Again, we present the

results of independent analyses in the t- and s-channel
helicity frames at both incoming momenta of 5.98 and
11.85 GeV/c. In Fig. 9 we present partial-wave polariza-
tions r(1,2) and r(2, 1) at 5.98 GeV/c for both helicity
frames.

First we discuss our results in the t channel. Solutions
1 and 2 are rather similar with the exception of lSl~ for

.4
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FIG. 5. The m dependence of moduli squared of normalized nucleon transversity amplitude and cosines of their relative phases for
momentum transfer —t =0.2—0.4 {GeV/c) at 5.98 GeV/c in the dimeson t-channel helicity frame of reference. The symbols are as
in Fig. 1.
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m &650 MeV where solution 2 is larger than solution 1

by a factor of 2 —3. For m ~800 MeV, the amplitude
lLI dominates and accounts for —50% of the ~+a.
production. Particularly noteworthy are the structures of
moduli ILI and lL l

and INl and lNl within the mass
range of the p resonance.

The amplitude ILI peaks at 760 MeV while lL l
dips.

Moreover, at this mass lLl = IL I, as seen from the be-

havior of ~L. For m ~600 MeV, the relative phase
is negative and vanishes at 760 MeV. Alterna-

0 1

tively, ILO I
or IL I I

varies rapidly within the resonance
width and vanishes at 760 MeV.

The amplitude INI peaks at 780 MeV while INI dips
to INl =0 at the same mass. Thus, lNol =INIl at
m =780 MeV and for —t=0.2—0.4 (GeV/c) . We note
that "A 2" exchange helicity amplitudes in KN charge ex-
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change at the same energy and momentum transfer have

difFerent structure with ~N, ~
larger than ~NO~ .

The amplitudes
~

U~ and
~
U~ show a smooth behavior.

Their small magnitudes indicate that the m. +~ state with

transverse dipion helicities A, =+1 is produced mostly

through natural exchange at this range of —t. However,

the situation is different in the s-channel helicity frame.
There it is the amplitude

~ U~ which dominates and dips

at m =760 MeV while
~

U~ peaks at this mass and ~L~

and ~L
~

appear structureless. The rapid variations in

magnitude of amplitudes U, U, N, and N within the p
mass region reAect rapid changes in magnitudes and/or
phases of the corresponding helicity amplitudes with

transverse dipion helicity A, =+1 in the s-channel helicity
frame.

The large differences in magnitude and behavior be-
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FIG. 7. The m dependence of moduli squared of normalized nucleon transversity amplitudes and cosines of their relative phases
for momentum transfers —t =0.2—0.4 (GeV/c) at 11.85 GeV/c in the dimeson t-channel helicity frame. The symbols are as in Fig.
1.
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tween the amplitudes I
L

I
and I

L I in the t channel and
between

l Ul and
l Ul in the s channel for masses

m ~600 MeV are a clear signal for large and nontrivial
"A&" exchange nonflip amplitudes Lo and Uo in the p
mass region. The "A&" exchange also contributes to

production in the J=0 spin state, and for
—t =0.2 —0.4 (GeV/c} its contribution to the S-wave
amplitude So is large for masses m &700 MeV. The

di8'erences in partial-wave polarizations ~z, ~1, and ~U in

each frame indicate that the associated pairs of "A,"and
"m" exchange amplitudes So, S, , Lo, L, , and Uo, U&

have dissimilar behavior. The detailed structures of these
"A &" and "m" exchange amplitudes thus also depend on
the spin and helicity of the m+m. state. The behavior of
~N indicates a rapidly varying relative phase of the two
"Az" exchange amplitudes No and N, within the p reso-
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FIG. 8. Same as Fig. 7 in the dimeson s-channel helicty frame.
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nance mass region.
The results at 11.85 GeV/c are similar with one notice-

able exception. Although the amplitudes ~L ~
in the t

channel and
~
Ui in the s channel both increase with di-

pion mass m, there is no apparent dip at 760 MeV as seen

at 5.98 GeV/c. There is a possibility that the dip is shift-
ed to larger —t (see Fig. 15 below). We also note that
systematic errors are larger at this energy.

