PHYSICAL REVIEW D

VOLUME 45, NUMBER 2

15 JANUARY 1992

Global structure of Gott’s two-string spacetime
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Gott has recently obtained exact solutions to Einstein’s equation representing two infinitely long,
straight cosmic strings that gravitationally scatter off each other. A remarkable feature of these solu-
tions is that they contain closed timelike curves when the relative velocity of the strings is sufficiently
high. In this paper we elucidate the global structure of Gott’s two-string spacetime. In particular, we
prove that the closed timelike curves are confined to a certain region of the spacetime, and that the
spacetime contains complete spacelike, edgeless, achronal hypersurfaces, from which the causality-
violating regions may be said to evolve. We then explicitly determine the boundary of the region con-

taining closed timelike curves.

PACS number(s): 04.20.Jb, 95.30.5f, 98.80.Cq

I. INTRODUCTION

It is well known that the solution of the Einstein equa-
tion representing an infinitely long, infinitesimally thin
string is locally flat [1]. It is obtained simply by cutting
out a wedge from Minkowski spacetime and then identi-
fying the opposite faces of the wedge (so that each
constant-time surface has conical geometry). Gott [2] re-
cently pointed out that an exact solution representing
two such strings gravitationally scattering off each other
is also easily obtained: take two copies of the single-
string spacetime, cut both of them along corresponding
flat timelike hypersurfaces, and then paste them together
along that hypersurface, but with a relative boost. An in-
triguing feature of the resulting spacetime is that it con-
tains closed timelike curves (CTC’s) when the relative ve-
locity of the strings is sufficiently high.

It was emphasized by Ori [3] (and is implicit in Gott
[2]) that the CTC’s are not restricted to some ‘“‘interac-
tion region” where the strings are near each other, but
rather CTC’s exist arbitrarily far away from both strings.
The question then naturally arises whether all points in
Gott’s two-string spacetime lie on some CTC. We prove
that the answer to this question is no. Indeed, it follows
from the proof that the spacetime contains complete (ex-
cept for the conical singularity at the strings) spacelike,
edgeless, achronal hypersurfaces (where “achronal”
means that no two points of the set can be connected by a
timelike curve). We are able to determine explicitly the
null boundary separating the region that contains CTC’s
from the region that does not.

The organization of this paper is as follows. In Sec. II
we review Gott’s two-string spacetime and his demon-
stration that it contains CTC’s. Then in Sec. III we
prove that there is a region of the spacetime through
which no CTC’s pass. In Sec. IV we establish some gen-
eral properties of the boundary of such a region, which
motivates an examination of the null geodesics of the
two-string spacetime in Sec. V. This leads directly to an
explicit determination of the null boundary of the region
containing CTC’s in Sec. VI. Having the global structure
of the spacetime thus well in hand, we are able to shed
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some light on the physically interesting question of what
can be learned about finite-length curved strings from
these infinite-length string spacetimes.

II. THE SPACETIME

Like the single-string spacetime, Gott’s two-string
spacetimes are locally flat. They are obtained rather
directly by simply removing two ‘“wedges” from Min-
kowski spacetime and identifying appropriately the oppo-
site faces of these wedges. More precisely, consider Min-
kowski spacetime covered with a Lorentz coordinate sys-
tem (¢;,x;,yr,2; ), so that the metric has the form

ds’=—dt} +dx}+dy} +dz} . (1)

(We use the subscript “L” to indicate that this is the
“laboratory” frame, with respect to which the strings will
have equal but opposite momenta.) It is useful to
now define two more Lorentz coordinate systems,
(ty,x1,¥1,2z,) and (2,,x,,y,,2,), related to these laborato-
ry coordinates by boosts of velocity +v and —v along the
x; direction:

(¢ —vxp) (¢, +ovx;)
tlz—‘_——’ t2=—: s
Vi1i—p? V1—p?
(x; —vtr) (x; +vt;)
X\ =, Xy=
! V1—p? 2 Vi1—v?
(2)
1=y Y2=yL
z,=z4, Z,=z; .

These two coordinate systems will define the rest
frames of the two strings, respectively. Now, in the re-
gion y; =y, 2d, remove the wedge whose two faces are
given by {x,=(y, —dltana} and {x,=—(y, —d)tana},
and glue together the opposite faces of the wedge
by identifying the points [¢,,(y; —d)tana,y;,z,] with
[t;,—(y,—d)tana,y,,z;]. Similarly in the region
YL =y, = —d, remove the wedge whose faces are given by
{x,=(d +y,)tana} and {x,=—(d +y,)tana} and glue
together the opposite faces of this wedge by identifying
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the points [¢,,(d +y,)tana,y,,z,] with [t,,—(d
+y,)tana,y,,z,]. The resulting spacetime thus contains
two parallel strings, each with deficit angle 2a. The
strings have speeds (with respect to the laboratory frame)
+v and —v along the x,; direction, and their impact pa-
rameter is 2d. Most of the proofs in this paper require
a < /4, so we will always impose this restriction. (Since
the cosmic strings that might arise from grand unified
theories have a~ 1077, this is not a serious limitation in
practice.)

