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Remarks on the continued-fraction method for computing
black-hole quasinormal frequencies and modes
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We discuss the stability, accuracy, validity, and convergence of the continued-fraction method for

computing black-hole quasinormal frequencies and modes.
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I. INTRODUCTION

The continued-fraction method affords a stable, accu-
rate, and convergent technique for computing quasinor-
mal (QN) frequencies and modes. A review seems ap-
propriate, however, particularly in view of some appar-
ent uncertainty concerning the method and conflicting
JWKB results for the quasinormal frequencies. As in-
stances, Anderson and Price [1]assert "Three-term recur-
sion relations can be treated by continued-fraction meth-
ods. With such a method, Leaver shows that the QN
frequencies are those complex values of u for which the
continued fractions converge. He then uses the conver-
gence of the continued fraction as the basis for a precise
and stable computation scheme for the QN frequencies, "
while Guinn, Will, Kojima, and Schutz [2] suggest "The
possibility that Leaver's calculation gives wrong values
for the real parts of the frequencies must be considered,
especially in view of the considerable delicacy of the nu-
merical techniques he used to evaluate his continued frac-
tions; on the other hand, we have looked at this and
not found any obvious Saws. " Possible weaknesses in
the JWKB analysis of Guinn et al. are discussed else-
where [3]; here we take the opportunity to clarify the
Anderson-Price statement concerning convergence, and
other important continued-fraction issues.

II. THE CONTINUED-FRACTION METHOD
FOR SCHWARZSCHILD QUASINORMAL

FREQUENCIES AND MODES

A. Derivation and convergence

In units where c = G = 2M = 1 and with an exp( —i~t)
time dependence, the Regge-Wheeler equation is

Qr = (r —1) r e ~" iI) a (1 —1/r)" (2)

where the frequency parameter p = —i~ and the expan-
sion coefBcients a„are defined by the three-term recur-
rence relation
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which is an analytic function of the frequency p, and is
empirically found to converge for all p that are not purely
negative real. (This restriction is related to the absence
of a minimal solution to recurrence equations (4) when

p is negative real. See Refs. [4], Eq. (9), and [5] Eqs.
(42)-(46) )

Now, when p is a QN eigenfrequency pz,
the sequence of expansion coefficients {a„(pr ); n
= 0, 1, 2, . . .) is the minimal solution to the recurrence
relation (4), and the ratio of the first two expansion co-
efficients is equal to the value of this continued fraction
[5, 6]:

The recurrence coefficients a„, P„p„are explicit func-
tions of the frequency p, multipole moment l, and field
spin parameter e:

a„=n + (2p+ 2)n+ 2p+ 1

P„=—[2n +(8p+2)n+8p +4p+I(I+1) —~], (5)
y„= n + 4pn+ 4p —e —1

The QN frequencies are then those complex values of p
for which the series in Eq. (2) converges uniformly as
r ~ oo. The convergence of this series is a separate issue
from the convergence of the continued fraction

r(r —I)g,„+@„

+ [~ r /(r —1) —l(l + 1) + e/r)g = 0, (1)

where the field spin parameter e = —1,0, 3 for scalar,
electromagnetic, and gravitational perturbations. The
solution that is in-going at the event horizon may be
written (cf. Ref. [4])

I"(pr) = &0(pr)/~0(pr)— (8)

which holds whenever p is a QN frequency. However,
when p is not a QN frequency (and also not purely neg-
ative real), the continued fraction still converges and the

ai(pr)/ao(pr) = +(p, ) .

Since this ratio is also given by Eq. (3) for any p, we
then have the equation
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expression

Po(~)i~o(~) + &(~) (9)

is an analytic function of p whose zeros are the QN fre-
quencies. Being analytic, expression (9) makes an ideal
target for a numerical root search.