In Fig. IO we present unnormalized partial-wave cross
sections Iz (1,1) and I„(2,2), A =S,L, U, N in the s chan-

5.98 GeVlc t channel
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FIG. 9. The m-dependence of partial-wave recoil nucleon po-
larizations v. for —t =0.2—0.4 (GeV/c) at 5.98 GeV/c in the
dimeson t- and s-channel helicity frames.

FIG. 10. The m dependence of unnormalized partial-wave
cross sections for —t =0.2—0.4 (GeV/c)2 at m+ incident mo-
menta of 5.98 and 11.85 GeV/c in the dimeson s-channel helici-
ty frame. The units are arbitrary and are different at each in-
cident momentum.
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nel at both energies. For the reaction cross sections we
have again used estimates based on the Saclay experiment
[29]. The spin-averaged P wa-ve cross sections IL, IU,
and I~ show po resonance peaks which give no hint of
any underlying structures within the resonance width
seen on the level of production amplitudes. We notice,
however, that in both solutions the apparent width of the

po peak in I~ is narrower than the widths of the peaks in

IU and II.
The S-wave cross sections, in particular Is(2,2), show a

peak at -750 MeV. The smooth behavior of the normal-
ized amplitude ISI and of its relative phase ysU with a
large-amplitude U resonating a nearby mass (Fig. 6), indi-
cates a resonant behavior of the amplitude S correspond-
ing to a scalar state I =00++(750) (see also Refs. [3S,36]).
This aspect of our amplitude analysis will be discussed in
a greater detail elsewhere.

C. Verification of the method of analysis

The moduli ISI, ISI, INI and IN I
are helicity frame

invariant. The data analysis as well as the amplitude
analyses were carried out independently in the s- and t-
channel helicity frames. The results confirm the expected
helicity frame invariance of these moduli. This
confirmation provides an important self-consistency test
of our amplitude analysis.

A potential diSculty stems from the fact that the input
SDM elements are not exact but bin-averaged values.
The nonlinear equations for moduli (3.13) apply, strictly
speaking, only to the point values of SDM elements.
While bin-averaged SDM elements will continue to satis-
fy any linear relations among these observables, nonlinear
relations will not be exactly satisfied. Using nonlinear re-
lations to calculate amplitudes from bin-averaged data
will introduce necessarily distortions in the results. We
would like to know if the distortions could be large
enough so that they can modify the interpretations of our
results.

Any answer to such a question coming from the same
set of input data on SDM elements must necessarily in-
volve linear relations. Such a self-test for nonlinear dis-
tortions is provided by bounds on moduli I A I and I

A I,
A =S,L, U, N. The linear equations (3.2) determine
mixed combinations of moduli squared:

( —,'ISI )„„=min I I Al + —,'ISI, INI + —,'ISI ],
A =L, U
s and t

(-,' ISI')„pp„——min I I
A I'+-,' IS I', INI'+ —,

' IS I'I .
t

s and E

Lower bounds on P-wave moduli are then

I
A I,'.„„=I A I'„„„—(-,' Isl')„„,

„

I
A Iiower I

A lupper ( 3 IS I )upper .

(4.8)

(4.9)

5.98 GeV/c
I—ILI 2
—2

4
--- ILI

I

s channel
I I

t channel

m = 720-820 MeV
I I—ILI 2

—2--- ILI

—IUI 2
—2--- IUI

.4—
s channel t channel

The bounds calculated for (r, m) bins in the kinematic re-
gions (4.1) and (4.2) were reported previously in Ref. [29].
For convenience of comparison, we present these results
at 5.98 GeV/c in Figs. 11 and 12.

The bounds are most restrictive for the P-wave moduli.
We note that the mean values of both solutions obtained
for the moduli in our amplitude analysis are contained, in
general, within the bounds. The bounds show the same
structural features exhibited by the solutions; in particu-
lar, they show the structures within the mass interval of
the po width. We conclude that the nonlinear distortions
are small on our level of statistics.