While the Gott construction does not necessitate hav-
ing the strings be parallel or of equal deficit angle, we
have restricted ourselves to this case for simplicity. In
this case, besides the continuous isometry along the z
direction, the spacetime possesses the following discrete
isometries:

D1:(t;,x;,yp,21)—>(—tp, =X, ¥r,21) »

DZZ(tL,xL,yL,ZL)“—)(tL,_xL,_yLyzL) » (3)

D3:(tL,xL,yL,ZL )_>( —tLny)_yL’zL) ’

where D3 is just the product of D1 and D2. (Note that
the above discrete isometries are indeed well defined on
the ‘““identified” wedge faces of the two-string spacetime;
i.e., they map identified points to identified points.)

Note that the opposite faces of the wedges are
identified at equal values of time in their respective rest
frames. Hence by (2), the coordinate ¢, (as well as x; ) is
discontinuous on the two-string spacetime. One could, of
course, cover the two-string spacetime with a continuous
coordinate system; however, for our purposes it is easier
to use (t;,x;,yr,2z; ) and simply make allowance for the
fact that these coordinates are badly behaved. Indeed,
using these coordinates it is easy to see how CTC’s arise:
the value of 7, along a future-directed causal curve in-
creases monotonically where the laboratory coordinates
are continuous, but #; decreases discontinuously when
the curve “jumps across’ the wedge in the direction op-
posite to the string’s motion. This creates the possibility
that a timelike curve can return to its initial spatial posi-
tion in the laboratory frame at the same value of f; at
which it left.

We conclude this section by briefly repeating Gott’s
demonstration that the spacetime contains CTC’s for
v >cosa. For any w >d cota, consider the points 4 and
B whose coordinates in the (¢;,x,,y,,z,) system are given
by 4 =(—vw,w,0,0) and B =(vw, —w,0,0). Then one
easily sees that there exists a geodesic which goes from A4
to B via the wedge that is at rest in this coordinate sys-
tem. Straightforward trigonometry shows that the
geodesic is timelike if vw > w cosa +d sina.
Hence for v>cosa, this geodesic is timelike
for sufficiently large w. Now, in laboratory coordinates,
A4=(0,wV1—v%0,00 and B=(0,—wV'1—0v%0,0).
Then by acting on the above geodesic with the discrete
isometry D3, we see there is also a future-directed time-
like geodesic which goes from B to A4 via the wedge that
is at rest in the “2” coordinate system. By joining the
two curves, we make a CTC. (Note, however, that this

CTC is not a geodesic, since its tangent is discontinuous
at A and B.) For the remainder of this paper we shall
just consider two-string spacetimes having v > cosa.

III. EXISTENCE OF POINTS NOT LYING ON CTC’s

It is clear from Gott’s example in Sec. II that CTC’s
exist at arbitrarily large values of |x; |, |y, |, and |z, ].
Given this fact, one might wonder whether every point in
the spacetime lies on some CTC. We will now prove that
this is not the case.

It is useful to first note that, in the construction of the
two-string spacetime given in Sec. II, one is of course free
to ‘“rotate” the excised wedges in the x,-y, and x,-y,
planes, respectively, without changing the resulting
spacetime (so long as neither wedge crosses the y=0
plane). A different choice for the orientation of the
wedges merely changes where the original coordinate sys-
tems (the 1, 2, and L systems) are discontinuous on the
two-string spacetime. For the explication of the proof
below, we find it convenient to introduce new Lorentz
coordinates which, while still discontinuous, are discon-
tinuous at different surfaces in the two-string spacetime.
To this end, rather than explicitly give the coordinate
transformations, it is simpler just to repeat the construc-
tion of the two-string spacetime, but stated in terms of
coordinates systems 1’, 2, and L’. These “primed” coor-
dinates are related to each other by the same Lorentz
transformations as the corresponding unprimed systems
(2). Repeating the construction then, starting with Min-
kowski spacetime, in the region y;.=y, =d, we excise
the wedge whose two faces are given by {x; =0} and
{x;,=(y;—d)tan2a} and glue together the opposite
faces of the wedge by identifying the points [#,,,0,,z ]
with [7,,(y, —d)sin2a,d +(y —d)cos2a,z.]. Similar-
ly, in the region y; =y, < —d, we remove the wedge
whose  faces are given by {x, =0} and
{xy=(pyt+d)tan2a} and glue together the opposite
faces of this wedge by identifying the points [#,,0,y,,25 ]
with [z,,(yy +d)sin2a, —d +(y, +d)cos2a,z, . To re-
peat, the resulting two-string spacetime is the same as be-
fore. We now proceed with the proof that the two-string
spacetime contains points not lying on CTC’s.

