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In an effort to expose the mechanism for chiral-symmetry restoration in high-temperature QCD,
we use numerical simulations of lattice QCD with staggered fermions to obtain information about
possible effective chiral models. We propose the strategy of comparing expressions built from ex-
pectation values of low-order polynomials of "macroscopic" meson fields, such as a "Mexican-hat
statistic" (x cr) /(x ) (o) —1, computed locally in terms of the quark fields in lattice QCD and
in terms of the meson fields in the eH'ective model. We find that, at least at our chosen couplings,
QCD behaves like a nonlinear o model with little change in the local effective potential across the
phase transition. This conclusion supports the hypothesis that chiral-symmetry restoration occurs
through random fluctuations in a fixed-length order parameter. Included in this work is a thorough
test of symmetry breaking and restoration as manifested in the nonlocal staggered chirai fields.

PACS number(s): 12.38.Gc, 11.30.Rd

I. INTRODUCTION

The spontaneously broken SU(N) xSU(N) xU(1) chi-
ral symmetry of the strong interactions at low tempera-
ture is expected to be restored at high temperature [1].
Indeed, numerical simulations with two and four Aavors
of staggered fermions have established that at the chi-
ral limit of zero quark mass, QCD undergoes a high-
temperature phase transition in which the spontaneously
broken chiral symmetry is restored. Evidence for the
restoration of chiral syrrUaetry in the high-temperature
phase comes both from the vanishing of the order pa-
rameter (@@)and the formation of chiral multiplets in
the various screening channels [2—4]. The simulated chi-
ral symmetry of the staggered fermions is not the full

symmetry of the continuous SU(N) x SU(N) x U(1) chiral
group, but consists of a subgroup with a diagonal U(l)
transformation and a set of discrete transformations [5].
It is thought that the simulations will nonetheless ap-
proximate the full chiral symmetry in the weak-coupling
continuum limit. Indeed, recent simulations show some
evidence for Aavor-symmetry restoration in the meson
spectrum [6].

A long phenomenological tradition describes low-
temperature QCD in terms of linear and nonlinear o.

models. These models are proposed in order to describe
the long-range or low-energy features of QCD, particu-
larly, the light meson sector. A characteristic feature
of the linear models is that the efI'ective potential V in
the meson field vector (7r, , o) has a deep minimum at
nz + o'z = fz, thereby keeping the fields near this ra-
dius. The nonlinear models constrain the fields to this
radius. Two important consequences of this constraint

are the spontaneous breaking of the symmetry at low

temperature and the possibility of topological excitations
or Skyrmions. The topological excitations carry baryon
number [7].

Experimental efforts to detect the QCD phase tran-
sition would be much assisted, if we could identify a
clear signal for the formation or decay of the high-

temperature phase. It has been suggested that the cool-

ing of a QCD plasma would result momentarily in a dis-

ordered orientation of the field vector, necessarily pro-
ducing topological or baryonic excitations [8]. It has fur-
ther been suggested that the proliferation of topologi-
cal excitations may even be the mechanism responsible
for chiral-symmetry restoration itself [9]. Thus one may
expect that a good signal for the cooling of the QCD
plasma would be a copious production of baryons and
antibaryons, assuming, of course, that annihilations in

the final state do not spoil the effect [10].
Our purpose here is to investigate further the mecha-

nism of chiral-symmetry restoration in QCD, by attempt-
ing to use a numerical simulation including dynamical
fermions to learn something about the local effective po-
tential in the meson fields at high temperature. Specifi-

cally, we ask whether this potential is closer to the Gaus-
sian form

V~(n;, o) = —(n; +o )+ o

or a more general "bowl" potential

VG(z.;, o) = A(~,'+ cr'+ f') —mo, (2)

on the one hand, as suggested by the expected high-
temperature global mean-field potential and by many
models [ll], or closer to the Mexican-hat form

V (m.;, o) = A(x,'+ o' —f') —mo,
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on the other, as suggested by the low-temperature phe-
nomenological model. If either of the first two expres-
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sions is closer to the truth, then the phase transition
entails a drastic change from the zero-temperature local
effective potential, and topological excitations are prob-
ably insignificant. If the last, then the phase transition
does not change the local effective potential drastically
and topological excitations are probably significant.