The bounds in Figs. 11 and 12 were shown without er-
rors for the sake of clarity. In Figs. 13 and 14 we show
statistical errors on bounds for several interesting struc-
tures in the dependence on momentum transfer t and
mass m, respectively (see also Fig. 4 of Ref. [38]). We
conclude that the observed spin-dependent behavior of
moduli and the structures near the p mass are statistical-
ly significant and are una6'ected by the presence of small
nonlinear distortions.

ILI'+-'Isl' IUI'+-'isl' INI'+-'isl'

II I'+-,'Isl', IUI'+-,'Isl', INI'+-,'Isl'. (4.6)
—INI ~

—2
.6 —--- INI

s andt channel s andt channel
—ISI 2

—2--- ISI

The results (4.6) represent upper bounds I
A I2

IAl„pp„,on the moduli squared of P wave amplitudes-
corresponding to the absence of the S wave:

Isl,'..„=Is I,'.„„=0. (4.7)
P I

p .2 .4

-t[(GeYlc) ]
The lower bounds on P-wave moduli are obtained by sub-
tracting from each term in (4.6) an upper bound on —,

' (Sl

and —,
' IS I

. Since amplitudes S, S, N, and N are invariant

under s- to t-channel helicity frame transformation, we
calculate, in each ( m, t ) bin,

FIG. 11. The t dependence of the lower and upper bounds on

the moduli squared of the normalized I'-wave nucleon transver-

sity amplitudes for m =720—820 MeV at 5.98 GeV/c. Also
shown are the upper bounds for the normalized S-wave ampli-

tudes.
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V. DISCUSSION

.3—
IUI

The pion production process mN~~mN has always
served to develop our ideas on dynamics of hadron col-
lisions and hadron production. In 1960, the one-pion-
exchange (OPE) model was first proposed [59,60] and
then developed into a picture of peripheral interaction
[61—63]. Difficulties at larger momentum transfers —t
led to replacement of one-particle exchange by exchange
of Regge poles [63,64]. However, the Regge-pole ex-
change alone turned out also inadequate for the descrip-
tion of amplitudes. This discrepancy has been called ab-
sorption, and various absorption models have been stud-
ied phenomenologically [64—66,45], including the use of
dispersion relations [67]. Our amplitude analysis pro-
vides direct experimental information on the production
amplitudes, and thus it enables us to examine some of the
models developed for the study of m.N~m. mN reactions.
We will look separately at the momentum-transfer distri-
bution in the p mass region and at the mass dependence
of amplitudes.
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FIG. 13. The t dependence and the m dependence of lower
and upper bounds with statistical errors for the amplitudes ) U~

and
~
U~ in the s channel at 5.98 GeV/c.

S„=gL„,/=Pe', n =0, 1, (5.1)

A. Dependence on t in p mass region

A simple Regge model for the reaction m. p &

~(m n )n with dipion mass confined to the p mass in-
terval was constructed by Kimel and Owens [44] to ex-
amine the role of "A &" exchange in data at 17.2 GeV/c
for t =0—1.0 (GeV/c) . Se—veral structural features of
the model can be tested by the results of our amplitude
analysis without making any re6t of the model's many
free parameters.

The model assumes that the S-wave nucleon helicity
amplitudes So and S, are proportional to the s-channel
amplitudes Lo and L „respectively, as

0
I

4
I

6

-t[(GeVic) 1

FIG. 14. The t dependence of lower and upper bounds with
errors for amplitudes )N) and )N)2 at 11.85 GeV/c. The ampli-
tudes are helicity frame invariant.
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where P and 6 are constants with values =0.4. From
(5.1) it follows that, in the s channel,

cos(ysL }=cos(ysL ) =cos(b, ) =const,

&s =P'&L
(5.2)

A comparison of (5.2) with Figs. 1 —3 shows that the as-
sumptions (5.1) are not well supported by experimental
data. In particular, ~s(1,2) has a larger magnitude than
~L(1,2}, and is(2, 1) is large for t =—0.35 (GeV/c), while
rL (2, 1) is consistent with zero.

