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Dynamics and gravitational interaction of waves in nonuniform media
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We derive the generally covariant equations describing the propagation of waves with an arbitrary
dispersion relation in a nonuniform, nondissipative medium. The back-reaction of the waves on the
medium is expressed in terms of the wave energy-momentum tensor. The formalism is based on varia-

tions of the Lagrangian of the system with respect to the wave amplitude and phase and the particle or-

bits. The Lagrangian approach is considered in detail in the context of a cold, unmagnetized plasma. It
is shown that the "inertial" mass of a photon in a plasma, namely the plasma frequency, is also its gravi-

tational mass. Extremely precise experiments are needed to measure the gravitational "free fall" of pho-

nons, plasmons, or photons in laboratory media. Finally, we indicate how the formalism can be extend-

ed to hot magnetized plasmas.

PACS number(s): 42.25.8s, 52.35.—g, 95.30.Sf

I. INTRODUCTION

The theory for the propagation of a wave packet in a
nonuniform medium that changes weakly in space and
time compared to the wavelength and the period of the
wave (WKB theory) is best treated by means of the La-
grangian action principle. This Lagrangian approach
was first formulated by Whitham [1]and was subsequent-
ly applied by others to various plasma waves [2]. It leads
in a natural and unambiguous way to the equations
describing the propagation of the wave packet, the evolu-
tion of its amplitude, and the correct back-reaction of the
wave on the medium.

The Lagrangian treatments so fa,r have been carried
out for a Minkowski coordinate system in a flat space-
time [3]. In this work we extend the Lagrangian ap-
proach to general coordinate systems in a curved space-
time. This allows one to make use of the principle of gen-
eral covariance in describing the dynamics of waves in

nonuniform media. This generalization has advantages
even for a flat spacetime. One can derive the relevant La-
grangian in a local Minkowski frame, and by writing it in
a covariant form arrive at the general evolution equations
for the waves using a relatively simple procedure. In ad-
dition, this method yields the energy-momentum tensor
for the wave packet by taking the derivative of the La-
grangian for the entire system (background medium plus
wave) with respect to the metric tensor [4]. The resulting
fluid equations have an additional term associated with
the wave energy-momentum. The wave pressure and en-
ergy density are naturally coupled to the fluid equations.
Finally, this method allows one to include the effects of
gravity on the wave dynamics in a straightforward way.

Rather than treat the most general problem, we illus-
trate the method for a simple case first. We take for the
background a cold plasma consisting of electrons and
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heavy ions. The ion motion is assumed to be dictated
externally. The electrons are forced to follow the ions by
a neutralizing electric field, which is negligible if the
background is slowly varying compared to the electron
plasma frequency. The electrons are then perturbed by a
small-amplitude wave packet of a high-frequency elec-
tromagnetic wave. The fundamental dynamical variables
are the electron position vector (as a function of the ini-
tial position) and the small-amplitude vector potential.
The electron trajectories include the perturbation associ-
ated with the wave packet. The total action for the com-
bined system must be stationary for arbitrary perturba-
tions in the dynamical variables. By properly carrying
out these variations we arrive at the mode structure of
the waves, their dispersion relation, the ray equations,
and the evolution of the wave amplitude. Since the La-
grangian is invariant under coordinate transformations,
one can vary the coordinate system and end up with a
correction to the fluid equations for the background
medium. This correction is associated with the wave en-

ergy momentum contribution. After examining waves in
cold plasmas in Sec. II, we illustrate in Sec. III the
method for treating waves in more complicated media,
such as hot magnetized plasmas.

