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Gravitational radiative corrections in N = 1 supergravity
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In an ungauged X= 1 supergravity theory defined on an arbitrary Kahlerian manifold we compute the
divergent one-loop corrections to the bosonic part of the effective action. Although the theory is not re-
normalizable such a calculation may be of relevance in view of the fact that X= 1 supergravities emerge
as effective nonrenormalizable theories in the low-energy limit of some superstring models. In our calcu-
lations we have committed ourselves neither to a particular four-dimensional geometry nor to a particu-
lar Kahlerian manifold. We pay special attention to the one-loop scalar potential of the theory. We
show that, by a proper redefinition of the metric, geometric objects such as scalar curvature can be made
not to interact with the scalars and the definition of the potential of the theory becomes in this way
unambiguous.

PACS number(s): 04.65.+e

INTRODUCTION

Locally supersymmetric theories have attracted the in-
terest of particle physicists the last ten years [1]. These
theories are capable of accommodating the gravitational
interactions in a natural way and originally were thought
to comprise the proper framework for the unification of
all existing forces in nature. Nowadays supergravity
theories still continue to be interesting local field theories
since they are believed to be effective nonrenormalizable
theories corresponding to the long-distance (low-energy)
limit of a class of string theories [2,3]. This is the analo-
gue of what happens in strong interactions, for instance,
where SU(2) XSU(2) chiral-invariant cr models
effectively describe pion dynamics at small energies com-
pared to the inverse confinement radius of the QCD
forces. Also in weak interactions nuclear P decay is
correctly described by the nonrenormalizable Fermi
theory which is valid for small momentum transfers com-
pared to the mass of the intermediate vector boson. Al-
though serious candidates as "theories of everything, "
the dynamics of string theories is not well understood as
yet, unlike electroweak and strong interactions (QCD)
where we deal with decent mathematically (renormaliz-
able) point field theories in which the low-energy limit
makes sense even if radiative corrections are taken into
account.

A particular class of N = 1 supergravity theories
emerges as the low-energy limit of some superstring
theories and describes effective particle interactions at
Planckian energies [4]. These are often characterized by
a high degree of vacuum degeneracy concealing issues
that are of vital importance for phenomenology and thus
for experimental tests of the theory. An important ques-
tion raised is to what degree this degeneracy is lifted by
loop corrections to the effective Lagrangian. The con-
sideration of such radiative corrections will allow us,
therefore, to understand better mechanisms which are
basic for the physical understanding of our theory such
as, for instance, supersymmetry breaking, masses of su-
persymmetric particles, etc. The lack of sufficient
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knowledge of how to treat properly the loop effects of the
underlying string theory forces us to consider the
effective supergravity theory suitably cut off a scale A if
gravitational radiative effects are to be taken into ac-
count. A designates the characteristic scale which sets
the onset of new physics and in the case of the string
theories we are considering it is slightly larger than the
Planck scale m~.

Many authors have considered loop corrections in vari-
ous field-theory models coupled to gravity [5—15]. In this
work we consider an N = 1 supergravity model with non-
minimal kinetic terms for the matter fields and focus our
attention mainly on the calculation of the effective poten-
tial up to next-to-leading-order terms in the cutoff scale
A. In the context of an N=1 supergravity model the
effective action for the scalar field up to lnA terms has
been calculated by other authors for theories defined on
particular Kahlerian manifolds. In these calculations the
radiative effects of the graviton and gravitino fields were
either ignored or were considered in cases where the
four-dimensional background geometry had some partic-
ular form [16-21]. Our aim in this paper is to consider
the complete one-loop corrections for the scalar part of
an N=1 supergravity theory defined on an arbitrary
Kahler manifold without committing ourselves to a par-
ticular four-dimensional geometry. For terms involving
derivatives of the scalars we limit ourselves to the calcu-
lation of those terms which are quadratic in the cutoff
scale A. The calculation of lnA terms in this case is very
tedious, owing to the complex form of the fermionic
propagators in a curved background, and it lies beyond
the scope of this paper.

Some of the results presented in this work have been
also derived by other authors, our main contribution be-
ing the space-time curvature-dependent terms of the
gravitino loop contributions as well as the logarithmically
divergent contributions to the same terms of the rnatter
fermions. The graviton loop contributions for a scalar
field theory coupled to gravity were first calculated in
Ref. [14]. The divergent contributions to the effective
scalar Lagrangian in a fiat-space-time background were
given by Burton, Gaillard, and Jain [18] based upon re-
sults obtained earlier by Jain [18]. The quadratically
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divergent part of the spin- —, fermion contribution, which
depends on the space-time curvature, was calculated by
Binetruy and Gaillard [18]. In this reference, as well as
in Ref. [22], one can find the complete divergent scalar
contribution to the curvature- and field-dependent terms.