The natural exchange amplitudes are parametrized as

NO=R ( A2},

N, =&—t' kNO+C,
(5.3}

where R(A2) is an Az exchange Regge pole, C is a
Regge cut contribution, and k is a constant. The relative
phase of amplitudes No and N& is given in terms of Regge
trajectories nz and a, of the pole and the cut. Using the

2

model's parametrization of these trajectories, we get, for
the relative phase,

rz = —2 Im(NON f ) = 2)No ( (
C(sin —(a z

—ac ) (5.5)

is then predicted to be positive and changing sign at
—t=1.27. Data in Fig. 3 show that, while ~z is positive
at smaller t, it is changing sign already at —t=0.5
(GeV/c) . This position of the zero of rN is close to the
zero of the A2 exchange trajectory a~ =0.43+0.74t

2

used in the model. This suggests that the natural ex-
change amplitudes No and N& have a structure different
from this model.

In the Kimel-Owens model, the nucleon helicity-Rip
amplitudes L, and U, in the s channel are dominated by
a pion-exchange Regge pole with U& also receiving a
Regge-cut contribution. The nonAip amplitudes Lo and

Uo receive contributions from 3, exchange Regge pole
and a Regge cut. At 17.2 GeV/c, the model predicts
rL (0 for t ~ 1.0 (GeV/c—), while rU changes sign at

t =0.25 (GeV/c) —and is positive for —t ~ 0.25
(GeV/c) . This result is in qualitative agreement with
our amplitude analysis at 11.85 GeV/c (Fig. 2).

B. The mass dependence of amplitudes

= ——(a —a ) = ——(0.43+0.34t) . (5.4)
Np N& 2 A2 c

The partial-wave polarization

with orbital momentum J in mm elastic scattering and
contains most of the m dependence. The helicity ampli-
tudes 6&& 0& are assumed to be only weakly dependent

on mass m at least in the resonance region. Using the re-
lations (2.9) and (2.11) we obtain a similar factorization
for our transversity amplitudes. For P-wave amplitudes
3 =L, U, N,

3 (s, t, m)=f'(m)B(s, t, m),
(5.7)

A(s, t, m }=f '(m)B(s, t, m),
where 8 and 8 are formed from the amplitudes Gppp og n

using (2.9) and (2.11) and depend weakly on mass m. The
mass dependence of moduli squared at fixed —t,

(5.8)

is then determined by the common factor
~f '~ . In par-

ticular, in the p mass region, all P-wave moduli are ex-
pected to exhibit a similar resonant shape independent of

This consequence of the factorization hypothesis is
contradicted by the results of our amplitude analysis for
the mass dependence of the moduli. As is seen in Figs.
5—8, the moduli do not have a uniform shape indepen-
dent of nucleon transversity and dimeson helicity. For
instance, at 5.98 GeV/c, the amplitude ~L~ peaks while
~L

~
dips at the resonant mass in the t channel. More-

over, elsewhere [38] we have shown that the shape of
moduli squared within p mass region changes with —t
dramatically (see also Fig. 15). We conclude that the fac-
torization hypothesis is not well supported by the data on
a polarized target. This conclusion casts some doubt on
the previous studies of meson-meson scattering based on
the extrapolation of unpolarized data on ~N —+n.+~ N
into the unphysical region of t. The essential enabling as-
sumption for the extraction of ~m. phase shifts by this
method was the factorization hypothesis (5.6).

C. The t evolution of mass dependence

The mass distribution of the spin-dependent modu)i
and

~
A

~
and the structures within the mass range

of p width vary with momentum transfer —t.
This conclusion is the result of our recent study [38] of

the t evolution of mass dependence of bounds on the
moduli squared in n.+n&~m. +~ p at 5.98 GeV/c. In
this work we used Saclay data in an extended (m, t) bin-
ning covering the kinematic region:

The dependence of production amplitudes on the di-
pion invariant mass m is still little understood both ex-
perimentally and theoretically. Factorization of m
dependence and t dependence has been commonly as-
sumed in the study of ~N~vr~N and KN~K~N pro-
cesses [66,68 —70]. In our notation the assumption of fac-
torization implies