Choose any € >0 and define two regions in the space-
time: region I={x;.>0,¢;. 2 €} and region II={x;. =0,
t,,>€}. The boundary of IUII is just the continuous
spacelike surface {x;.>0,t;.=€}U{x; <0,t, =€}, so
clearly no future-directed timelike curve can exit IUIL
These spacetime regions are depicted in Fig. 1. Now the
coordinate ¢, is continuous in region I, and ¢, is continu-
ous in region II. (This is possible because only one string
enters each region.) Hence, since these functions increase
monotonically along future-directed timelike curves
(where these functions are continuous), no CTC can
remain wholly in region I or wholly in II; any CTC must
cross the boundary between I and II. Now, the boundary
between regions I and II is just the portion of the x;.=0
surface satisfying #;. = €V'1—v?. Next note that, on the
boundary between I and 11, ¢, . is a monotonic function of
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FIG. 1. Spacetime diagram illustrating the proof that there
are regions containing no CTC’s. Strings 1 and 2 are actually
displaced from the x;-t;. plane by +d in the y;. direction. Re-
gion IUII, which is devoid of CTC’s, is shaded.

ty- and t, (¢, =t, on this boundary):

t1'=(tL"_vxL')/‘/l_Uzth'/vl_U2, @
— —_— 4
ty=(tp+vx;)/V1—vi=t,./V1—0v?.

Hence since t;. increases along every future-directed
timelike curve in I, and similarly for ¢,. in II, whenever a
future-directed timelike curve in IUII intersects the
x;.=0 boundary, the value of ;. must be larger than at
its previous intersection. But then the curve cannot be
closed. Hence no point in region I or II can lie on a
CTC.
We point out that IUII is foliated by the surfaces

{x1=0,ty=k}U{x;.20,t;, =k} (5)

for k>e€. These surfaces are continuous but not
differentiable at x;.=0, but they can certainly be “round-
ed out” to form smooth spacelike, edgeless, achronal hy-
persurfaces. (We emphasize that these spacelike hyper-
surfaces are not asymptotically null.) These hypersur-
faces are complete except for the conical singularity at
the string itself; if the conical singularity is suitably
“smoothed out” so that the string has finite thickness,
then the hypersurfaces are complete. The existence of
CTC’s in the spacetime means that the evolution of initial
data on these surfaces encounters a Cauchy horizon.

By acting on IUII with the discrete isometry D1, one
obtains another, “time-reflected” region devoid of CTC’s.
By taking the union of IUII and this time-reflected re-
gion, and by taking the limit é—0 in the definition of re-
gions I and II, we also see there is an open neighborhood
around each string that intersects no CTC. This latter
fact has the interesting implication that none of the
CTC’s in the spacetime is affected if the infinitesimally
thin strings are replaced by strings of sufficiently small
but finite thickness. In particular, the boundary of the re-
gion containing CTC’s, which we find explicitly in Sec.
VI, is completely independent of the idealization that the
strings are infinitesimally thin.

Also by considering the €—0 limit, we see that the re-
gion devoid of CTC’s includes an open neighborhood of

the origin of laboratory coordinates (0,0,0,0), since any
timelike curve passing suitably close to the origin must
enter IUII. (Note that the L and L' coordinates coincide
near the origin.)

IV. GENERAL FEATURES OF THE CTC BOUNDARY

We would like to determine precisely which points in
the two-string spacetime lie on CTC’s. This is of course
equivalent to finding the boundary of the region whose
point lie on CTC’s. In this section we present two rather
general results concerning this boundary.