We find some interesting results from this approach.
For example, the dispersion relation for a photon wave
packet with a wave four-vector (co,k) in a homogeneous
plasma, namely co = ~k~ +co, is commonly interpreted
as if the photon has an inertial mass equal to the plasma
frequency co~. Now let us add a gravitational field to the
system. It turns out that the photon wave packet falls in
the gravitational field as if its gravitational mass was
equal to its inertial mass. In fact, under the influence of
gravity it moves exactly like a particle whose velocity
equals the group velocity of the wave packet. However,
this is only true in the absence of refraction. The refrac-
tive effects are introduced by gradients in the background
electron density as measured in the local Minkowski rest
frame of the plasma. The application of the equivalence
principle for other types of waves is less straightforward;
especially if the waves are related purely to collective
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motions of the medium constituents, and do not exist in
vacuum (e.g. , acoustic modes). Our discussion inay be
particularly useful in describing situations in which gravi-
ty strongly affects the propagation of waves, e.g., near
black holes or neutron stars [5].

II. COVARIANT LAGRANGIAN FORMULATION
OF WAVE DYNAMICS IN A COLD PLASMA

A. The ray equations

Consider a cold electron plasma with electromagnetic
interactions. The ions are taken as infinitely massive
(compared with the electrons), and the time scale for
their motion is assumed to be much larger than the elec-
tron plasma period. In this case, the electromagnetic
fields are negligible in the local Minkowski rest frame of
the unperturbed plasma. We analyze this physical system
in the general spacetime coordinate system x =(t,x)
with a metric tensor g„,(x ), where a=0, 1,2, 3, and
x = t is timelike. We use the units A=c = 1 and a metric
signature (+ ———). Since the plasma is cold, all the
possible electron world lines in the unperturbed plasma
state form a three-dimensional manifold that fills the en-
tire space and can be labeled by three parameters,
X 'f A 2 k3 These could be, for example the electron posi-
tions at some initial time. Because the plasma is cold,
there is only one electron trajectory passing through any
point in spacetiine. The position of each A, electron along
its trajectory can be labeled by a fourth parameter A.0.
Then, any actual motion of the plasma electrons can be
described as a function of A,„, namely X"=X"(A,o, A, )
—:X"(A.).

The field variables for the Lagrangian of the entire sys-
tem of the plasma and the electromagnetic wave are the
perturbed electron trajectories X'" and the vector poten-
tial A'" given by

X'"(A, ) = X"(A,)+(P(A, )expti@[X'(A)]]+c.c,. ),
(1)

A '"(A ) =(a "[X'(A.)]exp[i @[X'(A ) ]]+c.c.),
where X"(A, ) represents the undisturbed motion of the
electrons, P(A, ) is the amplitude of the perturbed electron
motion, 4[x] is the phase of the wavelike perturbation,
and a"(x) is the perturbed vector potential (the unper-
turbed vector potential A"=0). By the WKB assump-
tion I@I»1. The trajectories of the ion are given by
X"(A, ) with no perturbation.

Let N(A, )d A, be the number of electrons in the
infinitesimal volume d A, around A, . Ignoring the ions,
the action of the total system is given by the following in-
tegral of its Lagrangian density L:

f~& —gd'x—

B(AO, iL)
n (x")=N(A, ) (

—g)
B(t,x) dAO

(3)

Let us next introduce the expressions in Eq. (1) for X'"
and A'" into the action (2) and keep terms to second or-
der in P, a". The result is the sum of a zero-order action
So and a second-order action $2. The first-order terms
vanish because 4 is stationary for the unperturbed fiow.
The variation of the action involves phase gradients,
defined as

k"—= (co, k) =—
Bxp

(4)

The resulting action must be stationary with respect to all
variations in X", A", P, a", and 4. By carrying out a
variation of So with respect to X" and A "—= ( A o, A) one
gets [6] the electron equations of motion and Maxwell's
equations, respectively. These are the dynamical equa-
tions describing the unperturbed plasma state. The
second-order action has terms which vary rapidly and
terms which vary slowly with position through 4 [i.e.,
proportional to exp(2iC }or exp( —2i4)]. Since I@I»1,
the rapidly varying terms give zero after being integrated
over spacetime. We therefore keep only the slowly vary-
ing terms, and assume that the plasma characteristics
change weakly on the scale of the perturbation
wavelength (the WKB assumption), i.e.,
8 [lnI( )I]/Bx"«k„. We have simplified the result-
ing expression for 4'z by choosing the gauge of a„so that
a„U"=0, i.e., a0=0 in the unperturbed plasma rest
frame. This yields