This paper is organized as follows. In Sec. I we present
the model under consideration. In Sec. II we discuss the
matter fermion contribution to the effective action and in
Sec. III the corresponding contributions of the gravitino
field and supersymmetry ghosts are considered. Section
IV deals with the rnatter fermion-gravitino mixing and
the contribution of this coupling to the one-loop effective
Lagrangian is calculated. In Sec. V we discuss the contri-

butions of both scalars and gravitons as well as those of
the general coordinate ghosts. The effective bosonic La-
grangian is discussed in Sec. VI and in Sec. VII we con-
sider a particular N=1 supergravity model of the no-
scale type relevant to a class of superstring theories. Fi-
nally we end up with the conclusions.

I. THE MODEL

The reference Lagrangian is the ungauged N = 1 super-
gravity theory involving D chiral multiplets (z', xl, h')
i =1,2, . . . , D [23]. After the elimination of the auxiliary
fields the Lagrangian is

='= —R+eg""(—0;.)8 z'B~' ee —(9 Q-. Q'J+3)
2 ij p I j

+ [ie( —0-, )x J gx$+ie( ,
' 0,;g—k+.Q,.k-. )x '„rlz "xg+ee ~ (0, . —0;g —

QI Q'"0k, )x zxg+H. c. ]

pvpo
+ O„ysyPpk +&ee '"4„~""0, ,'e"""(—&;—d.z' Hc. )fp—'A'p2

+(eQ,;P„l.rl. z. 'y xg+iee "$„1.yQ, xl +H. c. ),

where natural units are used m~( =1/&8nGN ) =1 .and
we have omitted four-fermion terms which will not con-
tribute to one-loop calculations once the background fer-
mion fields are taken to be zero. Actually we are mainly
interested in the scalar part of the one-loop effective ac-
tion and these interactions are therefore of no relevance.
The fermionic part can be found by supersymmetrizing
the bosonic part of the Lagrangian if so wished.
Throughout we use the Minkowski metric with the signa-
ture (+,—,—,—) and this is the reason the Lagrangian
above differs from that usually given in the literature by
unimportant factors. 9',.—. above stands for 8 9/Bz'Bz
where 9 is the Kahler potential. For a manifestly covari-
ant expression for the effective action we have to expand
in normal coordinates [24] around the background fields
z, ', g'„which satisfy the classical equations of motion in
the presence of source terms J', J" . At the one-loop lev-
el only the bosonic terms need be expanded since the bi-
linear in the fermion terms contribute through fermion
loops to the effective action. The details of such an ex-
pansion can be found in Ref. [22]. Actually the bosonic
part of the N = 1 supergravity theory resembles that of a
o. model coupled to gravity for which the one-loop gravi-
tational connections have been already studied in detail
[22]. In the following section when considering the gravi-
ton and scalar field contributions to the effective action
these results will be used.

The one-loop effective action hS,z is given by

for differential operators which depend on the back-
ground values g„„'and z' of the graviton and scalars, re-
spectively. 5, is of first order for the fermions being, in
general, of the form I "2)„+Xwith 2)„being a covariant
derivative while for scalars it is quadratic having a form
A""SQ„+Y. There are standard techniques in the
literature for how one computes the determinants associ-
ated with these operators which are necessary for the cal-
culation of the effective action, as is obvious from Eq. (2).
Our first task towards this goal is to isolate the fermion
(spin —,', spin —,

'
) and boson (spin 0, spin 2) bilinear terms

in order to know the exact forms of 6,' . As we shall see
the mixing of spin- —,

' and spin- —,
' fermions will complicate

the situation a little, in the specific gauge we intend to
employ, and this coupling will be considered as an in-
teraction whose contribution to the effective action is
computed diagramatically. In such an approach one
needs to know the expression of the fermionic propaga-
tors in an arbitrary curved background. The details of
how one obtains the adiabatic expansion of these propa-
gators around a specific space-time point is presented in
the Appendix.

Since the bosonic contributions have been already cal-
culated for a o model coupled to gravity we begin our
discussion by first considering the fermionic contribu-
tions starting from the spin- —,

' fields involved.

II. MATTER FERMION CONTRIBUTION

e ' =f2)p;exp iffy, '
p (2) Ignoring its mixing with the gravitino field the bilinear

in the spin- —, fermion part of the Lagrangian is

where P; stand collectively for all fields involved and 6,' e 'X" '=i( —Q,—.)x Jl y"Xl„xj +x ~lit;Jxg+H. c. (3)
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where

2)„L=D„L+(8„")I'k j + A„

is the full covariant derivative. I 'k =O'5'-. is the con-
nection of the Kahler manifold and 0' stands for the in-
verse of the Kahler metric 9',I. The gauge field

A„=(i12)im(Q&B„z") is associated with the Kahler
transformations

(F F)y—5/4; —(F F)) )/—4x'~e x', ~ep p

(1/2) (3")

with the Majorana fermion y' defined as

E',-, E';;b,„are used to convert curved (i,iibar ) to Hat in-
dices (a, a ) and vice versa in the usual fashion. The spin
connection 9„'b is

a„',=E;(a„EJ,+a„z"rJ„,E„') .