A variety of methods are available. The MINPAcK [7]
library's nonlinear root search routine HYBRD can handle
multiple equations and unknowns, which is particularly
useful for Kerr black holes where the eigenfrequency and
angular separation constant are simultaneously sought.
HYBRD works well in all cases, but for Schwarzschild and
Reissner-Nordstrom black holes the eigenfrequency is the
only unknown and analyticity may be exploited by single-
variable techniques such as Muller's method [8], used in
routines such as the International Mathematical and Sci-
entific Library's IMSL's zANLYT [9]. However, it must be
emphasized that precision and initial step-size control in
the root-search routine are essential: in our double preci-
sion calculations we use an initial step size between 10
and 10 . The standard MINPAcK distribution includes
both single and double precision versions of all routines,
and HYBRD affords fine control over step size, thus mak-
ing it the nonlinear root-search routine of our personal
choice. (We also obtain identical QN frequency values
using a double precision version of ZANLYT, after modi-
fying the code to allow step-size control. ) The continued
fraction itself may be stably evaluated by either of the
algorithms given in Refs. [8] and [10] (also discussed in

[6]); we have used them both with essentially identical
results.

imaginary parts. Use of a sequence convergence accelera-
tion routine limited the number of approximants needed
to compute the highest overtone values to fewer than
2000, although this speed optimization is not required
on modern workstations and introduced some impreci-
sion of its own. The continued fraction was declared to
have converged when the relative contribution of the last
computed approximant became less than one part in 10,
and the root-search acceptance criterion was one part in
10s.

We have recently rerun the program on a DECsta-
tion 3100 workstation with 53-bit fioating-point man-
tissa, without the convergence accelerator. The con-
tinued fraction and root-search tolerances were set to
10 is and 10 ii, respectively, yielding frequency val-
ues to ten or twelve significant figures. The values of
the lowest six I = 2 QN frequencies listed in Table I
of Ref. [4] remained unchanged, the seventh and eighth
changed in the seventh and sixth significant figures, and
values ten, eleven, and twelve remained unchanged. Fre-
quency values for overtone indices q = 19—59 changed in
the fifth significant figure. The accuracy for t = 3 was
similar, save for those frequencies bracketing the alge-
braically special value, which erred in the fourth signif-
icant digit. They should read (—0.037951, —19.432118)
and (—0.031000, —20.563400). As a high overtone test,
the 1 = 2 value at q = 399 was found to be (—199.72737,
—0.11149). See Ref. [11] for further discussion of the
method.

C. Validity

B. Stability and accuracy

An interesting convergence aspect of series (2) itself
is that when p is an eigenfrequency (pz, q = 0, 1, 2, . . .)
the largest of the expansion coefficients a„ is approxi-
mately a&, so that for all but the fundamental q = 0
mode, the series coefficients form an increasing sequence
between the first term ao and approximately a&, uniform
convergence does not set in until after this point. Con-
sequently, it is (approximately) the qth inversion of the
continued-fraction expression (9) that provides the most
stable function for searching for the qth root, i.e. , the qth
root is easiest to find numerically, starting with the worst
initial guess and largest initial step size, if the continued
fraction is first inverted approximately q times [(Ref. [4]
Eq. (14)]. However, the qth QN frequency p& remains a
solution to (9) regardless of the number of inversions, as
can be verified by starting the root search close enough
to pq with a small enough step size.

Regarding accuracy, the selected values for the funda-
mental and first 59 overtone QN frequencies listed in Ref.
[4] were obtained by numerical solution of Eq. (8) on a
computer with a 27-bit floating-point mantissa. This cor-
responds to a maximum of seven decimal digits. Note the
precision is that of the complete complex quantity; the
real parts of the high overtone frequencies, because of
their hundredfold magnitude difference from the imagi-
nary parts, possess a few significant figures less than the

An important omission from our original discussions
was proof that the QN mode wave functions constructed
from (2), with QN frequencies found as the roots of the
continued-fraction expression (9), completely exclude ex-
ponentially decreasing in-going behavior at spatial infin-
ity. At the time we were content with the observation
that, to within the numerical accuracy of both methods,
the QN frequencies computed by the continued-fraction
method agreed with the fundamental and lowest overtone
values computed by Chandrasekhar and Detweiler [12]
by direct numerical integration of the associated Ricatti
equation. Since (i) the continued-fraction expression (9)
was derived without approximation from the exact series
representation (2), and (ii) the zeros of this expression
were numerically stable (i.e. , the values of the roots ob-
tained were both independent of the number of times
the fraction was inverted, and had the expected behav-
ior as the convergence tolerance of the fraction and root
search algorithm were varied), "proof" of the validity of
the higher overtone values followed by numerical induc-
tion.

