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It is shown that spontaneous breaking of supersymmetry without a cosmological constant is impossi-

ble in the context of new minimal supergravity.
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I. INTRODUCTION

Some time ago the 20/20 nonniinimal supergravity
multiplet (e', +, T, S, b„E,, A, ) was studied [1].
The component form, computed to order (spinor) (sca-
lar), of the Lagrangian

~20, II — i f d2g s ge —aQebnf (y y)

+f d gs20g(p) +H. c.

wf ~ 4n +w—f,
xf~—2+xj,

where

w = [(3n + 1)a (n + 1)][(3n+ 1)b —2n ], —

x =(3n+1)(1—a+b) —2n .

(3)

The component form, to order (spinor) (scalar), of the
Lagrangian describing the type-II coupling of non-
minimal supergravity to matter is given in Ref. [3]. The
corresponding component form of the Lagrangian
describing type-I coupling is obtained using Eq. (3), and
is listed in the Appendix.

The new ininimal supergravity multiplet (e', g
A, X ) contains, moreover, the graviton field e' and
gravitino field g, two gauge potentials as auxiliary
fields. One of them A is the gauge potential of a U(1)
symmetry of the action (the action for the new minimal

describing type-II coupling of nonminimal supergravity
to the chiral superfield was obtained and showed that
spontaneous supersymmetry breaking in Minkowski
space, i.e., with null vacuum energy, i.e., with a null
cosmological constant, is possible in 20/20 nonminimal
supergravity [2,3]. Contrary to what occurs in old
minimal supergravity, nonminimal supergravity includes
two types of coupling of supergravity to matter. The La-
grangians that described the couplings are referred to as
type I and type II. A type-II coupling is described by the
Lagrangian given in (1), and a type-I coupling is given by

+20, I & f d2g & + ] fd2g & Q[e anebn—f(P P}]

+ f d gs20g(P)+H. c. (2)

Type-I theory is related to type-II theory by the
redefinition [3]

multiplet is invariant under the U(1} part of Weyl super-
transformations), and the other is an antisymmetric ten-
sor gauge potential.

The Lagrangian describing the coupling of the chiral
superfield P, whose components are given by [4]

A =(( le —s —p ~ Xa= 2+aklg=g=p ~
= 4& Pls=e —p ~

(4)

to 12/12 new minimal supergravity is [2]

~0 f d2g S fd g E g[e(b —IIQ bnf (y y)]

+f d gsI2g(p)+H c. (5

This Lagrangian can be obtained from the Lagrangian
describing the type-I coupling of nonminimal supergravi-
ty to chiral matter by imposing the constraints n =0, and
R invariance (the action for new minimal supergravity is
U(1) invariant [5]} and the condition 1 —a =b This.
means that we can obtain the component form of the La-
grangian describing the coupling of new minimal super-
gravity to chiral matter from the component-form type-I
theory of nonminimal supergravity.

Since the spontaneous breaking of local supersymmetry
with null vacuum energy is possible in nonminimal super-
gravity, one would hope that this situation would not
change for the case of new minimal supergravity. How-
ever, since new minimal supergravity is R invariant (con-
trary to nonminimal supergravity), the question naturally
arises: Could the R invariance of the Lagrangian affect
the breaking of supersymmetry? The reply, in principle,
appears to be yes if one considers the fact that R invari-
ance does not permit the appearance of type-g o
terms. This work shows that, contrary to the cases of old
and nonminimal supergravities, the spontaneous breaking
of supersymmetry with a vanishing cosmological con-
stant is impossible in new minimal supergravity.

The organization of this paper is as follows. In Sec. II
we obtain the component form of the Lagrangian that de-
scribes the coupling of new minimal supergravity to
chiral matter. Section III is devoted to the study of spon-
taneous breaking of supersymmetry in new minimal su-
pergravity. A brief discussion of the results obtained and
an Appendix close this work.