The first result applies in any spacetime: if the bound-
ary of the region containing CTC’s is (locally) a smooth
hypersurface, then it is a null hypersurface. The proof is
simple. First, it is obvious that the boundary cannot be
spacelike. We now assume the boundary is timelike, and
show that this leads to a contradiction. Consider two
nearby points, p and g, on the boundary, connected by a
future-directed timelike curve from p to g. We can slight-
ly deform this curve to a future-directed timelike curve
whose endpoints p’ and g’ are interior to the region con-
taining CTC’s, while part of the curve lies outside this re-
gion. We will then have achieved a contradiction if we
can show there is also a future-directed timelike curve
from g’ to p’. But now consider any curve A connecting
p' and ¢’, but lying entirely interior to the region contain-
ing CTC’s. Given any point r on A, there is an open
neighborhood of O 3r such that r,,r, EO implies that
the CTC connecting r to itself can be deformed to a
future-directed timelike curve from r; to r,. Since A is
compact it can be covered by a finite number of such
neighborhoods. We can thus join together the corre-
sponding curves to make a future-directed timelike curve
from g’ to p’, and we are done.

[We remark that it was necessary in the above proof
that the points in the interior lie on closed timelike
curves, not simply closed causal (i.e., timelike or null)
curves. Indeed, it is easy to construct a spacetime con-
taining a region whose points all lie on closed null geo-
desics, such that the boundary of this region is timelike.]

We next review the concept of a polarized hypersur-
face, introduced by Kim and Thorne [4] in their analysis
of CTC’s in wormhole spacetimes. (The term “polar-
ized” originates in the expected divergence at such a hy-
persurface of the vacuum polarization in quantum field
theory.) The Kim and Thorne arguments are rather gen-
eral, and we expect them to apply in our context. A
point p is said to lie on the “Nth polarized hypersurface”
if it lies on a null geodesic that leaves p, loops around
both strings N times, and then returns to p. Note that the
initial and final tangents to the curve at p will generally
be different. We will refer to such null geodesics as “self-
intersecting.” According to Kim and Thorne, one should
generally expect the boundary of the region containing
CTC’s to be just the N— o limit of the Nth polarized
hypersurface. To see this, let ¢ be any point on the
boundary, and let ¢’ be any point which is interior to the
region containing CTC’s and which lies in some convex
normal neighborhood of q. Then ¢’ lies on some CTC,
which must loop around both strings at least once; say it
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loops around # times. We now move g’ closer to g (along
a geodesic connecting them, say) while smoothly deform-
ing the corresponding CTC. At some point, we will not
be able to push g’ any closer to g while still keeping the n
loop timelike. We expect that in this limit the timelike
curve convergence to a null geodesic, so that in this limit
q' lies on the nth polarized hypersurface. (If the CTC’s
do converge to a closed curve, they must converge to a
null geodesic. We do not know, however, the general
conditions under which the CTC’s will converge to a
closed curve.) Since we can go around this curve twice,
the 2nth polarized hypersurface lies even closer to the
CTC boundary. Thus we expect any point on the CTC
boundary to be arbitrarily close to self-intersecting null
geodesics that loop around both strings an arbitrarily
large number of times.

V. NULL GEODESICS IN THE SPACETIME

The argument of the previous section, that the null
boundary of the region containing CTC’s is the N — o
limit of the Nth polarized hypersurface, motivates a close
examination of the null geodesics in the spacetime. In
this section we show that the condition that a null geo-
desic loops around the strings a very large number of
times puts a strong constraint on either its initial or final
direction. As a simple application of this result, we also
show that there are no closed null geodesics in the two-
string spacetime. [We distinguish between ‘“‘closed null
geodesic” and “‘self-intersecting null geodesic.” In a
closed null geodesic, both the position and tangent direc-
tion of the curve (but not the tangent vector) return to
their starting values.]

We first determine how the direction of a null geodesic
changes after it has made one loop around both strings.
Since we are interested in null geodesics that return to
their starting points and since dz /d A is constant along a
geodesic, where A is the curve’s affine parameter, we re-
strict attention to geodesics satisfying dz/dA=0. To be-
gin, we define the angle ¢, of the null geodesic projected
into the x -y, plane by

cosp, = —dx,/dt,, sing,=dy,/dt, . (6
Similarly we define the angle ¢, by
cosp,=dx, /dt,, sing,=—dy,/dt, . (N

Now we see from (2) that the “1”- and “2”-coordinate
systems are related by the Lorentz transformation

; (t,—ux,) (x5 —ut,) ®)
s, X\ T =Y,, 2Z,=2,,
1 Viea? 1 Va2 Y172 17— 22
where

u=2/(1+v?) . 9

Hence the angles ¢, and ¢, are related by

cotp, = —dx, /dy,
=(1—u?) V¥ —dx,/dy,+udt,/dy,)
=(1—u?)""*(cotd,—u csch,) (10)

or equivalently

cotd, = —dx, /dy,
=(1—u?) VX —dx,/dy,—udt,/dy,)
=(1—u?)"*(cotd,—u cscd,) . (11)