Equation (3') can be also written in the form

K -~K+F +F', 8'~e —
FR

under which the Kahler potential 9=K+1—n~W~ remains
invariant.

Notice that x' and i(„carry opposite chiral charges un-

der these chiral rotations.
The fermion mass matrix At;i appearing in Eq. (3) is

given by

XL
2

Xg

and e,b such that e,b =n —b(ell=nl-„e22=n22 etc).
The mass matrix M,& is related to A,,b by

1 —
y5 1+y5

M,b—= At, b+ Af
b~b

e 'g" ~ )=i';x Ly"g) x'+x 'At xLb+H. c. ,

where

(3')

+pxL =DpxL +~ p bxL + + ~FxL

[mF —=(8m GN )
' = 1]. Introducing fiat indices

(
—9,;)=E E .ri,b

and -.defining xL =E,'XL the Lagrang-
ian (3) is brought into the form

while the covariant derivative 2)g' is now
D„y'+0„'by . The connection 0„'b incorporates both
the connection associated with reparametrization invari-
ance z'~ f '(z ), xL ~(df 'Idz')x j as well as the connec-
tion A„related to the chiral transformations we have
talked about before. For the calculation of the effective
action we shall need, among other things, the expression
for ln det(i e,by"S„+M,b ) which, following standard
techniques, is found by squaring first-order operators
[14-16,25]. In the case at hand we find

(i e' X+M '")(ieb,2)+Mb, ) = —
fib 2) ——+i o"Fb(Q)+i e"y"2),M b ee"M„,M—b

where M':——e' Q«e'. M, b in Eq. (4) is of the same form as M,b with left-, L=(1—y5)12, and right-,
R =(1+y~)12, handed operators interchanged (L=R ). The field strength F„„' (0b) associated with the connection 0
1S

F(,» b(Q)=D(, Q» b+QF, «0» b ((M v) .

The divergent parts of the first-order operators (igl+M ) and (igl+M ) coincide so that up to lnA we have

ln det(i e,b y "2)„+M,b ) = —,
' ln det( —5'b2) —X'b )

(5)

where —X'b is the right-hand side of Eq. (4) with —5'b2) omitted. Therefore the coefficients ao( —,
' ), a, ( —,

' ), a2( —,
'

) asso-
ciated with the quartic, quadratic, and logarithmic divergences of the operator (i e,bS+M, b ) are found from the corre-
sponding coefficients of the 6'b2) +X'~ operator.

In fact writing as

4

lndet(ie, bgl+M, b)= —i f d x&—g ao( —,')+A a, ( —,')+lnA a2( —,')

where A is the momentum cutoff; the coefficients a, ( —,
' ),i =0, 1,2 are found to be [5—8]

(4m. ) a()( —,
'

) =2D,

(4m. ) a, ( —,
'

) = ——% 2m At, ,A—t",

(4m. ) a2( —,')= ,
' [D( 7%„, 4%„,+—5%)—+60mF——%(At;,At")+360mF . (Af; Atj"Atk~At '), +. . . ] .
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The total derivatives in the a2's encountered throughout
this paper will not be explicitly shown as they do not con-
tribute to the effective action. The ellipsis in a2 denotes
terms depending on Bz which will not concern us. Note
that in Eq. (7) we have reestablished dimensions. JK,.J. has
a dimension of mass but JkV=( —9' )( —O'P)Ji/i,

&
has

five. 9 is dimensionless so that Q. —. has dimensions of in-
' 1

verse mass squared. D in Eq. (5) is the number of chiral
multiplets involved.

We now proceed to determine the corresponding
coefficients for the spin- —,

' and supersymmetry ghosts.