4,=fX,& gd4x—

=f d x&—g m, n(IJ„U"I g„g*")(k U )—
ien(a„g*"—a„*P—)(k U }

F„=(BA', /Bx" —BA „'/Bx") is the electromagnetic field
tensor. The basic field variables in X are X'" and A„'.
The first term in 4 sums the total proper length of the
electron orbits, fN(A, )d A, dr, where dr='1/dX„'dX'" is

an element of proper time along an electron orbit. Now
consider a local Aat coordinate x" in which the unper-
turbed plasma is at rest, and in which the electron
number density is n. Then, fN d 3/dr = fN (dr/
dk, o)d X=f n d "x. The d A, integral can be transformed
to a d x integral by first transforming from d A, to d x,
and then transforming to the x coordinates. The Jacobi-
an of the first transformation is B(x,x)/B(X, A, ) and that
of the second is &—g . Thus, we find

T

dX„'= —fN()() m,
0 0

1/2
dX'"+eA' (A) d A,
di, 0

+ Ik a"I — (k k"a a* )
1 2 1

4~ ~ 4~

fF,F""& gd x, — (2)

where m„e are the electron mass and charge {e(0), and
where U"=dX"/dv. , and we have transformed the A, in-
tegration to an x integration through X"(A.). The first
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iea g"
m, (k U }

(6)

and later vary the resulting Lagrangian, Xz, with respect
to a„. The above second-order Lagrangian can then be
written in the form

X —=M"'a a'
2 p v

1
[(co —k keg ~)a„a'"+~k„a"~ ],

where co =(4mne ./m, )'~ is the plasma frequency in its
rest frame, and M"" is a 4 X4 matrix that can be diago-
nalized into its principal form.

The Lagrangian X2 must be stationary under varia-
tions of a '", subject to the above gauge condition [which
we take into account by the Lagrange multiplier term
Aa'"U„, with A=(k a )(kt3U~}]. This leads to two
transverse waves with a„k"=0 and X2=fTa„a""/4m. ,
and one longitudinal wave with a„parallel to
k "(g„„—U„U„)and X2=ft a„a'"/4m. Here,

X2=fa„a'"/4n,

fT=(cop knkttg ~),—fL =(a)p k~U")—
Because of the stationarity of Lz with respect to varia-
tions in a„, the wave phase of each mode must evolve
subject to the constraint on its derivatives:

f(x",k„,g ~)=0.
This constraint is simply the wave dispersion relation. In
a local Minkowski frame it becomes a) =k +co for
transverse electromagnetic waves, and co =co for longi-
tudinal plasma waves.

Next, let us derive the equations for the wave dynam-
ics. By the stationarity of its phase the wavepacket
moves at the local group velocity,

(af /ak, )„,.
ak, (af /a~)„„'

s

(10)

where we use the notation i,j =(1,2, 3}.Combining this
result with the identity dt Idt = 1 we have

af dx" af
Bco dt Bk

x =const

In addition,

sk,-

at
(12)

By following the wave packet one therefore obtains the
convective derivative of k;

term involving g„U vanishes, since the total velocity is a
unit four-vector. The above expression still involves 4
through its gradient k„.

The averaged action must be stationary for variations
with respect to both P and a„. One can therefore use the
perturbation with respect to g'" to get

dk, - Bk,. d J Bk,. ()~+
dt Bt dt

Bk,

Bk ()~J
'

(13)

where co is considered to be a function of t, x and also k;
according to the wave dispersion relation f=0. The first
term on the right-hand side of (13) has contributions both
from the explicit dependence of co on x, and from its
dependence on k,. that varies with x. The latter contribu-
tion is cancelled by the second term in (13) yielding

dk;

dt
aC0

Bx

(af /ax')„. ,
(af/a~)„, „

(14)

Combining this result with

d co Bco Bco d k BN dx
dt Bt Bk „dt g „dt

we have in four-vector notation

BN

jc,x

(15)

af
Bco

kP

dt ax k =const
(16)

Here d[ ]Idt=(dx"Idt)(a[ ]/ax"), dx"/dt be-
ing the group velocity of the wave.