Hgg~og (s, t, m)=f (m)Ggq oq (s, t, m), (5.6)

where f (m) is proportional to partial-wave amplitude

360 m 920 MeV

and

0. 1 ~ t ~ 1.0 (GeV/c)—

(S.9)

with six mass bins and the same seven t bins as in the b»-
ning (1.3). Additional results at 11.85 GeV/c are shown

in Fig. 15.
In Ref. [38] and in Fig. 15 we present improved upper

bounds obtained by introducing a nonlinear lower bound
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on the S-wave moduli ISI and IS I
. From (2.21b) we get,

in each channel,

) 6
(5.10)

where IU(„„andILl„„aregiven by (4.6). We now
define alo~er bound on S as

ISI„„„=min
s and ~ )U)„ I

L I upper

(5.11)

(5.12)

The new upper bounds for moduli squared of P-wave am-
plitudes 3 =L„U,N then are

I
A I'„, ,=(

I
A I'+-,' Isl') —,' Isl,'.„„.

.2—

Q

4—

t channel

1

)0~2
lU(2

t= -0.&6

t = -0.25

t = -0.35

The lower bound IS(I, ,„and the new upper bounds on
the moduli of amplitudes I., U, N are obtained similarly.
The lower bounds (4.9) on P-wave moduli were left un-

changed.
We note that the po resonance peak is seen in the reac-

tion cross section d cr/dm dt =X at all measured
momentum transfers. The observed structures near reso-
nance masses and their change with —t indicate that the
resonant peak in X is not uniformly copied on the level of
unnormalized amplitudes I Al X and I

A I X. Instead, the
t-dependent structures within the resonance width pro-
vide entirely new and nontrivial information about the
dynamics of p resonance production.

D. Possible effects of hadron structure
.2—

0
4—

I
I I

I I

t = -0.45

~ 2—

Q
400 600 800 400 600 800 1000

m(a+x ) [MeV]

~
4—

I I

INI
——(Nl2
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( I
( I
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I
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I

.2—
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.2—

0
4—

.2—

0

~ 2—

Q ( I

400 600 800

m(z+x ) [Mevj

FIG. 15. The t evolution of mass dependence of moduli
squared of t-channel normalized nucleon transversity ampli-
tudes at 11.85 GeV/c. (Results at 5.98 GeV/c are presented in
Ref. [38]).

The t dependence of moduli INI and INI in the p
mass region shows a clear crossover of these moduli at

t, =0.4—0.5—(GeV/c) at both incident momenta. In
contrast, the CERN-Munich amplitude analysis [13,14]
of m. p& ~m. m+n at 17.2 GeV/c shows no crossover of
INI and IN I at these values of t. There is a—possible
crossover at t, =0.7——0.8 (GeV/c) . The quality of
both experiments suggests that the observed difference is
a real effect. The difference in t, could be due to energy
dependence of the crossover point t, or it could be an
energy-independent feature of natural exchange ampli-
tudes. Only new experiments can distinguish between
these two possibilities. %e suggest one consider the ob-
served difference in the position of crossover in the ampli-
tudes INI and IN( as a signal of the influence of hadron
composite structure in hadron production processes
[71,72].

The expectation that the behavior of natural exchange
amplitudes should be the same in both reactions origi-
nates in a simplified view of Regge poles and Regge cuts
developed in 1960s. Et was recognized already then that
Regge poles reflect the composite structure of exchanged
objects and that Regge cuts arise from the composite
structure of colliding hadrons and from the spatiotem-
poral ordering of hadron breakup and reintegration dur-
ing scattering [71,72]. But, in practice, this nature of
Regge singularities was sidestepped in Regge models and
Regge phenomenology. Regge poles were coupled to ele-
mentary hadrons in Feynman-like diagrams with factor-
izable vertices. The Regge cuts were modeled either by
multiple scattering of elementary hadrons in the initial
and the final states of interactions, or by the multiple ex-
change of Regge poles between elementary hadrons. In
such Regge models, the reactions ~+n~m. +~ p and
~ p~~ m. +n are described by exchange diagrams with
the same Regge poles and the amplitudes in both reac-
tions show the same structure. Any departure from this
expectation suggests one reconsider the neglect of the
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composite nature of hadrons and exchanged objects in
the modeling of Regge singularities and scattering ampli-
tudes.