Before we can proceed, it is necessary to make these
ideas more precise, because we are not working with a
local meson field theory, but an approximation to QCD.
The meson fields are described in QCD as composites of
quarks and antiquarks. These fields are to be used in
a lang-range description of QCD. Therefore, we should
treat them as "macroscopic" fields in the sense that they
are to be averaged over a small, but finite volume V
around the point z:

ir;(z) = i dr q(r)ps7;q(r)
r&V

Averaging over the volume regulates polynomials in the
fields. The size of this volume should be small compared
with the pion Compton wavelength, but large compared
with Compton wavelengths of mesons not included in

the effective theory, such as the p. As a matter of conve-

nience in the lattice calculations with our choice of gauge
coupling, we take this volume to be a single lattice hy-

percube, but at weaker couplings, it should include more
than one hypercube.

It should also be emphasized that we want to deter-
mine the local effective potential in the macroscopic me-

son fields and not the more commonly defined global
mean-field effective potential. The local potential ap-
pears in a phenomenological action together with a ki-

netic energy term and is used to describe the long-range
behavior of the theory. It is "effective" and presumably
temperature dependent, because it is an approximation
to QCD. Both extreme forms (1),(3) of the local poten-
tial lead at high temperature to similar global mean-field
potentials with a minimum at the origin. Thus the global
mean-field potential does not distinguish the mechanism
of the phase transition.

In strong coupling and high dimension Kawamoto and
Smit derived an effective meson field theory from lattice
QCD with Wilson fermions [12]. They found a potential
reminiscent of the linear o model, but with a logarithmic
singularity at the origin. Their methods apply equally
to lattices at low and high temperature. However, with-

out prior assumptions about the integration measure of
the meson fields, their method does not lead to a unique
result. Moreover, it requires approximations. Therefore,
we work directly with a numerical simulation. We simply
compare numerical results of simulations in QCD with
simulations in an effective theory. Quantities to be com-

pared are built from local expectation values of low-order
polynomials in the macroscopic meson fields:

(*()) (()) (,()) ( ()) (;() ())

Henceforth we omit explicit reference to the coordinate z.
These expectation values sufFice for our present purpose,
but a more sophisticated approach would also compare

calculations of meson propagators. We are particularly
interested in a dimensionless "Mexican-hat statistic"

(6)

Although this statistic is defined for nonzero m, we will

often consider the chiral limit rn ~ 0.
How will this observable help to distinguish among

the three choices of potential? With the Gaussian form

Eq. (1) there is no correlation between the n and o fields
and P3 0, independent of the symmetry-breaking term
m. With the Mexican-hat form (3) and nonzero m the
field vector is confined to an arc of radius f with min-

imum at (f, 0). If 0 decreases from its mean value,

must increase. Therefore we expect the correlation

P3 ( 0, with no dramatic dependence on the symmetry-
breaking parameter. Indeed, for small fiuctuations in the
fields, we expect P3 —&. In the Appendix we show

for the hat shape potential that in lattice mean-field the-

ory in the chiral limit Ps(0) ranges from —0.50 to —0.22

for large values of A . Naturally, more negative values

are associated with stronger coupling. This result is con-

firmed in our simulation of a realted U(1) chiral model,
described in Sec. V. For small values of A with the hat
potential and for all coupling strengths with the bowl

potential, Eq. (2), there is correlation between the fields
that tends to produce P3 ( 0, but only weakly so. In
lattice mean-field theory we find that in that case Ps(0)
ranges from 0 to —0.22 as A ranges from large values to
0. Thus only for weak-coupling A with consequent small
magnitudes for Ps(0) is a distinction between the bowl

and hat not possible.
We also report results for the fluctuation ratios

although, as we shall see, this statistic does not contrast
the various potentials.

In Sec. II we use a toy model to discuss the quantities
we are comparing and the problems in defining an effec-
tive potential. We discuss the symmetries of the four-
flavor staggered action and define the quantities to be
measured in Sec. III. In Secs. IV and V we give de-

tails and results of the simulations for both QCD and
the three-dimensional z-y model that serves as our U(1)
analogue. The concluding section gives a discussion and

summary of our findings.

II. EFFECTIVE ACTION

In this section we describe a toy model that encap-
sulates strong-coupling features of the staggered fermion

model. We use it to illustrate ambiguities in deriving an

effective meson action and to obtain an exact result for
the statistics of interest in a simple model.

The model puts spinless SU(2) color Grassmann fields

on only two sites, which we call "e" and "o" for even and

odd. The action with sources J, and J, is just

gege Je + gogo Jo + (XeUXo XoU Xe) ~
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The single, nondynamical SU(2) gauge link matrix U
turns out to be irrelevant for the local quantities of inter-
est, but the lack of a gauge kinetic energy term is analo-
gous to a strong-coupling approximation. At J, = J, = 0
the action is syrrunetric under the U(1)x U(1) chiral
transformation

X. '( ')x ~ e-i(a+P)x

~ = i(x.x. —x.x.)/2,

~ = (x.x. + x.x.)/2.