Now consider a null geodesic that starts from some
point on the y=0 plane where x,; >0, “jumps across” the
wedge that is at rest in the ““1” system, and returns to the
y=0 plane. In the course of this half-loop, ¢,—¢,,
where

cotd,=(1—u?)"'"*(cotd, —u csc,)
=(1—u?)"?[cot(¢;—2a)—u csc(¢,—2a)]
=(1—u?) "2 —cotRa—¢,)+u csc2a—d¢;)] .
(12)

Similarly, in a half-loop that starts from some point on
the y=0 plane where x, <0, “jumps across” the wedge
that is at rest in the “2” system, and returns to the y=0
plane, the angle ¢,— ¢,, where

cotd; =(1—u?) "2 —cot(2a—¢,)+u csc(2a—g,)] .
(13)

Putting these two half-loop results together, we find
that when a null geodesic has spiraled once around both
strings:

6, —g(g(d)), d,—glg(d,)), (14)
where the mapping g (¢) is defined by
g(¢)=Arccot{(1—u?)"1?[—cot(2a—¢)
+ucsca—¢)]}  (15)

(where we take the range of Arccot to be (0,7]). Iterat-
ing, we see that after N loops, ¢;—g>"(¢,) and
#,—g*M($,). Clearly if ¢, (or ¢,) ever becomes greater
than 2a, then the geodesic must cease to “spiral.” We
now collect the salient features of this map g, which
determine its behavior under many iterations. The reader
may readily verify that, for u > [2 cosa/(1+cos’a)] (i.e.,
v >cosa), and in the range 0<¢ =2a, g(¢) has the fol-
lowing properties:

g(0)>0, dg/d¢>0, dg/d¢*>0, 16

gla)<a, gRa)=7>2a.

Thus g (¢) qualitatively has the shape shown in Fig. 2.
In particular, g(¢) has precisely two “fixed points” satis-
fying g(¢)=¢. Define £ to be the smaller of these two
fixed points. The condition that { is a fixed point,

cotE=(1—u?)"1?[—cota—&)+u csc(2a—¢)], (A7)
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2a-¢ 2o

¢

FIG. 2. The map g(¢) is shown. The angle § is a stable fixed
point of g, while 2a— ¢ is an unstable fixed point.

can be shown to be equivalent to
coté+cot(2a—¢)=v[cscé+cesc(2a—¢)] , (18)

which can be solved to yield

cosa 3

sina—Vv2—cos?a | . (19)

sin{=

From Eq. (18), it is transparent that the larger fixed-point
angle is just (2a—¢). We see from Fig. 2 that § is a
stable fixed point, while (2a—¢) is an unstable fixed
point. If ¢ is not equal to £ or (2a—¢), then g™M(4) is ei-
ther driven monotonically to § as N — o, or is monotoni-
cally driven past 2a:

¢p<t=3g"$)>§ as N>,
(<9<2a—¢)—gM¢p)>¢ as N>, (20)
¢>Qa—¢)=gM¢)>2a for some finite N .

We note that if we follow null geodesics backwards in
time instead of forwards, then the character of the fixed
points is reversed: (2a—¢) becomes a stable fixed-point
angle and ¢ an unstable one. Thus the spacetime contains
two preferred null directions, j and k, corresponding to
the stable and unstable fixed-point angles, respectively. It
is straightforward to determine the components of j and
k in the laboratory frame. First, define the angle ¢, of a
null geodesic in the laboratory frame by

cos¢p, = —dx; /dt;, sing, =dy, /dt; . (21)
Then we have
cotd, = —dx; /dy;
=(1—v2)"V2(—dx, /dy,—vdt,/dy,)
=(1—v?)""2(cotd, —v cscd,) . 22)

Define §; to be the stable fixed-point angle as viewed in

the laboratory frame, so we have
cot; =(1—v?)"*(cotf—v escf) . 23)

Then it follows from (18) that the unstable fixed-point an-
gle in the laboratory frame is (7 —§; ):

cotl(r—E&; )=(1—v2)"?[cot(2a—E&)—v csc(2a—¢)] .
(24)
Using (19), §; can be shown to be given by

sing; =v " {(1—v2)?cota . (25)
The coordinate representations of the directions j and k
are constant except for discontinuous “jumps” across the
wedges. (Of course the directions are smooth; it is the
coordinates that are discontinuous.) The value of
dy; /dt; changes sign during these jumps, and we use
this to indicate what “branch” of the geodesic is intended
(e.g., dyr /dt; >0 on the y=0 plane where x; >0, while
dy; /dt; <0 on the y=0 plane where x; <0).

t; —cos§ x; +sing;y; where dy; /dt; >0,

i t; +cos§; x; —sing;y; where dy; /dt; <0, (26)
t, +cos; x; +sin{;y; where dy; /dt; >0,
ke t, —cos; x; —sin;y; where dy; /dt; <0, @7

where t;, x;, and y; are defined to be the unit vectors in
the t;, x;, and y; directions, respectively.