The ordinary differential equations (11) and (16) are the
complete ray equations describing the dynamics of the
wave. These equations are valid for any arbitrary wave
with a dispersion relation, whether or not it follows from
a classical action principle (e.g., a quantum-mechanical
wave function). Their form resembles Hamilton's equa-
tions with k„being the canonical momentum of the wave
position x". The effective Hamiltonian of the wave is
given by to=co(k, x, t) which satisfies f =0. The require-
ment that the wave will satisfy the dispersion relation
f =0 is equivalent to the assumption that a classical par-
ticle is on its mass shell. Thus, a direct analogy exists be-
tween the dynamics of waves and classical particles with
no reference to quantum mechanics.

Equations (11) and (16) are equivalent to the condition
that the wave phase is minimized along its group velocity
orbit (Fermat's principle). This can be formulated as an
action principle, by imposing the dispersion-relation con-
straint as a Lagrange multipler in the action,

S~= J k„ Af dt. — (17}

Keeping 4'+ stationary for variations with respect to k„
and x" along a wave orbit (with df /dt =0) can be shown
to be equivalent to the above ray equations.
4=(af /Bc' )

' enforces the dispersion relation con-
straint, f=0.

In Eqs. (11) and (16) the scalar f is invariant. af Iak„
is a contravariant four-vector, while from Eq. (11),

(d~/dt) (af Iaido} =(af Iak„)(afIak"),
so that (af Iaco)(dx" Idt) is also a four-vector. Thus, Eq.
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(11) is covariant. However, the gradient of f at constant
k„ in Eq. (16) is not covariant since k„depends on the
coordinate system and its transformation at two diff'erent
points may be different. In addition, (af/ace)(dk„/dt)
involves an ordinary derivative, not a covariant deriva-
tive, of the four-vector k„. Nevertheless, Eq. (16) as a
whole is covariant as it must be by its derivation. It turns
out that the same terms (involving the affine connection
I "&) must be added to both sides to make each side sepa-
rately covariant.

The action S2 must be stationary with respect to varia-
tions in the perturbation phase 4. The Lagrangian Xz
does not involve 4 itself, but only its derivatives k„. The
Euler-Lagrange equations yield

one gets that & x"& and & k„& evolve exactly according to
the ray equations (11) and (16) with each of the factors
and the various terms averaged over X (e.g. ,

J (af/ace)X ")/ g—d'x
& af /aco &

=
fr„,& gd—'x

etc.). From integration by parts (assuming that the sur-
face terms vanish at large distances),

a(v' —g z„)"
—fW.v' g—d'x= f—x . ' d'x

dt BX

&—g d'x,(af /ak; )=f (af/a )

a(& —g x, )

ar a(ac /ar)
+ a a(v' —gz )2

ax' a(ae/ax') yielding

(22)

a a(v' —gz )

ar aco ax

a(& —gz, )

ak;
(18) (af /ak„)„

dt (af /aco)
(23)

Bk„

where i =1,2, 3. Since X&=0 for the waves,
a/2/ak, =(dx'/dt)(a/2/aco) Hen.ce in four-vector
form we get the continuity equation

)'

1 a dx~—g 2 =0,
&—g ax~

where the averages are over X . In addition

" f—kz &—gd'x
dt

where i =1,2, 3. Since X2=0 for the waves,
aX2/ak; = (dx '/dr )( aÃ2/ace ). Hence in four-vector
form we get the continuity equation

Now,

B4 1

ax' &—g

a(~ —g z„)
&—gd'x .

Bx'

(24)

= —I[2k a„a'"—(a k„a*"+a*k„a")j/4nj .

By multiplying X„by the wave group velocity one ob-
tains a conserved current. Thus, the wave action density
Aows at the group velocity.

The dynamics of the perturbation wave packet as a
whole can be obtained after the appropriate averaging of
the wave position and momentum over the wave-packet
envelope,

d(X, )0=J ' v' —gd'x
dx

ak, ax
+XI, + &—gd'x .