The generating function is given by

~(&. J.) = f dx.dx.dx.dx.~«xr (&)

Up to a constant factor it is

Z(J„J,) = Det M = (1 + J,J,)

(12)

(14)

The action can be written as S = (X, MX), where the
fermion matrix is

J, V&M=
o)

The chiral pion and o fields are defined through

Z(J„J,) = f d4, d4,
i
1+( 8'

~ 4.)
xb(P, )b(P, ) exp(J, Q, + J,P,).

Both representations give exactly the same generat-
ing function, but the resulting effective action clearly de-
pends on the chosen integration domain and measure.
The second choice has a more conventional domain and
measure. The peculiar form of the action in either case
reflects the underlying fermion character of the compos-
ite field. With two colors the Pauli exclusion principle
requires that ((X,X,)") vanish for n ) 2. Thus the gen-
erating function must be quadratic in each of the source
variables, and the term exp(S, (r) in the first case must
have a finite Laurent series expansion, and in the second
case, must be a doubly quadratic differential operator
acting on a delta function. These peculiarities arise from
an attempt, to define the pion field precisely locally, and
should go away in the continuum limit with a macro-
scopic definition of the pion field as in Eq. (4).

For these reasons we have chosen a different ap-
proach to determining an effective meson action for @CD,
namely, of proposing more traditional forms of the effec-
tive meson action, and distinguishing among them by re-
quiring that key local macroscopic observables, e.g. , those
of Eq. (5), have the same value, computed in either lan-
guage.

A straightforward evaluation with quark mass J, =
J, = m gives

We now attempt to derive an effective meson action by
manipulating the integration over the Grassmann vari-
ables. We require that the effective action be expressed
as an integral over meson fields P„ to be identified with

X,X„and P„ to be identified with X,X„with the form

~(&. J) = f ~4 d0., ~xvl&w(4. , 4.)+ JN. + &0].
(15)

(n) =0,
{o) = 2m/(1 + m ),

( ') = 1/(1 + '),
(-') —(-)' = (1 —-')/(1 + -')',

(s (r) = rn/(1+ m')'.

So the dimensionless statistics of interest are

(2o)
(21)
(22)

(23)

(24)

We describe two approaches: one following Kawamoto
and Smit [12] and one introducing a delta function.

The first approach writes the generating function as

d4. 4+ 24.4. + 4.'4'.
4~' 4. 4. 4".4.'

x exp (J,P, + J,P, ), (16)

1= d, d 6, —yy, b

where

1
b{P, —x,x, ) = — dA, exp[iA, (P, —x,x, )],

and, after some algebra, writes the generating function
Bs

where the contour of integration encircles the origin in
the complex P, and P, planes.

The second approach introduces delta functions in the
form

R = ( ') /[( ') —( )'] = (1 + ')/(1 — ')
P = (-'-) / (-') (-) - 1 = —,'

(25)

(26)

We see that the ratio of variances R tends quadratically
to 1 as the quark mass is decreased to zero. The Mexican-
hat statistic P3 is constant, independent of m.

III. STAGGERED FERMION SYMMETRIES
AND OPERATORS

We now turn to a full treatment of the chiral fields
in the four-flavor staggered fermion formalism. We use
two alternative definitions of the x and 0. fields. The
first, the "hypercube" definition, starts from the corn-
plete description appropriate to an SU(4) x SU(4) x U(1)
chiral symmetry. It is hoped that this symmetry is recov-
ered in the continuum limit. In that limit the hypercube
definition is presumably the correct choice. At presently
accessible values of the lattice parameters, flavor symme-
try is strongly broken, particularly in the pseudoscalar
sector [6]. Therefore, we also investigate a vastly sim-
pler "odd-even" definition, based on the single faithfully
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S(y, y, U) = Sy (y, y, U) + S~ (U), (27)

SF ———) a [n„(r)y(r)U„(r)y(i + p, )

-~ (~ —t )x(r)U„'(~ —~)x(r —~)]

represented U(1) subgroup of SU(4) x SU(4) x U(1). This
definition is used in the toy model described in the pre-
vious section. First we discuss the hypercube definition.

