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Duration of inflation and possible remnants of the preinflationary Universe

L. P. Grishchuk
McDonnell Center for the Space Sciences, and Department of Physics, Washington University, St. Louis, Missouri 63130
and Sternberg Astronomical Institute, Moscow University, 119899 Moscow V234, Russia
(Received 31 January 1992)

It is shown that the minimally sufficient duration of inflation may happen to be a very probable predic-
tion of certain quantum cosmological models. This can make reasonable and interesting the observa-
tional search for the possible remnants of the preinflationary Universe.
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In a recent interesting paper [1], Turner considers
cosmological models whose period of inflation lasted a lit-
tle longer than the minimal duration necessary to in-
crease a preinflationary scale to the size of the present-
day Hubble radius. He discusses the possible “remnants”
of the preinflationary Universe and their observational
effects. Turner warns the reader that in many, if not
most, models of inflation the number N of e-foldings of
the scale factor during inflation is much, much larger
than the minimal N, in which case the volume covered
by inflation is much, much larger than the present-day
Hubble volume and, hence, the discussed issues are moot.

One can agree with the author that in the framework
of classical cosmologies there is no natural reason why
the duration of inflation, if it occurred at all, should be so
fine-tuned that N=N_, . It seems to be unlikely that
inflation has expanded a preinflationary patch precisely
to the size of the present-day Hubble radius, or so. The
purpose of this Brief Report, however, is to take into ac-
count quantum cosmological considerations and to
demonstrate that the duration of inflation close to the
minimally sufficient amount may happen to be the most
probable prediction of respective quantum cosmological
models.

Before going to issues of quantum cosmology and
inflation, let us set the scene from the point of view of the
current observations. The available astronomical data
are confined, of course, to the scales smaller than the
present-day Hubble radius /;; ~10%® cm. From these data
we deduce that the visible Universe is pretty homogene-
ous and isotropic. Scales larger than I, are currently
inaccessible to direct astronomical observations. At first
sight, this makes it possible to suggest that the Universe
can be much more inhomogeneous and anisotropic on
scales / which are, say, 10 or 100 times larger than /;;. In
other words, this seemingly allows one to have a pertur-
bation with an arbitrarily large amplitude, as soon as the
wavelength of the perturbation is longer than /.

A remarkable fact is, however, that although such
scales are not accessible to direct observations, we know
that the Universe is still homogeneous and isotropic in a
volume which is about six orders of magnitude larger
than the present-day Hubble volume /. In other words,
we know that the relative amplitudes of the possible per-
turbations are smaller than 1 for all wavelengths that are
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longer than the present-day Hubble radius and range
from I =1y up to about / =100/ [2].

The argument is based on the relationship between the
expected quadrupole anisotropy of the cosmic microwave
background radiation (CMBR) AT /T generated by the
gravitational field of the perturbation and the wavelength
of the perturbation /:
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In this formula, A is the amplitude of the gravitational
field perturbation associated with the growing mode of
the density perturbation, or the amplitude of the growing
(nonsingular) mode of the gravitational-wave perturba-
tion. Other modes are less significant. For simplicity we
neglect numerical factors of order 1 and assume that the
experimental upper limit on AT /T is 10~ % Then, con-
sistency with the observations requires that the number A
should remain smaller than 1 for all wavelengths up to
1=100/y. In fact, the experimental upper limit
AT /T S3X107° is already more stringent than 1074
which increases the size of the region of homogeneity and
isotropy up to about / =200/. In general, the lower the
upper limits on AT /7T, the larger the volume of homo-
geneity and isotropy of our Universe. (See Note added in
proof.) This conclusion assumes, of course, that the possi-
ble long-wavelength perturbations are not so neatly
correlated that we have happened to live inside of an in-
homogeneity which is big in its amplitude but strictly
spherically symmetric in its form. Such an inhomogenei-
ty, even if it had a radius of order of I, would not mani-
fest itself in the quadrupole anisotropy of CMBR. We
should also mention that these conclusions, being derived
for models with the cosmological parameter Q=1, are
not very sensitive to the variations of €, but we exclude
extreme situations, such as a logically possible case that
the Universe is closed and has the volume of the order of
I3, in which case the longer waves just do not exist.

One can see from Eq. (1) that the allowed amplitudes,
as a function of the increasing wavelength, can grow ac-
cording to the relation

h =1o*“i . ()
Iy
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On scales larger than /=(1-2)X 10/, the Universe can
be significantly inhomogeneous and anisotropic without
being in conflict with the available observational con-
straints.

Now we will mention modifications in this picture
which arise under the assumption that the inflationary
hypothesis is correct. If inflation has encompassed only
the present-day Hubble radius then the perturbations as-
sociated with the preinflationary “remnants’ can exist as
long as they agree with the limit imposed by Eq. (2). If
inflation has encompased a scale larger than 10%; then
only perturbations of quantum-mechanical origin survive
and their A’s should stay constant at a level not higher
than

h=10"* 3)

for all / in the interval 10%/; >1>1y [3]. The dominant
contribution to AT /T comes from the perturbations with
I=Iy and gets increasingly smaller for longer wave-
lengths. Thus, the difference between the minimally
sufficient inflation and long-lasting inflation, in terms of
the allowed amplitudes of the long-wavelength perturba-
tions, is represented by the difference between Eq. (2) and
Eq. (3).