III. GRAVITINO AND SUSY
GHOST CONTRIBUTIONS

The bilinear in the gravitino field terms are

Z "/2'=-'y y5y@ y.e4' +iem, e '"y g4 y (8)

where the derivative S involves the connection A" asso-
P

ciated with the Kahler transformation discussed in the
previous section. The supersymmetry gauge fixing
y4g„=g which we intend to use can be implemented by
averaging over gauges using an operator Af. This has an
effect on the appearance of the gauge-fixing term
Xs&=(i /2)$4y4Ji/i, y,g' along with the simultaneous ap-
pearance of the determinant (detA) ' in addition to
the usual Faddeev-Popov determinant (detbpp) ' [26].
For convenience we may use Jt&1 o-happ so that we deal
with only one determinant (detAt) / Act.ually this
gauge-fixing procedure has been employed in Ref. [25] in
a gauged O(2) supergravity model. With y4g„=g, happ is

given by iS+2m3/3 (m3/2 mpe ) where 2) again
involves the connection A„. With Af =

—,'AF p one has

A4
ff 2

Jd'X& —g ao(f)+A a,(f)+lnA a2(f)
2

(10)

where we have kept terms up to lnA and

a;(f)= —[a;(—,')+a;( —', ) —3a;(ghost)], i =0, 1,2 . (10')

The ( —1) in front of Eq. (10') is there because we deal
with fermions and the a;( —,

' )'s were given in the previous
section. The corresponding coefficients a;( —,

' ), a;(ghosts)
for the gravitino and SUSY ghosts are found by "squar-
ing" first-order operators as was done for the case of
spin- —,

' fermions. For the b,4"(—', ) operator one seeks
b,,3(—', } so that in the product b, ( —,')b( —', ) linear in the co-
variant derivative 2)„ terms do not appear. Choosing
E3,( —', ) as

b3.„(—', ) = —,'( iy—,y y&2)4+2g„&m 3/2)

we have

~4"(-')—=&4 (-')& '(-')
oP 2 2

=g 24)'+ o4"—R+R4'+icr ~%4"
2 aP

+y5 [04"&0' ~]F~p(A)+i(%43g "~—/"gg4~)

+ y "ypy "(d m—
3/3 )+g""m 2/, (11)

which is of the desired form. Similarly for the ghost
operator b(ghosts)=kpp,

b,, (ghosts):—b.(ghosts)E(ghosts)

~(3/2)+~ e
y g4v( 3 )ygf 2 P 2 v (8')

=(iS+2m3/2)( ig+2m3/2)

io" F„„(—A)+4m3/2 . (12)

where

~""(,' }= r "r'r"-&,+—g""m3/~

From Eqs. (11}and (12) we infer the coefficients a;( —,'),
a;(ghosts) appearing in Eq. (10). These are given by, us-
ing pertinent formulas [5—8],

In Hat four-dimensional space-time with m3/2 const and
omitting the A„connection, the inverse of b,4'( —,'), in

momentum space, is

1 rd rv 2m3nriv3.
vil. 2 p' —m 3/2

The contribution of all fermions, except those arising
from the mixing of gravitino and matter fermions, to the
effective action is read from

e ' =det' b, ( ')det' i3.( '—)/det—
2 2

which yields

(4m) ao( —', )=8,
(4') a&( —', ) = ——', R —8m 3/2

(4m) a~( —,')= —„',(10637„—16%„+10%

+240m 3/2++ m 3/2+

(4m. ) ao(ghosts) =2,

(4m. ) a, (ghosts) = — —8m 3/2,

(4m. ) a2(ghosts) =
—,

'
( 7%„„4%„+',N3—— — —

(13)

(14)

AS,ff
= ——[ln deth( —,

' )+ln detb, ( —,
'

)
+240m 3/3% +5760m 3/2 + )

or

—3 ln detb pp(ghost) ]
The elhpses in Eqs. (13) and (14) denote terms involving
derivatives of the scalars z' or total derivatives and will
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not concern us. In order to find the full fermionic contri-
bution to the effective action we also need to consider the
mixing terms coupling matter fermions to the gravitino
field. This will be discussed in the following section.

IV. SPIN- —'-GRAVITINO
MIXING CONTRIBUTIONS

So far in our considerations we have left out the mixing
term

=&—g P„(m~ie ~ 0;+m~9, 8z~)y—".xL+H. c.

(15)

3
m 3r2A( g' 0 0—. ) (16a)

(4n. ) ao(b) =(4~) a, (b) =0,
(4m ) az(b) = —2m 3rz( O'JQ; 9-. )

(16b)

As in our previous considerations in a2 we have not con-
sidered terms that depend on derivatives of the scalars z'.
The last term in a2(a) arising from the graph (la) de-
pends on the scalar curvature % and is nonvanishing in
curved space-time. For its calculation we need the adia-
batic expansion of both graviton and spin- —,

' propagators,
as well as expansion of the vertices involved. This expan-
sion is given in the Appendix.

The last step in our calculation is to consider the con-
tributions of scalars, gravitons, and general coordinate
transformation (GCT) ghosts. This is the issue of the fol-
lowing section.