We use the conventions and most of the notation of
Kluberg-Stern, Morel, Napoly, and Petersson [13]. The
conventional staggered fermion action is written as

~s(r) = (-)"' ~4(~) = 1

(30)

The symmetries of this action are conveniently repre-
sented in terms of four-flavor, four-component Dirac
spinors q (Y), assembled from the sixteen one-
component y spinors on each hypercube Y. To be ex-
plicit, let

2Y„+g

with g„= 0, 1. Then Kluberg-Stern et al. define

q '(Y) = —) I'„'U„(Y)g„(Y),
1

+ma') g(.)~(.), (28)
q-(y) =

8 ) x„(Y)U~(Y)r„-,
1

where y, y are one-component spinors, the y matrices
are Hermitian unitary matrices,

hp, V. ) = 2tip... V„' = Vp, (29)

and the Dirac phases are

where g„(Y) = g(2Y+ rt),
g4 (32)

and Uz(Y) is a gauge connection from 2Y to 2Y + i1

through some path, e.g. ,

U„(Y) = [U, (2Y)]"'[U (2Y + il, )]"' [U (2Y'+ rt, + g, + g )]"'. (33)

+a[q(Y)(pt tt tt)D2q(Y)

.' ~q(Y)T..F..(Y)q(Y)]
+O(a') }. (34)

The covariant lattice derivative D„ is constructed
as usual from the gauge connection U„(r)
exp[ig I„" "A„(z)dz] through

D„(Y)= A„yigA„(Y), (35)
1~.F(Y) =

4 [F(Y+p) F(Y p.)]— —(36)

F»(Y) is the covariant gauge field strength, t„=7„' acts
on the flavor space, and T„, is a tensor:

T„„=(&„—7„)@I+ '-t [7„,7„](t„+t„) t-. (37)
Writ ten in this form the symmetries of the action
are particularly apparent. In addition to rotations,
inversions, and translations by two units, the full
SU(4) x SU(4) x U(1) x U(1) chiral and flavor symmetry is
manifest in the continuum limit at zero quark mass. As
is well known, at finite a, this symmetry is broken, as
summarized in the next subsection.

A. Global flavor symmetries

On a finite lattice the symmetries of the action
include parity (spatial inversion) and a subgroup of

In our calculations we average over a set of paths that
preserves rotational invariance. The gauge-invariant ac-
tion in terms of q and q is complicated, but to order a is
simply

SF = (2a)" ) ( q(Y)(p„ l)D„q(Y) + mq(Y)q(Y)

SU(4) x SU(4) x U(1) x U(1), consisting of two continuous
and thirty other discrete symmetries [13, 14]. We list
them here for later use.

1. Continuous symmetries

At zero quark mass the action is symmetric under the
global U(1)xU(1) transformation Eq. (9), where y, is
on an even site and y, is on an odd site. In the 16-
component spinor language, the two generators of this
syn~netry are

V= i@1, A=~, (3t„
associated with P and n, respectively. Since the first
factor in the direct product acts on the Dirac spin index
and the second on the flavor index, we see that A does not
generate the flavor-singlet U(l) axial symmetry. (That
one is generated by 7s 1.) Instead, it generates a U(1)
subgroup of the SU(4) axial-vector group. As always, the
symmetry is explicitly broken by the quark mass term,
and (gy) is the order parameter for the spontaneously
broken symmetry. The vector U(1) symmetry remains
unbroken, of course.

2. Discrete symmetries

These symmetries arise from translational invariance
modulo the hypercube assignment. They are defined in
terms of Table 2 of Ref. [14], reproduced here as Table
I. All translations discussed below require a shift in the
gauge fields through U„(n) ~ U&(n + (). The vectorlike
symmetries lead to
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TABLE I. The correspondences of (, Ty, and T& from
Ref. [5].

TABLE II. Notation for defining scalar meson fields.

Even jodd

e4

el
e2

e3
e4+ el
e4+ e2

e4+ e3
el + e2

el + e3
e2+ e3

e4 + el +
e4+el+
e4 + e2+
el + e2+

e4 + el + e2

e2
e3
e3
e3

+e3

P„

x+y+z+t
x+y+ z

y+ z

z
0

S+ y
s+y+ z

y+z
z

X+ y

X+y
y

s+z

1

t2t3t4
tl t3t4
tl t2t4

t2t3

t2
tl
t4

tl t2t3t4

t2
t3

t2t3
tlt3

t3t4
t2t4
tlt4

tl t2t4

t2t3t4
tl t2t3

1

1

2
3
4
5

7

8
9
10
11
12
13
14
15
16

(0,0,0,0)
(0,0,0,1)
(0,0,1,0)
(0,1,0,0)
(1,0,0,0)
(0,0,1,1)
(0,1,0,1)
(0,1,1,0)
(1,0,0,1)
(1,0,1,0)
(1,1,0,0)
(0,1,1,1 )
(1,0,1,1 )
(1,1,0,1)
(1,1,1,0)
(1,1,1,1)