II. COMPONENT FORM OF THE LAGRANGIAN

The component form of the Lagrangian describing the
coupling of new minimal supergravity to chiral rnatter is
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obtained imposing the constraints n =0 and R invariance
on the Eqs. (Al) —(A4) and using the definition

K —E, =3X,+b, +o, T T, ,

b, =e, /I . (g T —P . T ),
a

and the condition 1 —a =b. The detailed Lagrangian is
lengthy but straightforward to obtain and there is no
need to present it. Now we must cast the Lagrangian
into its canonical form by means of the following accus-
tomed procedure.

(a) Elimination of the auxiliary fields using their Euler-
Lagrange equations:

X, = e, [hfdf A(x)+i(fAd A fAB—A )],
2(1 bf)(—1 bf +—3b f)

—1
[& &(x)—2'(fAB A —f—„8 A)),

(b) Diagonalization of the kinetic term using the field redefinition

Pm 1 m g2 1 bffAXa m (9)

(c) In order to eliminate the Brans-Dicke-type coupling of the scalar field to the curvature scalar R, we now perform
the rescaling

ya —ya A
—1/2 a g.a A

—Ie

+a —+~aA i /2 klmn —MlmnA4 A2
(10)

(d) In order to obtain a real gravitino mass after supersymmetry breaking, we perform a phase transformation of the
fermion fields which consists of opposite chiral rotations which are allowed provided g%0:

' 1/4 —1/4

i)" x = (11)

The Lagrangian, considering terms to (spinors) (scalar) is

1 1—Xa= ——R—0

e 2
a. ~a-X

A2 AA 2A2 I bf+3b2f A A

3b'+ f ' ', (f„'a.~a ~+f-„'a„~a-~)—,', (f„a.~ —f-„a.~)a X
4A f 1 bf+3b f — " 2A (1 bf+3b f)—

a ~a-~ — ' '"'"
4A (1 bf+3b f) — A f„

2

&F= .'&"' "Nk—l4 . -4k~(W .)
—, (fAA+—

(12)

1/2

g gAXO' |('m
m

— g

g

1/2

g-„0 ~x
1/2

1+ A' g
ay'+ 1

A g

1/2

(13)

—2b 1 — 1
AfA 2fAAA 2 AA

and X is a real field coming from the addition of a Lagrange multiplier term to the bosonic sector of the action. The bo-
sonic sector has been analyzed in Ref. [2j, where two cases were considered: (1) b =g =0 and (2) b&0, g arbitrary. Case
(1) does not interest us due to the condition g =0.

Case b&0, g arbitrary. We consider the particular case b =
—,'. After the introduction of the Kahler potential

K = —3 lnA with A = 1 —,' f, the associated fun—ction G = IC —lngg, a—nd after the redefinition of the scalar field A,
A = 3'+%., with
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6f(G„„+—,'K—qK„—) +KqKq /6f

we obtain the Lagrangian

K-—Zo= ——R+ G„-„+—K„K-„a.Aa-A+ a. Aa-A+, a. Aa A+ra. Xa )(,
e 2 3 12 IB

gA gA e

g g GAA+ 3KAKA
(14)

+F s ( Pk~le ek+le }+lGggX+ + X ~ e X+ 4 P~Y
. g

—G/2 & 2+ -2
e —X —X (15)

where

12(G„q+—,'K„Kq ) +K„KqAA 3 A A 6f [6f(G + fK K )2+K2K2 /6f]2

K„Kq [f(Gqq ,'KqKq —}———,'K„K—„]
3 12 6f(G„„+,'KqK „)2+——K~qK2—/6f

Finally we can say that the kinetic term of the bosonic
sector can be put approximately into diagonal form by
considering, as in Ref. [3],f„—=k (where k is the gravita-
tional constant) and f„„=1.This me—ans that K„ terms
are suppressed by a factor (Mp) compared to the K„
term.