V. SCALARS, GRAVITONS, AND

GCT GHOSTS CONTRIBUTIONS

The spin-O, spin-2, and general coordinate ghost con-
tributions for a o. model coupled to gravity have been al-

ready calculated [22]. The reference Lagrangian is

which does contribute to the effective action, through the
graphs shown in Fig. 1 ~

A straightforward calculation yields that their contri-
bution gives rise to the following coefficients a;:

(4') ao(a)=0,

(4m ) a, (a) =8( Q,—.az' az~) —4m'„, ( C'JS, e,-),
(4rr ) a2(a ) =2m 3)2m p [

—m p ( O'O'A;"Af ~,, +H. c. )

2m p
—m 3q, ( O'O'A, , +H. c. )

+2m3r2m~ (O'JQ;0;. )]

FIG. 1. Graphs contributing to the coefficients a; involving
gravitino-matter fermion mixing vertices.

1 v' —g x+ g g~"G a y'a yj & gv—(y')—,
2k lJ P V

(17)

&fc~= ((r h ""—2ka"P'PG )
4 P /J

where h""=h"" g"'(Trh)/—2. h" denotes the fluctua-
tions of the graviton field around the classical back-
ground g"", and g; are the scalar field quantum fluctua-
tions.

With these in mind the scalar and graviton contribu-
tions can be directly read from the conclusions reached in
Ref. [22]. Actually the bosonic contributions yield, for
the coefficients a;,

where p' here are real fields. Writing z' as
z'=(p'+iB')/V2 the bosonic part of the supersym-
metric Lagrangian can be cast into the above form. In
the simple case of just one chiral multiplet z, for instance,
we deal with two real fields P', P defined as
z=(P'+i/ )/&2 and G; is found to be related to the
Kahler manifold metric 0, by G» =G22=Q„, G,2=0.
The only nonvanishing Ricci tensor components of the
Kahlerian manifold are %„=R,, =A

&, =%2'.
We choose the following gauge fixing for the general

coordinate transformations [14,15]:

(4m. ) oo(0+2) =2(D +1},

(18)

(4') a, (0+2)= %+ [20mp V+2az'azj(%, .—.+29,.—. )
—2mr D'D, V],

(4m) a2(0+2)= —„' [2(106+D)%„, —2(D —359}%„„+5(D—29)W +20m& V +mp [(D;D V) +(D'D; V) ]

—(mp /3)%(D, D'V) —", mp J7 V —8m—p D, VD'V+
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As a partial check of the correctness of these results notice the coefficients of % „„,A „„,and % of the graviton con-
tributions to a2 agree with those of Cristensen and Duff [8]. Also the terms 20m', V, ——", m~ A Vagree with those

given by Fradkin and Tseytlin [25] (see the coefficients P4, P~ in Table I of that reference).

VI. THE EFFECTIVE LAGRANGIAN

Summing up the various contributions we get ao(total) =0 as expected because the number of bosonic degrees of free-
dom matches that of fermionic ones. The coefficient a, (total) is nonvanishing given by

(4~) ai(total)= %+2Tr(MFMF} Tr—Ms 4m—3/2+4k V+2(%,.—.+69,.—.)Bz'Bzj+5(4k V—A) (19)

where k =m~ ' and TrMFtM~—=mp AL; AV', TrMs=2rnI, D;D'V. Up to terms that vanish when z'=const and
8 =4k V this expression for a; is identical to that obtained by other authors [16,17). In those references the efFective
action was calculated expanding around a constant background field z satisfying the zeroth-order Einstein equation
%(g ) =4k V(z) with the omission of tadpole terms. Therefore (19) generalizes previous results for arbitrary scalar and
metric background fields, in an %=1 supergravity model with nonminimal kinetic terms.

Concerning the coefficient az(total) we find, using the relation k 8 V=2m 3 p/Q +k m3//JAN pQ

+ (14m 3/2 TrM—FMFMFMF + ,'TrMs —) 12k~(—D, V)2

(TrM~Mz+TrMsz)+4k m3/z(Q'D; V+H. c. )

+[4E &+ 3%(% 4k V)+4%3/2(A 4k V)+(8 4k V) ]+
where we have defined

TrMFMFMFMF=k At; Jkl'"Atk&At , ', TrMs=k [(D;D V) +(D;D'V) ]

(20)

and

gpv
Epv =&pv

The bottom line in Eq. (20) vanishes in Einstein spaces
and when the background fields satisfy A =4k V, as con-
sidered in Refs. [16] and [17]. Also there are terms de-
pending on (8; V) which also vanish if z' are constant
fields satisfying the classical equations of motion. The
rest turn out to be identical to those found in Ref. [17]
except a slight difference occurring in the coefficient of
the R term. Actually we find (D +47)A /'48 instead of
(D +43)Az/48 given in that reference.

