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Generalized interpolative quantum statistics
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A generalized interpolative quantum statistics is presented by conjecturing a certain reordering of
phase space due to the presence of possible exotic objects other than bosons and fermions. Such an in-

terpolation achieved through a Bose-counting strategy predicts the existence of an infinite quantum
Boltzmann-Gibbs statistics akin to the one discovered by Greenberg recently.

PACS number(s): 05.30.—d

The concept of fractional statistics has assumed impor-
tance in the context of what have been sometimes called
"anyons" in the past few years [1,2]. Some investigators
have also considered the possibility of a small violation of
Fermi statistics by electrons and other particles and of
Bose statistics by pions [3]. Recently Greenberg [4] pro-
posed an infinite quantum Boltzmann statistics which
arises from the algebra

a (k)a (l) =5k i

with the Fock-like vacuum condition a(k)i0) =0, and
showed that the Hilbert space of the Fock-like represen-
tation is positive definite. He has further mentioned
Polyakov's remark that this is a particular case of the
more general "q-mutator" algebra a ( k )a ( 1 )—qa (l)a (k) =5k t for q real, which interpolates between
Fermi-Dirac and Bose-Einstein statistics. Fivel [5] and
Zagier [5] have proved that the Fock-like representation
of the q-mutator algebra has a positive-definite Hilbert
space for —1(q (1.

Many years ago I had done a work similar in spirit but
employing a Bose strategy of counting and discovered a
statistical distribution which interpolates (nontrivially)
between the Fermi and Bose statistics through a family of
statistical distributions corresponding to various values of
a "q mutator" like group parameter q which lies in the
range —1 q 1, of which one happens to approximate
the infinite quantum Boltzmann distribution discovered
by Greenberg. The whole family of interpolating statis-
tics is quantum by virtue of the indistinguishability of the
particles incorporated in the present statistics.

This interpolation is achieved through a Bose-counting
strategy through the following hypothesis: if z is the

I

S =k ln8'G .

A straightforward extremization of (2) under the total
particle number and energy-conservation constraints,

N = g Ni and E = g N .EJ,
J J

leads to the relation

(3)

number of energy levels in the energy interva1 E to
EI+5EJ for a system of Ni bosons in the same interval,
then the corresponding degeneracy of the group of levels
in the energy interval in the presence of N "exotic" ob-
jects must be [zi+rl(NJ. ) Nj ], w—here q(NJ ) is a positive,
linear function of N in order to make statistical counting
possible. The further conjecture is that with this replace-
ment for the degeneracy of the levels, we may count the
number of ways N "exotic" objects in the energy interval

EJ to E +5E can be distributed in phase space by carry-
ing out the Bose strategy of counting as though we are
dealing with just a system of noninteracting bosons which
are indistinguishab1e. The number of ways 8'G, there-
fore, in which we can distribute N "exotic" particles in

[zj +ri(Ni ) NJ ] cell—s is, by standard counting [6],

[z +rl(N ) —1]!
[zi + rl(N, )

—1 N]!N,!—
[zj+rl(NJ )]

[zj + ri(N, ) N1 ]!N,!—
with z -N ))1, when quantum features of the statistics
are manifest. This will lead to a generalized quantum
probability distribution through the entropy S defined by
the standard Boltzmann ansatz

z-+g(N ) —1

J
I 1 Nj l[z, +ri(N )]]— ' '=e (4)

where a and P are the undetermined multipliers. Putting
[zj+q(N )]/N =x and t)rl(N )IBN =j(q) in (4) we
have

~Pe]/(~ 1)[Pq]— l =e
J J

For the distribution to be realizable we require the ex-
ponents g(q) to be in the domain [0,1], as otherwise we
will encounter the singularity at x =1 which is not per-J
missible for real and finite a and P.

The simplest form for the function g(N - ) which
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represents the occupancy-induced change in the degen-
eracy of energy levels is ri(N )=. g(q)NJ. , where g(q) is a
function of a real number in the range 1 ~ g(q) ~ 0 with

q FR, a real number. The demand that ri(N ) be an in-

teger function imposes the restriction that only those
values of N are. allowed for a given q which make ri(Ni )

an integer. Since we are dealing with the statistics of in-
distinguishable particles, the statistics is necessarily quan-
tum and therefore we identify q as the quantum group pa-
rameter with real values in the range —1 ~ q & 1 and also
choose the simplest polynomial form for g(q) as

g(q) =p(q) +vq +5 where p, v, and 5 are real numbers.
The boundary conditions to be satisfied by g(q) are obvi-
ously g(+1)=1 and g( —1)=0 leading to the values
p= —' —5 and v= —'.

2 2'
For q = —1, the distribution (5) yields the Fermi-Dirac

distribution

N =zjl(e '+1)a+PE.

and, for q =+1, the distribution (5) yields the Bose-
Einstein distribution

a+PE.
N =z l(e ' —1).J J

For the third important case of q =0, the distribution (5)
leads approximately to the infinite quantum Boltzmann
statistics [7] (see Fig. 1)

a+13E.
N~ =zjle ' f.or 5=0.565 .

This agrees approximately with Greenberg's infinite
quantum Boltzmann statistics [4], obtained from a very
different premise. All the intermediate q values lead to
"exotic" statistics which may possibly correspond to new

2

I

3 ~ 4
X)

FIG. 1. Linearization value of 5 for which the quantum
Boltzmann distribution occurs for q =0.

exotic statistics and all the statistics are quantum because
indistinguishability is assumed in the counting of states
and it leads to the conventional quantum statistics as par-
ticular cases. One more value of g(q) for which (5) is ex-
actly solvable is g(q) =

—,
' or q = —

—,
' when the distribution

(5) yields

(6)

which is more Fermi-like than Bose-like but has many in-
termediary features of both.

With all these striking similarities with Greenberg's
"quon" statistics, their exact relationship, if any, needs
further examination in the near future.
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gives the plot for y,. as a function of x,'. The plot becomes
approximately linear for 5=0.565, for even the strong
quantum case of x,' = 1, the allowed range being
00 &x'&1. Linearity is attained for all values as x,'~00,
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