We point out that a null geodesic which is spiraling to
the future along the j or k directions is blueshifted or red-
shifted (with respect to the “1,” “2,” or “L” frames), re-
spectively, by a constant factor with every successive
loop. To see this, consider first that when a null geodesic
jumps across the wedge that is at rest in the “1” frame,
dt,/dA is unchanged, where A is the geodesic’s affine pa-
rameter. However when the same null geodesic then
jumps across the wedge that is at rest in the “2” frame,
dt,/dA changes discontinuously. Thus after one com-
plete loop, dt, /d A has changed. Since the null geodesic’s
tangent is always proportional to j or k, it is just
“lengthened or shortened;” i.e., dt,/dA, dt,/dA, and
dt; /d A all change by the same factor after one loop. It is

straightforward to work out this factor; the result is
dtL /d}\.—)KdtL /d)\. a]ong j N (28)
dt; /d\—«"'dt; /d)\ along k ,

where

_1—ucos(2a—¢) >1.

1—u cos§ @9)

Our analysis of a null geodesic’s change in direction
angle leads to an easy proof that the Gott two-string
spacetime does not contain any closed null geodesics. If
such a null geodesic existed, its tangent would have to be
proportional to either j or k, since otherwise its direction
angle changes monotonically, and so obviously cannot re-
turn to its starting value. Now consider a null geodesic
moving along the j direction that leaves the y=0 plane at
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x ;= (for some y > 0), is scattered by the string that is at
rest in the “1”’ system, and returns to the y=0 plane. We
will show that the final value of ¢; on this half-loop is
greater than the initial value of #;. The easy way to see
this is to first calculate A¢; in the limit in which the
strings’ impact parameter 2d goes to zero. Let the initial
angle, viewed in the “1” frame (6), be the fixed-point an-
gle &; then in the d=0 case:

At,=h[cot{+cot(2a—§)],
Ax,=—h[cscE+esc(2a—E)],
where & =) cos{. Hence, by (18), in the d=0 case,
Aty = At +vAx, _
Vi1—yp?

But clearly if we now increase d while keeping Ax, fixed,
then At increases (i.e., “jumping across” the wedge be-
comes a less effective “shortcut” as d increases). That is,
we have At, >v|Ax;| when d >0, so At; >0 for the half-
loop.

The same calculation as above shows that A¢; >0 for
half-loops through either wedge and along either the
stable or unstable fixed-point directions. Thus Af¢; >0
every time a null geodesic with tangent proportional to j
or k spirals once around both strings, and so there cannot
be any closed null geodesics. (Note that this in contrast
to many well-known examples of spacetimes containing
CTC’s, such as Taub-NUT (Newman-Unti-Tamburino)
and the Morris-Thorne-Yurtsever wormhole spacetimes.
Indeed, Hawking [5] has shown that there must exist
some closed null geodesic in causality-violating space-
times that develop from some noncompact initial-data
surface, S, such that all the generators of the Cauchy hor-
izon of S enter and subsequently remain within some
compact region.)

(3D

VI. EXPLICIT DETERMINATION
OF THE CTC BOUNDARY

In this section we explicitly determine the boundary of
the region containing CTC’s. We cannot offer a complete
proof; rather we offer a deduction based on some added
suppositions (which we believe are completely reasonable
and correct). The most important supposition is that the
characterization of the boundary as the “N — o« limit of
the Nth polarized hypersurface,” argued for in Sec. IV, is
in fact true for the two-string spacetime. We also assume
the boundary is a continuous, connected hypersurface,
and that the hypersurface is smooth almost everywhere
(i.e., except at cusps). Note that it is clear that the
boundary must be closed.