In principle, the hadron structure and interactions at
small t are described by nonperturbative quantum chro-
modynamics (QCD). QCD provides a physical basis for
the interpretation of Regge singularities and introduces
non-qq exchanges. Deviations from simple Regge models
found in experimentally determined amplitudes can thus
be viewed as manifestations of nonperturbative QCD
effects.

VI. SUMMARY

We have performed a model-independent amplitude
analysis of the reaction m. +n

&
~~+a p at 5.98 and 11.85

GeV/c using Saclay data in two sets of binnings (1.3) and
(1.4) to study the t dependence of pion production ampli-
tudes in the p mass region and their mass dependence
below 1000 MeV for t =0.2——0.4 (GeV/c) . The data
on a transversely polarized target are best analyzed in
terms of normalized nucleon transversity amplitudes
(NTA's). In our kinematic region we worked with two
S-wave and six P-wave amplitudes in both s- and t-
channel dipion helicity frames.

Our analysis yields in each (m, t) bin two solutions for
eight rnoduli and six cosines of relative phases between
pairs of amplitudes (3.3). The two solutions are similar
with the largest difference being in the S-wave moduli. In
some (m, t) bins the analysis leads to unphysical complex
moduli. In such cases we presented their real parts. This
procedure is justified since the imaginary parts are rela-
tively sma11 and the real parts are within the linear
bounds (4.6) and (4.9). The occurrence of unphysical
values of rnoduli and cosines is very likely due to the use
of unconstrained optimization of the rnaximum-
likelihood function in the data analysis. We-suggest that
future experiments use a constrained optimization in
their data analysis.

We presented a detailed description of the behavior of
amplitudes which show new and important features both
in their t dependence and m dependence. Both solutions
require nonzero nucleon helicity-nonflip amplitudes
("A, "exchange) with phases diff'erent from the phases of
nucleon helicity-ffip amplitudes ("rr" exchange). This re-
sult confirms the previous evidence for "3," exchange
found in the CERN-Munich amplitude analysis of
vr pt~a m+n at 17.2 GeV/c.

The t dependence of natural exchange amplitudes lNl

and lN l
shows a crossover at —r, =0.4—0.5 (GeV/c} at

both energies. The CERN-Munich analysis shows no
crossover in the "Az" exchange amplitudes lNl and lNl
at this value of —t. We suggest that this difference may
be a real effect associated with the composite structure of
hadrons [72].

From a comparison of our results with the Regge mod-
el of Kimel-owens, we concluded that the experimentally
determined amplitudes S,S and 1V, N have structures
different from the assumptions made about these ampli-
tudes in this model. The differences in mass dependence
of the moduli squares l

A
l

and
l
A l, A =S,L, U, N,

refIect an important role of nucleon spin in the pion

This work was supported by Fonds pour la Formation
de Chercheurs et 1'Aide a la Recherche (FCAR},
Ministere de 1 Education du Quebec, Canada, and by
Commissariat a 1 Energie Atomique, Saclay, France.

APPENDIX

Calculation of phases y&s and y~s

In this appendix we solve Eqs. (2.23) for the helicity
frame invariant relative phases YNS

=
pN

—ps and

yNS =pN —ps. Other phases in (2.23) are then expressed
in terms of these phases and phases (3.3):

YNU 4N 0U (4N OS }+(NS 4U } YNS Y US
(A 1)

YNL 4N 4L (0N Ns }+(Ps PL } YNs YLS—
with similar relations for y&U and y'zl. The system of
equations (2.23) can then be written as