BX ' BX BX
(25)

Using Eq. (4), ak;/ax~=ak /ax'. This relation gives to-
gether with Eqs. (24) and (25),

fx "X„')/ gd'x-
&x~&=-

fZ.v' gd'x—

fZ„&—ga'x
J (ae/ax~)Z &—gd x

&k„&=

(20)

f'k, Z„& gd—x = —f —. v' gd x-d
dt ™

Bf".a a*"&—gd x .
ax' "

(26)

The total photon number in the denominators is constant

—fX &—gd x = J —(v' —gX )d'x
dt at

Consequently

g(y ) (i3fl8 ")„
dt (af /ace)

(27)

=f, ( vgX„)d' x0,
c)x I

(21)

where Xl, —=aLz/ak, and we assume that the integrand

vanishes at infinity for a finite wave packet. Let us next
show that by using Eq. (19) and the condition (X2). =0,

Although the group velocity is customarily taken to be
the propagation velocity of the wave packet, Eqs. (23)
and (27) quantify the extent to which this representation
is valid if the wave packet is not localized or contains a
variety of wave vectors.
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B. Energy-momentum tensor of waves

Since spatial and temporal nonuniformities of the
background plasma change the energy-momentum of the
electromagnetic wave packet, it is clear that the wave
packet has a back-reaction effect on the background.
This can be interpreted as the effect of a wave pressure,
represented by a corresponding energy-momentum tensor
for the wave. One way to analyze this effect is to vary the
position of the background electrons X"(A.). However,
the energy-momentum tensor for the wave can be derived
more directly by carrying out a variation of the coordi-
nate system x"~x'"=x"+P(x) and making use of the
fact that the action is covariant and cannot change under
this transformation [4]. While carrying out this variation
we keep the dynamical variables X"(A, ) fixed as numerical
functions. Under these conditions, one gets a physical
variation of the position of the background plasma asso-
ciated with the coordinate change.

The above coordinate transformation generates a
change in the metric, 5g, = —(g„.„+g,.„). This change

induces changes in &—g, d r/d Ap, U",, and n In .partic-

ular,

momentum conservation equation for the plasma and the
wave

T"".„=( T",d;„+T"„",„,).„=0 . (34)

Xp= —n(m, +m ),
where m is the proton mass. Therefore

1 8(&—gn [m, +m~])
g TPv

2 mediUm
BgPV

1 gn(—m +m )U"U"
2 e p

(35)

(36)

or

(37)

In a self-consistent derivation of the metric from
Einstein's equations, the term T"„,„, must be taken into
account in addition to the medium energy-momentum
tensor.

Let us use Eq. (32) to explicitly find these energy-
momentum tensors. With no background fields we find
for a cold electron-proton plasma

and

1

2 PV

dr dX" dX
dA, p dl, p dk, p

(28)

' 1/2
1 dz U"U "5g„

0

In the absence of waves the covariant divergence of this
tensor vanishes, giving the covariant fluid equations for
the plasma.

For the wave Lagrangian we have Ã2=fa„a'"/4n,
with fT and fL given by Eq. (8). Along the wave orbit

f =0, and therefore

since dX"/d A.p does not vary. In addition,

(29) a a*a df
Bg„

(38)

B(Ap, A, )
5n =5 [—g] '~ N(A, )

8 t&x d&(,p

=—( U"U"—g"")5gP1

2 pv

For transverse waves one gets

Ttr"= [2k"k"+to —(U"U" g"')]a a' /—4n.

(30) and for longitudinal waves

(39)

where the Jacobian and N(A, ) do not vary. Finally

5U"=5 = ——U" U U~5g
dX~ dip 1

2
(31)

are proportional to 5g„„=—(g„.„+g„.„). Therefore, one
can define [4] an energy-momentum tensor T„

gT
1 Q(v' —g +)

(32)
2 &"

gg pv

so that [4]

15$= —— T~"5g v' —gd4xPV

= —f T" „g & gd x =0 . . —(33)

Since g„ is arbitrary this result yields the energy-

Thus, the variations of all the terms in the Lagrangian of
the action

4—:Sp+4'2= f (Xp+L2)& —gd4x

Tg'"= —to&(3U" U —g"')a~a" /4n. . (40)

Note that a a* &0 so T„,„, is positive as required. In
the rest frame we have Tr = —to a a" /2m and
TP= —co a a' /2m. . In this frame the longitudinal
mode has no momentum density or energy flow.