A null surface, like a spacelike one, locally divides the
spacetime into past and future. We shall say a portion of
the CTC boundary is part of the “future boundary” if it
is locally to the future of the region containing CTC'’s;
likewise, the “‘past boundary” is to the past of the region
containing CTC’s. We want to show that the null
tangent to the future boundary must coincide with the
unstable null direction k, given by (27). The argument is
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as follows. Consider a point p on the future boundary.
Then we can find a sequence of points p, —p which are
the end points (both initial and final) of self-intersecting
null geodesics that loop around both strings at least n
times. Let k, be the initial, future-directed null tangent
to the nth curve at p,. Then clearly as n — «, k, ap-
proaches the null tangent to the future boundary, since
otherwise for sufficiently large n the geodesics would
cross the boundary. Next observe that the null geodesic
through p that generates the future boundary can never
leave the boundary to the future of p, because if it did
leave the boundary then, by continuity of solutions of the
geodesic equation, the nth self-intersecting null geodesic
would also have to leave the region containing CTC’s for
sufficiently large n. Now consider any null geodesic gen-
erator of the future boundary. Since it cannot leave the
boundary, the generator must spiral around both strings
an infinite number of times. This is because if it ever
stops spiralling, it would have to cross into region TUII
(defined in Sec. III).

So far we have established that the future boundary is
generated by null geodesics that spiral around both
strings an infinite number of times. We now show this
implies that the tangent to the generator must be propor-
tional to the unstable fixed-point direction k, by assuming
the opposite and showing this leads to a contradiction.

If the null generator does not coincide with k, then
since the geodesic spirals to the future an infinite number
of times, by (20) its direction angle must be driven asymp-
totically to the stable fixed-point direction. Therefore
after some finite number of loops its laboratory frame
direction angle ¢, is less than 7/2. Next consider a point
where the null generator hits the y=0 plane in the region
x; >0, with its direction angle ¢; <w/2. Because
¢, <m/2, as one passes through the null boundary at this
point going “to the right” —that is, increasing x; while
keeping t;, y; , and z; fixed—one passes from the past of
the null surface to its future. But it was demonstrated in
Sec. III that (in the region x; >0) by proceeding along
the +x; direction, one crosses from the region that does
not have CTC’s into the region that does. That is, null
planes with null tangent near the stable direction simply
tilt the wrong way to be the future boundary of the re-
gion containing CTC’s. Thus we have achieved a con-
tradiction, and hence the null tangent to the future must
everywhere coincide with k. Similarly, the null tangent
to the past boundary must everywhere coincide with j.

In flat spacetime, null hypersurfaces whose null
tangents are everywhere parallel are just null planes.
Thus, away from the excised wedges, the past and future
CTC boundary are portions of null planes. Of course, the
boundary is continuous in the physical two-string space-
time, so the intersections of these null planes with the
wedge faces “match up” appropriately under the
identification described in Sec. II.

A plane in flat spacetime is uniquely determined by
knowing its normal and one point through which it
passes. Equations (26) and (27) give the normals to the
null planes which bound the region containing CTC’s; we
will show that the symmetries of the spacetime allow the
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planes to be located exactly. Let the future boundary in-
tersect the x; axis at x; =¢ >0. Then by virtue of the
discrete symmetry D2, the future boundary also inter-
sects the x; axis at x; = —gq. Similarly, by virtue of D3,
the past boundary also intersects the x; axis at x; =¢
and x; =—gq. Then, by (26), the past boundary is de-
scribed by

—t; —x; cos; +y; sin; =—q cos§;
where dy; /dt; >0,
(32)
—t; +x; cos§; —y; sinf; = —q cosé
where dy; /dt; <0,
and by (27) the future boundary is described by
—t; +x; cos; +y; sing; =q cosf;
where dy; /dt; >0,
(33)

—tp —Xp cos§y —yp sinfy =—gq cosfy
where dy; /dt; <0 .

We see that the past and future boundaries meet at a
cusp, given by

{x; =q,—t; +y; sin; =0} where dy; /dt; >0,
3
{x; =—q,t; +y; sin§; =0} where dy; /dt; <0 .

We now proceed to calculate g, which will completely
determine the boundary. First note that the discrete
isometry D1 must map the cusp to itself. Next consider
the identified faces of the excised wedge that is at rest in
the “1” frame. This timelike surface is also mapped to it-
self by D1. Since the intersection of the cusp with this
timelike surface is just a single point for each value of z,
each point of this intersection must also be invariant un-
der D1. Rewriting (3) in terms of the “1” coordinate sys-
tem, we have

D1:(t),x,y1,2)—>(—t;, —x,y1,21) . (35)

Hence the only points in the y; >0 region that are invari-
ant under D1 must lie on the ¢, =0 surface. By (2), 1, =0
implies £;, =vx; and x,=x;V'1—v% Now restrict atten-
tion to the right (i.e., x;, >0, where dy; /dt; >0) wedge
face. There, the intersection of the cusp (34) with the
t, =0 surface is given by

yysingy =vq ; (36)

but the right wedge face also satisfies x; =(y,; —d)tana,

which when combined with x; =xL\/l —v? and x; =¢
yields

ql/lTvz=(y1—d)tana . (37
Combining (25), (36), and (37), we find
g=(dsinf; ) /(v —V1—v?sinf, cota)
=d sina cosaV'1—v2/(v2—cosa) . (38)