Y4

'Y3

'Y2

Yl

73 Y4

Y2 Y4

72 y3

Yl Y4

'Vl '73

Yl P2

Y2 Y3 Y4

Q1 Y3 Q4

Yl P2 P4

Y1 Y2/3

'7l Y2'Y3'V4

16
15
14
13
12
11
10
9
8
7

6
5
4
3
2

1

X()-(-I) X(+4) eludes nontrivial d struct, ure constants, requiring N2 ad-
ditional fields

X(*) (-1) "X(~+&).

The axial-vector-like symmetries hold at zero quark mass:

X( )- (-I)'~(*+() (39)

o = i47&0
(44)

~(.)- (-1) .X( +0;
(4o)

P, = t + z + y + z —I'„.
In the 16-component language these symmetry transfor-
mations are

to obtain closure under the action of the chiral group.
Thus for X = 4 we require 32 real scalar meson fields
(half of them scalars and half, pseudoscalars) to gener-
alize the Gell-Mann —Levy model [15). In other words,
SU(4)xSU(4) g O(32). Thus the combination o2 +
Q(z')z + o~ + p(7r')~ is invariant.

For staggered lattice fermions the 32 fields can be de-
fined as

q -+ il Tyq (vectorlike),

q ~ i7s T& q (axial-vector-like).
(41)
(42)

0 = qq, r~ = &q~5 g t~q,

o = iqy5 1q, %, = —q 1 t, q.

(45)

B. Chiral meson operators and their transformations

Under spatial inversion, of course, all pseudoscalar
fields change sign. The Savor transformations are as fol-
lows.

1. Chiral meson operators for SU(g) X SU(4)

The N-fiavor generalization of the chiral scalar fields
(z,o) defines

z' = i' y5A'tP,

where A' are generators of SU(N), obeying

A; A~ . Ap A; A~ Ap b~fi'k 1 ~
—'4'k +2' 2

' 2' 2' 2 '
2 2

For groups SU(N) with N ) 3 the anticommutator in-

With the identifications x~ = o and aery = 8, the defini-
tions can be read from Table II. The index a can be asso-
ciated with a hypercube ofIset g or g-. If these fields are
rewritten in terms of the single component y's, they are
linear combinations of y(rl')y(iI) with g' = (g+ i1, ) mod 2
for scalar fields and g' = (il+ i1-) mod 2, for pseudoscalar
fields. The expressions are lengthy and are not repro-
duced here. In some cases the ofI'sets involve one unit in
Euclidean time. Golterman [17] prefers to define all of
the scalar-meson states sa that no displacement in time
is involved, an approach that is appropriate for determin-
ing a meson spectrum. Our definitions are more closely
related to the continuum expressions and close under the
lattice chiral group.

2. Trans formati on lams

Under the continuous vector symmetry transforma-
tion e 'P all mesans fields are invariant. Under an
infinitesimal axial-vector-symmetry transformation 1—
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0 ~ 0' —27K l6A) (47)
iqy5t, q+ 2qqo; = x + 20.a, a = 6,
iqy5taq + 2qtat5qo. ' —7ta 27tao') a = even,
iq7st, g —+a i a = odd,

(48)
0 ~ 0' —27t'l6A) (49)

i' |3 t5e only fields with a even and a = 1 transform
nontrivially:

(z', ) = (8,) = 0 for all a g 1. (56)

If all of the axial-like symmetries hold at zero quark mass
we have (o) = (o) = (z. ) = (%,) = 0 in the limit m ~ 0
for all a.

Discrete symmetries. Fields odd under these symme-
tries must vanish. Thus if all of the vectorlike symmetries
hold, we have

Xa —+ g

—qtaq + 2iqy5qo; 7ca + 20'A) a 16)
—qtaq+ 2iqy5tat5qo; = ra+ 271';n) a = even,
—q~aq = ~a) a = odd.