Under this condition the bosonic sector of the La-
grangian may be written as

1 p = —
—,'R +(G„„+,'K„K„)8— A—B A+—rB AB A.

e

5g = —2$ P+ —em m

KAgA

g(G~~+ 3K~K~'

5~A = —~2',
5y = —&2e a/2

g +
g(G~~+ 3K~Km)

(17)

+ eG

g g GAA+31KAKA
(16)

To discuss spontaneous symmetry breakdown we consid-
er the transformation law ofg:

III. SPONTANEOUS SUPERSYMMETRY BREAKING

We start with the transformation laws of local super-
symmetry which, after redefinition of the gravitino (9),
the Weyl transformation (10}, the phase transformation
(11),and considering

1/4
—

g ~—1/2

become

g — —G/2

5y = 2Fg with F=-
g AA+3KAKA

We know that spontaneous breakdown occurs if auxiliary
fields receive a nonzero vacuum expectation value and
their corresponding fermionic partner is identified as the
Goldstone fermion [6].

In view of the fact that physical parameters such as
mass and the cosmological constant can be extracted
from the scalar potential V and from the fermionic part
that constrains only quadratic fermionic terms, we now
write such terms explicitly:
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V= e

g g G„A +—,'KAKA

~0 i
e

—G/2
(2)F x~ 0— 4~7

a 2 a
X X

IV. CONCLUDING REMARKS

We have obtained the component form of the Lagrang-
ian for new minimal supergravity coupled to a chiral
multiplet, and studied classically the spontaneous break-
ing of supersymmetry. We have found that the men-

tioned spontaneous breaking of supersymmetry without a
cosmological constant is impossible in the context of new

minimal supergravity. This result might help in the
search for a reply to the question: Which is the appropri-
ate supergravity multiplet compatible with the low-

energy field-theory limit of superstring theory [7—11]?

Because of the fact that G„A +—,'K„K—„should be

nonzero so that the model is well defined, we see from

X~2iF and from the transformation law for the y field

that g„/g is relevant for discussing the breaking of local
supersymmetry.

Ifg„ /g is nonzero, the y field is mixed with the gravi-
tino field and transforms like a Goldstone spinor field.
Since we are interested in symmetry breaking in Min-
kowski space, we require the cancellation of the cosmo-
logical constant. For this reason we set the potential to
zero in the minimum; i.e., we require that V=O in the
minimum. Thus,

p —0 GO
e

0 —0 0 i 0 0
GAA+ 3KAKA

GO
This implies that gz /g0 =0 since e /
(Gz„+ ,'K&K „)%—0.Bu—t if this condition is satisfied,

then the term that mixes g and g disappears from the
Lagrangian. Also this gives 5y =0+; i.e., y does
not transform like a Goldstone field and consequently the
breaking of supersymmetry cannot take place when

Vp =0 i.e., with a null cosmological constant. This
means that the breakdown of supersymmetry in Min-
kowski space is not possible in new minimal supergravity.

In order to have a theory free of gravitational and
Yang-Mills anomalies, Green and Schwarz modified the
system of 10-dimensional N=1 supersymmetric Yang-
Mills theory coupled to supergravity (viewed as the low-
energy effective field theory of superstring theory) by
choosing as a gauge group either SO(32) or ESXES and

by adding suitable local interactions. These interactions
are higher-derivative terms parametrized in terms of
Chem-Simons forms both for the Yang-Mills gauge po-
tentials and for the Lorentz connection; i.e., they are
higher-curvature terms. When these higher-curvature
terms required by the Green-Schwarz modification are
studied in the context of an N=1 supergravity theory,
one encounters that the auxiliary field equations are non-
linear and therefore there is in general more than one
solution.

Then we have the problem of giving a physical inter-
pretation to the new solutions. If the auxiliary fields turn
out to be propagating degrees of freedom, these new solu-
tions should be regarded as new physical vacua corre-
sponding to nontrivial values for the new fields, which,
being the auxiliary components of the initial multiplet,
imply broken supersymmetry. Thus higher-derivative su-

pergravity potentially contains a new nonperturbative
mechanism for breaking supersymmetry.