Notice that in the limit that as v—cosa, we have

o Identity

FIG. 3. A sketch showing the general features of the bound-
ary of the region containing CTC’s. The past and future boun-
daries of this region are null planes which meet at a spacelike
cusp. CTC’s are restricted to the region between these planes.
The “identified” edges of the planes represent the intersection of
the CTC boundary with the string wedges. (To avoid compli-
cating the figure, we have not drawn in the string wedges.) The
null generators j and k of the past and future CTC boundaries,
respectively, are shown inscribed.

&, —0 (so the past and future null boundaries degenerate)
and ¢ — . That is, the region containing CTC’s van-
ishes in this limit.

In summary, a rather elegant picture has emerged of
the boundary of the region containing CTC’s, which is
depicted in Fig. 3. (Note that we have not attempted to
show the location of the string wedges in Fig. 3; however,
the “identified” edges of the CTC boundary are intended
to represent where these planes intersect the string
wedges.) Locally the past and future CTC boundaries are
null planes, but globally they have topology S!XR?2. The
past and future boundaries are generated by null geo-
desics which emerge orthogonally from a central cusp
and spiral around both strings an infinite number of
times. Since these null geodesic congruences have zero
expansion, the cusp is a “marginally trapped surface.”
Note also from (34) that the cusp is foliated by closed
spatial geodesics (one spatial geodesic for each value of
z). A cross section of Fig. 3, showing its intersection
with the y; =0 plane, is depicted in Fig. 4.

tL
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FIG. 4. Represents the x;-t; cross section (y; =z; =0) of
the CTC boundary depicted in Fig. 3. The region containing
CTC’s is shaded.
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It is also clear what the self-intersecting null geodesics
corresponding to the Nth polarized hypersurface “look
like” for large N. For initial points very close to the fu-
ture CTC boundary, the null geodesic spirals very close
to the boundary—its direction angle just slightly less
than the unstable fixed-point direction angle—for most
of the N loops. But eventually the geodesic’s direction
angle is driven sufficiently far from the fixed-point value
that ¢; can decrease over the course of a loop, and in
several more spirals the curve returns to its starting
point.

Finally, perhaps the most interesting question that
arises from the Gott two-string solution is what happens
when nearly straight sections of closed loops of string
pass each other at high relative velocity. Just as one ex-
pects the metric very near a single loop of string to be
well approximated by the infinite-length, straight string
metric, so one might naively expect the metric very near
scattering loops of string to be well approximated by the
Gott solutions, so long as the impact parameter was very
small compared to the radii of curvature of the strings (so
the strings could be approximated as straight on this
length scale). On the other hand, Tipler [6] has proved
(roughly) that if a spacetime (1) is asymptotically flat and
contains CTC’s, (2) contains a complete, edgeless achron-
al hypersurface, whose domain of dependence terminates
at the CTC boundary, and (3) satisfies the weak energy
condition and the generic condition, then the spacetime
must be singular, in the sense of being null geodesically

incomplete. So we cannot use finite loops of string to
“create” CTC’s in an asymptotically flat spacetime
without also creating a singularity. Having determined
the boundary of the causality-violating region in the
two-string spacetime, we can now see why our naive ex-
pectations might fail—why the causality violation that
arises in the infinite-length string case could perhaps not
arise in string spacetimes that are asymptotically flat.
We have seen that points on the past CTC boundary lie
on null geodesics that spiral out infinitely far. Hence if p
is some point on the past CTC boundary, and = is some
complete, edgeless, achronal surface to the past of p, then
the intersection of the causal past of p with X2,
J (p)N 2, is not contained within any compact region
of 2. Equivalently, given a sequence of points p, ap-
proaching p from below, J ~(p, ) = extends outside any
compact region of = for sufficiently large n, so as you ap-
proach the causality-violating region in Gott’s two-string
spacetime, you ‘“can tell” that the spacetime is not
asymptotically flat.
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FIG. 1. Spacetime diagram illustrating the proof that there
are regions containing no CTC's. Strings 1 and 2 are actually
displaced from the x;-f;. plane by *d in the y;. direction. Re-
gion IUII, which is devoid of CTC’s, is shaded.
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FIG. 4. Represents the x;-t; cross section (y, =z; =0) of
the CTC boundary depicted in Fig. 3. The region containing
CTC’s is shaded.