The one-loop effective Lagrangian for the spin-0 and
spin-2 fields is then

' + [A a, (total) + (lnA )az(total)],

(21}

to have a nonminimal form. Also the scalar background
field z' was taken arbitrary unlike Refs. [16,17] where it
was considered constant. A nonconstant value for z' is
necessary if one wants to know the renormalization of the
Kahler metric as we shall see. Also in our considerations
we have not committed ourselves to any particular form
for four-dimensional geometry unlike Refs. [16,17] where
only Einstein four-dimensional spaces were considered.
Our expression for the Lagrangian (21) coincides on shell
with that obtained in Ref. [17] in the minimal case with
constant z'. This offers a check of the correctness of our
calculations and also shows that on-shell results are
gauge independent since we have adopted a gauge fixing
different from that employed in Refs. [16,17].

From the form of a» az it is evident that L'"' in-
volves terms that mix geometry-dependent terms, such as
scalar curvature, for instance, with terms involving scalar
fields z'. Because of this it is not clear how one defines
the scalar potential of the theory when gravitational
corrections are taken into account. We shall show that
by a redefinition of the metric

where terms up to lnA have been retained. En our calcu-
lations however we have not considered (lnA ) contribu-
tions of terms involving derivatives of the scalar fields z'.
The Lagrangian (21}with ai, a2 as given by Eqs. (19) and
(20}, respectively, generalizes previous results. In our
considerations the Kahler manifold was considered
nonflat (9,.~5,—.); that is, the kinetic terms were allowed

gP'V gP~ +~@~

with properly chosen 6„,one is led to an effective La-
grangian L(g„,z') which does not involve % „„and %
terms and in which the scalar fields do not mix with the
scalar curvature %. In the L(g„„,z') theory one easily
identifies unambiguously the potential terms as that part
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not involving derivatives of z . h„„appearing in Eq. (22)
is assumed to have the form

kd=
16m

D +89
12

b,„„=a%„„+Pg„++g„„P(z')

+d„z'B~~f,;+g.„„r}z'dzJE, (23)

k

16m

D +49
24

(24)

where the constants a,P,f, , E, ,"and "P are determined in
a way that will become clear in the sequel.

Dropping a term [(D +41)/48] (W „„—4% „„+Q )

in the Lagrangian (21), which is a total derivative, one is
left with only A „„and A which by the redefinition (22)
of the metric can be made to vanish and the new theory
involves no % „„% terms. This can be achieved if the
constants a and P are taken as

Then the coefficients f; , J; .can be determined if cancel-
lation of R" 8„z'8~J and R 8z'8z J is demanded. Howev-
er they are found to depend on lnA and since we have ig-
nored altogether lnA terms involving derivatives 8z' we
can ignore them from the rest of our discussion. The last
term to be determined is the P(z') which is uniquely fixed
if one demands the absence of terms mixing scalars and
scalar curvature. With these in mind the final form of the
one-loop Lagrangian is found to be

e 'X'"' (g„„z')= +mp( —
Q,—.)Bz'~}zj—V+ (24k V+2TrMFMF TrM—s 4m &/—2)

R 32772

2

+
2

1 m 3/2 Tr(MFMF) + —,TrMs+k V(
3

m 3/2 , TrMFM—F—
—,TrMs)

4 f 2 ] 4 2 4O 2 2 t 2 2

+k ——11 V —12k D; VD 'V +4( O'D; V +H. c. )k m &/2 (25)

gR g
IJ EJ

k A
z (%,;.+69,.—. ) .

(26)

The Lagrangian (25) is our final expression for the
effective theory up to logarithmic terms in the cutoff scale
A . We should remind the reader that we have not both-
ered to calculate lnA terms which depend on derivatives
of the scalars z'. The scalar potential Vis unambiguously
determined by

Vi looP(zl zJ) V
A 1 A

, [~l—
32772 327r2

(27)

where the expressions [/I ], [B] in Eq. (27) are the same
as those appearing in Eq. (25) multiplying A /32m and
lnA /32~, respectively.

VII. APPLICATION TO
THE NO-SCALE MODELS

As an application of our results we consider the case of
a no-scale inodel [27] whose Kahler potential 0 is given
by [4]

Q=ln(S+S )+31n(T+ T z'z') —InI IV(z')+ W(S)I—

(28)

where all quantities refer to the new metric g„and the
dressed Newton's constant ki, and Kahler metric Q.—. are

1J

given by

k =k 2+ D —15 A2
32772

uum expectation value (VEV) of the S field is related to
the grand unified coupling constant at energies near the
Planck scale by (S)=goUr. Models whose Kahler po-
tential is given by Eq. (28) emerge from a class of string
theories and are believed to describe the dynamics of par-
ticle interactions as one approaches Planck energies from
above. At the tree level the scalar potential of this theory
is positive definite having minima at (z;) =0, (S)%0
with a zero cosmological constant leaving, however, un-
determined the VEV of the field T which is related to the
compactification radius. The low-energy scalars z,. ought
to have a vanishing VEV at Planck scales otherwise we
may have breaking of the underlying electroweak gauge
symmetry of the order of mz owing to the fact that z; are
nonsinglets.