In addition, the asymptotic exclusion of in-going wave
behavior from the QN mode wave functions constructed
from series (2) was also confirmed via the independent
Coulomb wave-function expansion method discussed in
Ref. [13]. There the Wronskian of the solution wave
functions in-going at the horizon and out-going at infinity
was computed in a small neighborhood of the fundamen-
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tal and first five overtone QN frequencies (the program
has since been extended to include overtones six through
ten); the Wronskian vanished at the QN frequencies as
required, and those lower-most six QN modes were shown
graphically to contribute to the complete wave form in a
physically reasonable manner.

A more recent analytic continuation argument is that
the wave functions constructed by the continued-fraction
method obviously exclude the corresponding exponen-
tially increasing behavior from the infinity of bound-
state eigenfunctions of the negative inverted potential (a
Stiirm-Liouville problem closely related to the bound-
state problem of finite dipoles [14]), and the wave-
function expression (2) and continued fraction (9) are
analytic functions of the potential. Therefore the an-
alytic asymptotic functional form of the bound-state
eigenfunctions should be preserved as the negative poten-
tial is reinverted to regain the Regge-Wheeler potential,
and exclude the now exponentially decreasing asymptotic
term. This can be demonstrated explicitly by tracking
the eigenfrequency dependence as the (complex) quan-
tity A = I(l + 1) is varied from positive to negative real
values, keeping its magnitude constant.

III. DISCUSSION AND CONCLUSION

Although we have reviewed here the use of continued
fractions in determining the QN frequencies and modes
of Schwarzschild black holes, the method has been shown
appropriate for Kerr and Reissner-Nordstrom black holes
as well [4, 11].The charged rotating Kerr-Newman black
hole has considerable complications. The perturbation
equations for the Kerr-Newman black hole have thus far
been separated only for single-spin perturbations; i.e. ,

one of the Einstein or Maxwell fields is held fixed while
the other is perturbed. This separation was effected
by Dudley and Finley [15]; in the Kerr-Newman limit
their radial equation (5.18b) reduces to a spheroidal wave
equation, while their angular equation (5.18a) appears to
be ellipsoidal for nonzero electric charge. If this is the
case, the angular equation may be solved by methods
similar to the matrix-determinant or continued-fraction
methods discussed in [11],while the radial equation and
the coupled-eigenfrequency —angular-separation-constant
problem may be treated as in the Kerr case [4]. It must

be stressed, however, that the single-spin perturbations
are not physically realizable [15,16]; the actual QN fre-
quencies and modes of the Kerr-Newman black hole will
most likely be found only by solving, e.g. , Bose's [17]cou-
pled equations (23) and (24) through matrix-determinant
methods such as those discussed at the conclusion of Ref.
[11].

It was shown in Ref. [13] that the physical signifi-
cance of high-overtone QN modes can most likely be as-
sessed only when the corresponding Wronskian derivative
can also be evaluated. ; the Coulomb wave-function expan-
sion of the outgoing solution was found to be a suitable
tool. Seidel [18] has recently modeled stellar collapse
wave forms that suggest the contributions from at least
the first overtone mode may be observable in addition
to that from the fundamental. His results are not con-
clusive, however, and it would be interesting to compare
his integrated wave forms in the asymptotic region with
those propagated by the Green's function methods of Ref.
[13],Sec. IV.

Andersson [19] has recently verified the values of the
lowest ten I = 2 Schwarzschild gravitational QN over-
tones by his phase-amplitude method (save for the purely
imaginary eighth overtone, for which his method appar-
ently does not apply); he should publish shortly. Among
other results he finds that the QN frequency values ob-
tained via the phase-integral approximation are more
accurate when the method is applied to Zerilli's poten-
tial than when applied. to the Regge-Wheeler potential,
even though the exact value of the QN frequencies is
the same for each. This may be relevant to the re-
cently attempted application by Guinn et al. [2] of
the JWKB method to high-order overtones. While
it is perhaps premature to hope that the Anderson-
Price analysis of the intertwining between these and

similarly related potentials will eventually provide bet-
ter insight into the applicability of the phase integral
and JWKB approximations to QN mode-type prob-
lems, it is difficult to imagine their article being more
timely. And while it seems likely continued-fraction—
matrix-determinant methods currently afford the most
accurate and reliable means to compute QN frequencies
and modes for all physically realizable values of the black-
hole parameters, there is no reason to suspect they will
not be augmented (or even supplanted) by other methods
in the future [20].
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