&

= INI I Ul«»(YNS YUS } INI I Ulcos(YNS Y US }

b2 =
I Nl I

L
I cos(r Ns YLS }

I

N—
l I L I

«—s(YNs YLs &

b, =lNllslc»(Y„, }—I Nllsl«sy(, .&
From b3 we obtain

lNl I ~l cosYNS I 3

and from b2 we have

(A3)

creation process. Particularly noteworthy are structures
in the p mass region seen in the amplitudes l Nl, l

N l,
lLl, and lLl (t channel) and lUl and lUl (s channel)
and their t evolution (Fig. 15 and Ref. [38]). We conclud-
ed that the p peak seen in d cr idnky dt and in the smooth
partial-wave cross sections (Fig. 10) is not uniformly
copied on the level of amplitudes. We suggest that the
structures in moduli within the p mass region provide
entirely new information on the dynamics of p produc-
tion. We also note that, in Fig. 10, the width of the p
peak in the natural exchange partial-wave cross section
I~ is narrower in comparison with the p peaks in the un-
natural exchange partial-wave cross sections IL and IU.

The S-wave cross section shows a peak around 750
MeV, in particular in the solution Is(2,2). This behavior
of Is suggests that the possibility of the existence of a
scalar state I =00++(750) should be considered W.e will
discuss in detail this aspect of our amplitude analysis
elsewhere. The observed features of mass dependence of
P-wave moduli squared do not support the hypothesis of
factorization of mass and momentum-transfer depen-
dence in pion production amplitudes previousIy used in
studies of meson-meson scattering.

To conclude, we have demonstrated that new and im-
portant information on hadron dynamics and properties
of hadron resonances is provided by amplitude analysis of
the pion production processes m.N~m~N. Our results
warrant new efforts to reach the level of amplitudes ex-
perimentally and with a high degree of precision in a new
generation of experiments with spin at the recently pro-
posed advanced hadron facilities [73—83].
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I( osyxscosyLs+»nyxssinyLs )
siny~s = —cosyzs(cosyLs/sing Ls )+

IN I IP»n(yLs )

We now define

c )
—= IL I ISI sinyL, s =~(V IL, I'ISI' —a 6,

c, =—[ Ul ISI»ny „=e,V'
I
Ul'ISI' —a,',

c3 ——
/

U/ /L/sinyUL =&3V I UI ILI

(A5)

where e =+1,k = 1,2, 3 is the sign ambiguity of the sines. The c3 and the sign e3 are not independent of c
&

and cz.

~S( cs =a&cz —asc, . (A6)

Similarly we define c„c2,and c3 for amplitudes with opposite transversity. Substituting from (A3) and from (A4) in«
the equation for b, and using the above definitions for ck, ck, k =1,2, 3, we obtain

(b, c, +bzcz+b3c3)/S/ /S/=sinytts/N//S/ (c,c2+c,cz)+cosyzs/N/[c, (as/S/ —a5/Sf )+cz(as/S/ +a6[S[ )} .
(A7)

We now define

b, c)+bzc2+b3c3d=
c&cz+c&cz

c, (a5/S/ —a5/S/ )+c2(a6/S/ +as/S/ )
tana =

(c,c, +c,c, )~S~'

With this notation (A7) takes the form

~Ns+ cospNs tana =d

Its solution is

(A8)

(A9)

Using (A10) we obtain cosy~a and sinyzs from (A3) and
(A4).

There are four combinations of solutions for moduli

A~, ~
A ~, A =S,L, U, N entering the calculation of d

and tana. In addition, each such combination is accom-
panied by the fourfold sign ambiguity from the undeter-
mined signs ek and Fk, k =1,2. This 16-fold ambiguity
increases to 32-fold ambiguity due to sign ambiguity in
(A10).

The solvability of (A9) imposes a nonlinear constraint
on data and on the solutions for moduli squared

d —1 ~tan a . (Al I)
1

cosy~@= Id tana++I+tan a —d ),
1+tan a

sinyzs =
2 I d + tanaV I+ tan a —d I .

1+tan a

(A10)
Additional constraints follow from the requirement that
cosines and sines of yzz and y~~ have physical values.

In principle, these constraints could reduce the overall
ambiguity of solution (A10).
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