C. Gravitational efFects on wave dynamics

dk ~p= —~ VV — Vn,
dt P 2n

(41)

and dx/dt =k/co. In a homogeneous medium the refrac-
tive (density-gradient) term vanishes and the photon cou-
ples to gravity exactly like a particle with a mass ~, a
momentum k, and an energy m. Therefore, the plasma

An external gravitational field affects the wave dynam-
ics through the metric g"" introduced in f. For example,
consider a medium at rest, with a Newtonian potential
IVI((1 and g =1—2V. For transverse photons, Eqs.
(7)—(16) yield k "k„. =

—,'co~Bin(n)/Bx", giving in the limit

« Idx/dtl « I
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de„
dt

e dU
(k Urk„—ksk U„)

frequency plays the role of a gravitational mass for the
photon. It is possible to bind a photon gravitationally in
a homogeneous plasma if its group velocity,

l
d x/dr l

= [1+( co~ /l k l ) ]

is smaller than the escape velocity from the gravitational
field. The gravitational binding can be viewed as a result
of a redshift in co down to its minimal allowed value, co .
In general, the gravitational effects become more impor-
tant as the group velocity of the wave decreases or the
magnitude of the gravitational field increases. The gravi-
tational effects we have found may strongly affect wave
trapping in magnetospheres or accretion Aows near com-
pact objects, such as neutron stars or black holes [S]
where

l Vl —1. However, for
l Vl « 1 the refractive effects

originating from the second term in Eq. (41) usually dom-
inate, if the temperature of the medium T is nonrelativis-
tic. At equilibrium, the medium becomes inhomogeneous
due to the gravitational potential, n ~exp( —m~V/T)
(where m is the ion mass), leading to a typical ratio of
( T/m ) —10 ( T/eV) between the first and second terms
in Eq. (41).

The polarization four-vector e„=a„/Q —a„a*" of
transverse electromagnetic waves (k„e"=0) can also be
changed by gravity. In the gauge e„U"=0, Eqs. (11)and
(16) yield the evolution equation

X2=e„;„—j"a„+(lEl —lBl )/8n, (43)

where E,B are the perturbed electric and magnetic fields
of the wave, derived from the vector potential a";c.z;„ is
the perturbed kinetic energy of the electrons and ions;
and j"=(j,j) is the perturbed four-current in the plas-
ma. In proceeding further, it is necessary to assume that
there are no resonant particles, since these particles can-
not satisfy the %KB approximation. Under this assurnp-
tion, the waves are characterized by a dielectric tensor

ties in detail.
First, it is easy to see that a hot plasma in a magnetic

field admits a second-order Lagrangian. This Lagrangian
can be derived by replacing the four-function of the four
variables X"(A, ) that were employed for the cold-plasma
trajectories by four-functions of eight parameters [A,; ],
that give a complete description of all the orbits (e.g.,
[ A,„.. . , A.7] may characterize different orbits and A,o the
position along an orbit). The total Lagrangian of the sys-
tem can be expressed in terms of these orbits. However,
the procedure outlined in Sec. II leads to a considerable
complication, especially when one substitutes the per-
turbed electron orbits in terms of the perturbed elec-
tromagnetic fields of the wave. This complication can be
avoided by considering the Lagrangian in the locally flat
rest frame of the plasma where the background electric
field vanishes and the background magnetic field Bo is
constant. In this frame, the effective Lagrangian density
of the plasma can be written as

dk
+(k U~U„—k„)

dt

e"(i,j =1,2, 3),
4nj' = i co( e'~ —I'J )EJ,—

(44}

(42)

where the plasma hydrodynamic four-velocity satisfies
U„U"=1. Near the turning point of a gravitationally
bound photon the polarization can be reversed. The pho-
ton momentum is reversed there while its polarization
direction does not change, and therefore its net helicity
Qips.