In the model under consideration the expression for
TrMq —2TrM~M~ is found to be

TrMs —2 TrMFMF =2(k'V —3m 3/i )

2e 8'(s) —(s+s )
( + f)

(29)

where G =31n( T + T z'z'). In view of—this the one-
loop corrected potential of Eq. (27) takes the form

Ay ~= y — 22k @+2~
32772

3/2

The S and T fields are singlets under the gauge group but
z' are in general nonsinglets (observable fields). The vac-

—G

5 5 (3o)
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troweak symmetry at the Planck scale (Breit et al.,
Binetruy and Gaillard in Ref. [19]).

CONCLUSIONS

FIG. 2. Behavior of the (a) tree-level and (b) one-loop
corrected potential given in Eq. (31). The contributions of the
lnA terms has been omitted.

where we have not included the lnA terms. In order to
investigate the behavior of the potential given by Eq. (30)
we shall stay on the tree-level minimum (S )40 and con-
sider fluctuations in the direction of z' around the tree-
level VEV (z; ) =0, that is, z; = (z; ) +b,z with Az denot-
ing deviations from the tree-level value. Since V is zero
at the tree-level VEV (z; ) =0, (S)%0, and with vanish-

ing scalar masses for z s, a particular characteristic of
these models, we have, up to one-loop order,

AV'"' ((s), (z)+Az)= — (2m3&z)+O(lnA ) (31)

for sufBciently small hz;, which is negative for any value
of the scalar field T.

The quadratically divergent terms of Eq. (31}are exact-
ly the same as those found by Breit, Ovrut, and Segre and
independently by Binetruy and Gaillard (in Ref. [19]).
The fact that the A contributions are negative may lead
to the conclusion that the potential is unstable. Omitting
the lnA terms the shape of the one-loop corrected poten-
tial is as shown in Fig. 2, indicating an unstable behavior
which may lead to an unpleasant electroweak gauge sym-
metry breaking at the Planck scale. However it has been
shown by Binetruy and Gaillard (last reference in Ref.
[19]}that the sign of the quadratically divergent contribu-
tions is undetermined depending on the regularization
scheme adopted and therefore any conclusion based sole-
ly on the sign of only the terms appearing in Eq. (31) is
misleading. In addition to this the contributions of sub-
leading terms should be also considered for a complete
study of the behavior of the potential. Actually it has
been shown that the instability generated by the quadrati-
cally divergent corrections is raised if one takes into ac-
count the lnA terms and the gauge-nonsinglet scalar
fields are forced to acquire a vanishing vacuum expecta-
tion value preventing an unpleasant breaking of the elec-

In this work we have calculated the divergent one-loop
corrections in an N = 1 supergravity theory defined on an
arbitrary Kahler manifold. In particular the scalar po-
tential has been calculated up to logarithmic terms in the
cutoff parameter A while for the scalar kinetic terms only
the quadratic terms have been retained. Our findings are
useful especially for models inspired by a class of string
theories where radiative corrections near the Planck scale
may shed light on unresolved problems such as how su-
persymmetry breaking is achieved, what the scalar and
gaugino masses are, and so on. These issues are closely
related to phenomenology and are therefore of primary
importance for the experimental check of the theory. In
this case A plays the role of the characteristic scale
beyond which the underlying string dynamics takes over
and in order of magnitude is somewhat larger than the
Planck scale mz. The effective E= 1 supergravity theory
is seen as an effective tree-level Lagrangian describing the
particle dynamics for energies E ~ m~ and therefore in all
radiative corrections the loop integrals encountered
should be properly truncated at scales A- m p.

In the course of our one-loop analysis we have allowed
for the most general four-dimensional geometry (g„„)and
Kahler manifold geometry which is defined by the metric
Q,.—.=B 0/Bz'BzJ, Q being the Kahler potential. Since we
deal with a theory relevant to Planck energies the gravi-
tational radiative effects also should be taken into ac-
count and therefore the graviton field should be con-
sidered quantized. In our considerations no commitment
has been made on the form of the four-dimensional back-
ground g„„and hence our results are very general. Our
results for the scalar potential agree on shell with those of
other authors who in a different gauge examined an X= 1

supergravity theory defined on a flat Kahler manifold in
Einstein four-dimensional spaces. This consists of a
check for the correctness of our calculations and it shows
also the on-shell gauge independence of the physical re-
sults.