Thus we have that in new minimal supergravity (with a
vanishing cosmological constant) supersymmetry is clas-
sically not broken, but when higher-order curvature
terms are considered it could be broken by some quantum
effects such as the condensation of fermions.
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APPENDIX

In Ref. [3] the component form is given to order (spi-
nor) (scalar) of the Lagrangian describing type-II cou-

pling of 20/20 supergravity to chiral matter. Here we list
the corresponding Lagrangian of the type-I theory:

=—( 2+xf )R ——R-20i 1 T
K/B 2 S

1 K, K,——(3n +1)(3n —1)( 2+xf)(K, +K, )+2(3n —+1) g +g
6 S S

4n +wf —2n ( 2+xf)+(—x +2n—)f —+2(3n +1)—+H. c.F
A g S

1 K,F K,F
f„„d AB A ———( —2+xf)b, b' b—'e, (f„B A——f„d A )+(x+2—n) —f„+fa 3 a A m A m A

+—[(3n —1) (2—xf)+6(4n wf)]K, K'+ —x ———K'e, [(3n —1)f„d A +(3n +1)f—„8 A ]

2 2

l 2 K, K,
+—x ——K'e, [(3n +1)f„d A+(3n —1)f—„8 A ]+4[2n( —2+xf) —(4n +wf)]

2 3 m A m (A1)
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—&zoz&tz = —
—,'( —4n +wf)SS+f„„F—F+Fg„+Fg„——,'(x——2n)(f„S+f& SF) —,'(3—n—1)(gS+gS), (A2)

kzz= —
—,'( 2—+xf)ck™(gkrrlg~~—'(t'kotp~„) if—„„g—oS g 2—i( 4n+wf)To B T

e

+ x +2n „„—2(x +2n) F „F—(faro "0 .+f„X'o™-4.}+ +1 f~ STo "0 .+f;=To™V.
i (3n —1)(x+2n) (f mg T+f T f/' )

2i(3n —1)(x+2n) f F f F
~2(3n+1} " 3n+1 S S

+4 To —"g „+ To-
S

4i (3n ——1} —+L Ttr~2) T,S S
(A3)

—X~z~z= — (f„Syo g f„Sp—o—y) ,'(f„—„„—Fy+—f„„„Fg—) —,'(x —2—n)—(f„„Sy+f„„Sg)——
e ' ' 2V 2(3n +1)

(f&gA+f —„gA)——,'( 4n +—wf)( TA +TA) ——( 4n+w—f)(SQ o T STo —ttt }
2

fg TA, +f—=TA, —— (3n—+ 1)(x 2n )(f F—T +fq
—FT )

+(x +2n)f — T~+ T ——(Sn —1)( 4n +wf)—(ST +ST }

+ — ——(13n —3)x +(2nx +w) — [6(n —1) —(3n + 1)(3n —1}] (f&STy+f„ST@)—
V'2 4 8(3n +1}

+ (2nx —w)— x +2n
[3(n —1) +(3n+1}(3n—1)] f„T+fz T2 SF g SF -p

2(3n +1) 's
(gp tr "p„+gg o™f„)— (gqqg +g—z „g ) i(3n ——1) —g:g o T g Ttr——

+i(3n —1)(gf tr T gTo f )+——(g~g o~g —gzy& g }— (13n —3)(g& Ty+g —Tg)
2 2

—(3n —1) TA, + TX +—2(3n +—1) g T+g„T———4n(3n ——1)(gT~+gT )S S

—(3n —1)(5n —1) g T+g T- —S p S —p

S (A4)

where

w =[(3n+1)a (n+1)—][(3n+1)b—2n], x =(3n+1}(1—a+&)—2n .
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