III. ELECTROMAGNETIC %AVES
IN HOT MAGNETIZED PLASMAS

For the sake of simplicity we considered only cold plas-
mas with no background fields in Sec. II. We have shown
how one can derive all the essential properties of the elec-
tromagnetic waves in these plasmas from the considera-
tion of their Lagrangian. The general method of treating
the WKB theory of waves by the least action principle
can be used to describe more complicated systems, once
the second-order action Sz is calculated. One can arrive
at this action by first deriving the Lagrangian density in
the local Minkowski rest frame of the medium, and then
generalizing it to a covariant form integrated over space-
tirne. In this section we will outline this method for a
specific example, namely a hot plasma in a constant mag-
netic field. In order to avoid extended derivations, we
will only illustrate the least-action approach in this plas-
ma without deriving all its complicated dielectric proper-

where I is the unit 3 X 3 matrix. The dielectric tensor is a
function of ~,k, and the properties of the plasma, such as
the magnetic field Bo and the unperturbed electron distri-
bution function. The total energy of the wave can be
shown to be [7]

+ (IEI'+ IEI'} (~e' ) J'EE, +lal' . (4s)

Finally, the second term on the right-hand side of Eq.
(43) can also be expressed in terms of e'~ to give

+, [( '[ '—~"])E,'E1 1 8

The results derived in this work can be easily general-
ized to any type of waves in nondissipative media (that

(46)

In this result, c" involves the standard [8] integration
over rnornentum space of the derivatives of the electron
distribution function with respect to the electron momen-
tum parallel or perpendicular to Bo. Once the resulting
expression is written in a covariant form, it may be em-

ployed in the wave action equation (19}, and used to
derive the wave energy-momentum tensor. We leave
these extensive details to another investigation.

IV. CONCLUSIONS
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can be described by a Lagrangian), with their correspond-
ing dispersion relation f (x",k,g ~)=0. Generally, if
the dispersion relation of a wave is known in terms of co

and k in the local rest frame of the medium, one can
transform it to the covariant form f =0 in a general
frame, by substituting co—=k„U" and k'=k„(g"' —U"U')
For a hot (or a degenerate) collisionless medium,
should contain the particle distribution function integrat-
ed over particle trajectories in the 8-dimensional phase-
space. By including higher-order terms in the Lagrang-
ian, one can also analyze nonlinear wave-wave interac-
tions.

An extremely precise experiment is required to mea-
sure the gravitational effect of the earth on the dynamics
of collective excitations in the laboratory. Similarly to
gravitational lensing of photons, one may look for
deQections in the trajectories of excitation wave packets
in solids. For modes that can propagate with a small
group velocity (nonrelativistic "particles" ), such as pho-
nons or plasmons, the gravitational effects are much
more pronounced than for vacuum photons [9]. Howev-
er, these effects may be easily dominated by noise from
refraction due to very small density or temperature inho-
mogeneities in the solid. Wave damping processes (that
were ignored in this work) should also be minimized. In
principle, it is possible to look for gravitational effects on
phonons in superAuid helium at low temperatures, on

waves in media that are accelerated by an external force
other than gravity (e.g., a centrifugal force), or in wave
guides.

The formalism of this paper describes the behavior of a
large class of waves, which appear in a variety of applica-
tions in astrophysics and plasma physics. In particular, it
provides a simple approach for calculating gravitational
lensing phenomena in a background medium. Besides
photons, it can describe the propagation of other excita-
tions, such as acoustic modes, or of particles, such as neu-
trinos [10], which have a dispersion relation in nondissi-
pative media. Additional applications include, for exam-
ple, turbulent heating and self-focusing phenomena in
fusion plasmas or astrophysical jets [11], effects on the
propagation of cosmic rays through the galactic magnetic
field [12], the structure of collisionless shocks [13], and
wave phenomena near compact objects [5].
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