Moreover we have shown that by a redefinition of the
metric g„~g„one is led to an equivalent theory de-
scribed by the Lagrangian X(g„„,z') in which the one-
loop potential V(z', z') is directly read. Actually in
X(g&„z'), four-dimensional geometric quantities such as
scalar curvature, Ricci tensors, etc. , couple only to
derivatives of the scalar fields z' and not to z' themselves.
Therefore by putting derivative-dependent terms equal to
zero we get the scalar potential of our theory. As an ap-
plication we have considered an X= 1 supergravity mod-
el of the no-scale type inspired by a particular class of
superstring theories.

Note added in proof After the comple. tion of this work
we became aware of the following papers in which the is-
sue of the on-shell gauge independence in particular
field-theory models is also discussed: I. L. Buchbinder
and S. D. Odintsou, Phys. Lett. B 228, 104 (1989); S. D.
Odintsou, Fortschr. Phys. 38, 5 (1990).
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APPENDIX

1. Spin-~ propagator

For the Majorana fermions y' defined in Sec. II the
propagator satisfies the equation

(;&.„&+M., )S"(, ') =(—g) '"fi.'fi"'( — '} {Al)

One expands in normal coordinates with the origin at x'.
Defining S' by S' =( —g) '~ S' ( —g') ' one has
the equation

(1—
,', y—y9i'p+ . ) e„ iy 5 "(3„S'— y—%,"py y~B„S' ,'y——5 "e ~%„p~ S'

+{M„+y B&M„+ )S'

+iy 5 "(0., +y B)„Q„„)S'"— e„y—~Jr~~'S'" + . . =5, 5"'(y) . (A2)

The ellipses in (A2) stand for terms not relevant to our calculation and y' denotes the x' space-time point in the normal
coordinate system (y =0 for x'). The details of such an adiabatic expansion for the propagator can be found in the
literature [5—7]. By taking the Fourier transform of S,b(y ),

S,b(y)= fd k e '"«S,b(k)

we have, from (A2),

a2 1 32

Bk 8k~ " 6 Bk 8k~

p aP as"
) ~P)2 Bk

1 gg cb——y "%
P~

gs cb

i B),M„+—i y (}~0„„+ =5, (A3)
Bk„

where in (A3) the y"'s encountered are y"=y 5"; that is, they are actually fiat. We are interested in that part of
S,b(k ) which contributes to quadratic (A ) and logarithmic (lnA } divergencies through the graphs shown in Fig. 1.
Inverting thus (A3} order by order by writing

S,s(k)=S,'„'(k)+S,'b'(k )+

we find

(A4)

S(b)(k ) e b k , (iy"&„.b+M.b ),+
r

(A5a)

S(2)(k )
—

& yP+aP+ y ~maPP (k S c()i 1 a2
ab k2 ac 6 m ak ok~

i „p 1 a—
6act (r +paI)k 6 eac1 +@A, r)g ac +y xfl'pac

pi (p)b
Brc~

(Asb)

Terms other than those shown in (A5) carry higher powers of k„ in the denominator and lead to finite contributions for
which we are not interested.

2. Spin- —propagator

In the gauge employed the gravitino propagator satisfies the equation

b," ( —,')G~ (x,x')= yy)'y"2) +g"—m3&z G), (x,x')=( —g) ' 5( '(x —x')6"
2

(A6)

[see Eq. {8),main text] which by defining G as G„(x,x')=( —g) '~ G„(x,x')( —g') '~ and by using normal coordi-
nates originating at x', as in the spin- —,', case yields, in momentum space,



45 GRAVITATIONAL RADIATIVE CORRECTIONS IN N =1.. . 543

—y gy" +n" rn3/2
——y y5 A y" Gk„

+ —y r'r"~ ~% +—y"A, in—"a.m ——r r'r"(a. ~ )r — &"r r r"i z 1 g . x l aG

4 P&~P 3 P P P P Bk ~

P

+m ( 'X~-"i'+ '&~—'X i')
a'6,„

3/2 12 ak ak~

Putting

G„.(k)=G „",'(k )+G „"„'(k)+

we can solve iteratively (A7) and we get

m 3/2
G z '(k)=D&„(k)+Dk (k) —y~ysgy D&„(k)— n&,+, Dk (k)—=—,'y„yk,

(A7)

(ASa)

G„".'(k)= —G„"k(k) [ —,', y'y r"r" r&'«k. + ,'r"&-', + ,'r"r-'r"(~, ~, )r' in"—"(~,m3/2) ,', r—'r—'r"&„]
&k

G p'
P

+ ,', [ ,'r—"r'r"-&~+(r.r'r"&-'~+r'r. r"&-'~+r'r'rA-"~)] „.„~(k,G'k". )
a2

g2G
(0)

( ]~kakP+ i kk~aP)m3/2 3 12 ak ak~
(ASb)

The "curved" pieces S' '(k), G ' '„(k) of the spin —,' —spin- —,
' propagators [Eqs. (A5b), (ASb)] contribute to lnA diver-

gences through the graph shown in Fig. 1(a).
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