Finally, we turn our attention to the quantum cosmo-
logical considerations. Quantum cosmology is supposed
to provide initial data for classical cosmological models
and resolve such issues as the likelihood of inflation and
its probable duration. Obviously, we are still far away
from a satisfactory answer. A part of the problem is that
there are too many possible wave functions: the trouble of
selecting an appropriate classical solution from the space
of all possible classical solutions is replaced by an even
bigger problem of selecting an appropriate wave function
from the space of all possible wave functions. In the ab-
sence of a guiding principle allowing one to prefer one
cosmological wave function over others, we will probably
face a painful job of analyzing all of them trying to intro-
duce a probability measure in the space of the wave func-
tions. However, if a cosmological wave function is
chosen, the derivation of the probability distribution of
the permitted classical solutions seems to be more
straightforward.

A wave function which has received much attention in
the literature is the so-called Hartle-Hawking wave func-
tion ¥yy [4]. The recipe of constructing this wave func-
tion is formulated in an elegant mathematical manner.
One cannot say that the ¥y is in any sense more prob-
able than others. On the contrary, it looks, rather, as an
exception. For simple quantum cosmological models al-
lowing inflation, the Hartle-Hawking wave function cor-
responds to a single point—a pole on the two-sphere
representing the space of all physically different wave
functions [5]. However, the yjyy is a real wave function
while all others (except the one corresponding to the op-
posite pole which is also real and which we call the
“anti-Hartle-Hawking” wave function) are complex.
This exceptional property of the iy alone, if for no oth-
er reasons, justifies special attention to this wave function
and makes it interesting to see what kind of predictions
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with regard to inflation follow from it.

For the case of homogeneous isotropic models with the
scale factor a(t) and a scalar field ¢(¢), the 1y predicts a
set of classical inflationary solutions which can be de-
scribed as trajectories in the two-dimensional space
[a(2),4(2)] [6]. These trajectories begin in the vicinity of
a line which is the caustic line for the so-called Euclidean
trajectories. The probability distribution Pyy for the
classical (Lorentzian) inflationary solutions follows from
the ¥y and has the form

Py =N exp , (4)

2
3H%(¢)

where N is the normalization constant and H(¢) is the
Hubble factor at the beginning of inflation. The function
Py varies along the caustic line and increases rapidly to-
ward the smaller values of ¢. This means that the proba-
bility to find a given inflationary solution is higher the
lower the initial value of the scalar field ¢(¢) (if, of course,
this interpretation of Pyy is correct). But smaller initial
values of ¢(t) correspond to the shorter periods of
inflation which makes solutions with a shorter period of
inflation much more probable than solutions with a
longer period of inflation.

An important fact is, however, that the inflationary
period cannot be too short. The reason is that the caustic
line does not extend down to the very low values of ¢; in-
stead, it has a sharp cusp (singularity) at the point of re-
turn from which the second branch of the caustic line de-
velops (see Fig. 1) [7]. The point of return on the caustic
line divides the Euclidean trajectories into two families
which touch the first or the second branch of the caustic,
respectively. The Lorentzian inflationary solutions can-
not begin with the initial value of the scalar field and the
Hubble factor lower than the value corresponding to the
point of return ¢* and, therefore, their periods of
inflation cannot be arbitrarily short. Thus, the 1y gives
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FIG. 1. Two branches of the caustic and its singularity. The
first branch of the caustic is shown by a solid line, the second
branch by a dashed line with long dashes. The Euclidean trajec-
tories are shown by dashed lines with short dashes. The
Lorentzian (inflationary) solutions are shown by dash-dot lines.
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more weight to inflationary solutions with lower initial
values of ¢(¢) but does not accommodate solutions which
begin with #(¢) smaller than ¢*. The numerical estimates
for the case of the scalar field potentials V(¢)=m2$>/2
and V(¢)=Ag¢*/2 show [7] that the number ¢* falls short
a factor 4 or 3, respectively, to ensure the minimally
sufficient inflation. The inflated scale turns out to be of
order 10*! cm instead of the required 10*® cm. At the
same time, the probability distribution function Pyy
reaches its maximum value at $=¢*. Thus, it seems that
the most probable prediction of the Hartle-Hawking
wave function is a “small, underinflated universe.” How-
ever, it is possible that the discrepancy between Iy and
the predicted inflated scale may be weakened or even re-
moved for other scalar field potentials. Apart from that,
the deficiency of ¢* in being just a numerical factor 4 or 3
smaller than necessary, in the situation where the initial
values of the scalar field can vary within a huge interval
from ¢* up to about 10° #*, can serve as an indication
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that the duration of inflation close to the minimally
sufficient amount should, probably, be taken seriously, at
least, as a prediction of the Hartle-Hawking wave func-
tion.

The meaning of the above discussion is that the search
for the “remnants” of the preinflationary Universe, in the
framework of the inflationary hypothesis, may not neces-
sarily be of a purely academic interest.

Note added in proof. The recent COBE observations
indicate that the actually measured quadrupole anisotro-
py is AT /T =~5X 107, This anisotropy can, in principle,
be predominantly generated by perturbations with wave-
lengths longer than the Hubble radius. If so, the above
argument cannot guarantee that the Universe is still
homogeneous and isotropic on scales exceeding / = 500/.

I am grateful to L. Rozhansky for a useful conversa-
tion.
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