
PHYSICAL REVIEW D VOLUME 45, NUMBER 2 15 JANUARY 1992

Klein-Gordon equation is separable on the dyon black-hole metric
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We carry out the separation of variables for the massive complex Klein-Gordon equation in the
gravitational and electromagnetic field of a, four-parameter (mass, angular momentum, electric and
magnetic charges) black hole.

PACS Number(s): 97.60.Lf, 04.40.+c

I. INTRODUCTION
The "no-hair" theorem in general relativity asserts

that the metrics of stationary black holes can be
described uniquely by three parameters: mass M,
charge Q, (assuming the absence of magnetic charges),
and angular momentum per unit mass, a. Therefore,
when one writes a matter-field equation on a black-hole
background, these parameters become parameters of the
field equation.

The Klein-Gordon equation and its separability prop-
erties on black-hole metrics have been studied in increas-
ingly complicated contexts. First, Carter [1] pointed out
that the Klein-Gordon equation was separable in the
Kerr-Newman metric, among others. The actual sep-
arated equations for the real massive scalar field on the
Kerr metric (M, a) were derived by Brill et at. [2], and the
separated equations for the complex massive scalar field
on the Kerr-Newman metric (M, Q„a) are also known

[3]
However, black holes could also have magnetic charge,

if such exists. Such a, black hole would acquire an ad-
ditional label Q for the magnetic charge. The interest
in this possibility has grown since magnetic monopoles
have been found to be required in various extensions of
the standard model of particle physics. For an inves-

tigation of the behavior of a, scalar field on the dyonic
Kerr-Newman black-hole metric (M, Q„Q„,, a), and the
possible evolution of the black hole by exchanging en-

ergy, charge, and angular momentum with the field, one
would like to know if the Klein-Gordon equation remains
separable. We find that this is the case, and here we

present the separated radial and angular equations. We
anticipate using this separability in a thought experiment
to test the cosmic-censorship conjecture by considering a
charged scalar field on a dyonic black hole, i.e. , the scalar
field analogue of work done in [6].

II. THE SEPARATION

The Klein-Gordon equation in a general spacetime
with a background electromagnetic field is

('D +ieA )(D + ieA )4 = p @,

where 4' is the complex scalar field with mass parame-
ter p, D is the (metric-)covariant derivative, and A the
four-potential of the electromagnetic field.

A classical black hole with mass M, angular momen-
tum Ma, electric charge Q„and magnetic charge Q
has the metric ~
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where

p = 7' +Q cos 0,

6 = r' —2Mr+ a'+ Q,'+ Q'

(0)

(7)

and we are using Boyer-Lindquist coordinates.
Of course, the vector potential is unique only up to

a gauge transformation, and the magnetic part of Ay
contains a string singularity. The two signs in that
term correspond to the two gauges we will be using.
The upper-sign term puts the string along the negative
z axis (0 = s) and will be used when 0 & 8 & xj2, the
lower-sign term puts it along the positive z axis (0 = 0)
and will be used when x/2 & 0 & n Therefore, the w.ave

function is also gauge transformed across the equator,
and picks up a factor of e " ~ passing from north to
south. This matching of boundary conditions ensures
that the problem can be expressed meaningfully with-
out strings of diverging vector potential. Such a wave

'Electronic address: semizyalehep. bitnet.
In [4], the separation of variables for all real, massless single

spin field equations with s = 0, z, 1, 2 on the seven-parameter
metric of [5] has been carried out. However, their coordinates
are not of Boyer-Lindquist type.

A seven-parameter class of Petrov type-D solutions of
Einstein-Maxwell equations is presented in [5]. The paraine-

ters include llf, a, Q„and Q~, but the coordinates are not of
Boyer-Lindquist type. See also [6] and [7].
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function is called a section [8].
We rewrite Eq. (1) as

R( )O(8) i~t i(mpeq~)g (8)

1
D g g(—B + ieA )@ +ieA (8 +ieA )4 = p @

g

and substitute for the wave function the expansion

where the upper sign is used in the upper hemisphere,
and the lower sign in the lower. After a few pages of
algebra, the equation can be separated into the following
angular and radial parts:
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The angular equation (9), together with boundary con-
ditions of regularity at 8 = 0 and 8 = x constitutes
a Sturm-Liouville eigenvalue problem for the separation
constant A for fixed values of a, to, m, p and eQ—:q. If
we label the eigenvalues by I, we have A = Ai &(a, p, ~).
We call the solutions 8&i (a, p, ~, 8) monopole spheroidal
harmonics in the spirit of earlier literature [8, 9].

With p = 0, the equation reduces to the equation (his
4.10) for spin-weighted spheroidal harmonics introduced
by Teukolsky [9] and discussed in the literature [10—16],
with —q = —eQ playing the role of spin (and a ~ —a).
Similiar roles for the same product are known classically
[17] and have been pointed out for Abelian monopoles
[18—20].

A difference of Eq. (9) from the Teukolsky equation is

that rn can assume half-integer values. In fact, to make
the wave function (8) single valued in P, both m —eQ
and m+eQ have to be integers. That means that m and
eQm are either both integers or both half-integers. This
property of eQm is the well-known Dirac quantization
condition.

The radial equation (10), on the other hand, is very
similiar to the Q = 0 case, except for the modification
in 4 according to Eq. (7). For Q = 0, it has the same
content as the radial equation (their 8) of [3]; and when

Q, is also zero, it further reduces to the s = 0 case of
Teukolsky's [9] radial equation (his 4.9), as it should. For
further work (analyses of perturbations, stability, scatter-
ing, etc.) on the dyonic black hole, (10) can be treated
the same way [3,9—12, 15] as its special cases, i.e. , brought
into a Schrodinger-like form by defining the "tortoise" co-
ordinate r' via dr'/dr = (rz + az)/b, and substituting

R(r) = U(r)/Qr~+ a'.
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