(50)
C. The odd-even construction

Under the discrete vectorlike transformations the me-
son fields are invariant or change sign, as follows. Re-
ferring to Table I, we associate the flavor transforma-
tion iTf with a hypercube coordinate gp according to
Tf —t b —k l $g $3 t4 ~ Then under this symmetry
transformation

This definition is analogous to that of the toy model of
Sec. II. The lattice is classified on an odd-even checker-
board and a single )r and a o field are defined as Eq. (12).
These fields are analogous to the local hypercube fields
0' and Ãl6.'

0 + +) 7f'a + 71 a)

0 ~ P) Xa ~ Xa)

where

(51) &= —,6) (&',&', ) (57)

CJ ~ —0') 7la ~ — 7l'a)

0' ~ —0') 7l a ~ — 7I a .
(52)

3. Effect of symmetries upon
operator expectation calves

Parity. Spatial inversion symmetry requires that

(~.) = (~) = o (53)

Continuous axial-vector symmetry For the .fields
transforming nontrivially, as m —+ 0 we have

~ab —))a ' rtb + ) gap ) ghee ~

Similarly under the discrete axial-vector-like transfor-
mations ip5Tf the fields also remain invariant or change
sign as

&is=16 i )
i,g =even

~ I ~ I) x'„x*„
)/=Odd

(58)

D. Correlation functions

Expectation values of the meson fields and their corre-
lations are computed as usual from the Matthews-Salam
formula. Thus, for example, defining the usua] fermion
matrix through

and become equivalent to them in the continuum limit.
The pair of odd-even scalar fields transform like the
hypercube scalar fields e and 7t'l6 under the symmetry
group. Thus, in particular, they realize the same U(1)
subgroup of axial SU(4).

(o) = (o) = (~.) = (~.) = o (54)

for even a and t;he quantum fluctuations of fields in the
same multiplet must be equal:

SF —) g;M;, (U)g, , (59)

llmm ~p

llmm ~p

llmm p

(-.(Y)') —(-.(Y))'
(-(Y)') —(-(Y))',

(vr, (Y)') —(z.,(Y))
'

(&.-(Y)') —(~.-(Y))',
(z is(Y)~) —(%is(Y))'

(o(Y)') —(o(Y))'

for a even; (55)

we have the quark propagator

dXdXd~X&X e

dUM. , '(U) Det M(U)e '~ ) (60)

and the six-point function

X X'XjX X X-X- gUe
—sg(U) ( M —1M —1M—l M —1M—1M—l

j i )p nm jp fi nm

—M:.'M Mji Im a&

—M '
M,„M„,.') Det M.
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From these expressions and Table II we see that to corn-
pute expectation values of the meson fields requires cal-
culating the quark propagator between all pairs of points
within a hypercube, forming the appropriate linear com-
binations, and averaging over gauge field configurations.
Gauge invariance of the quark propagators is imple-
mented as in Eq. (33), except that to maintain Euclidean
invariance, we average over four such choices of path,
taking cyclic permutations of the directions (zyzt) Ca.l-

culating the higher moments of the meson fields simply
requires forming combinations of products of the same
set of quark propagators.

All expectation values require averaging over the
fermion fields and gauge fields. It is sometimes helpful
to distinguish these two steps explicitly as

(61)

Then correlations of operators receive two contributions,
two steps as follows:

(o,o,) —(0,) (0,) =
I ((0,0,)g

—(0,)g (02)g
uj

+l ((oi)g(0~)g) —(oi)(0~) l

(62)

inverse matrices forming a single closed fermion world
line (color connected), and the second involves products
of two or more such world lines (color disconnected). For
the operators we consider the second term turns out to
be considerably smaller than the first.

E. Coarse lattice suppression

The expressions for the various moments of interest
become quite lengthy for the hypercube definition. We
give two of the simpler expressions:

(63)

(+16~) —(~is) (o)~

) (—)" +" Re Tr (M„„',M„,„'„M„„'„),
goal @II

(64)

where the traces are over color only and

The first term in parentheses involves combinations of For the odd-even fields we have

(~'), —(o)', = —,'[T (M;,'M;, ') + T (M;,'M.—,')],

(~'), —( ),
' = —,'[T (M;.'M;. ') —T (M;, 'M;, ')],

(z. (r)& —(s )& (o)&
——2[Tr(M, ,'M, ,'M, , ) —Tr(M, , M, , M, , )]

(65)

(66)

(67)

Not surprisingly, the pair Eqs. (63) and (66) and Eqs. (64) and (67) are similar. The only difference is that the
odd-even expressions involve only a nearest-neighbor pair, whereas the hypercube expressions involve a sum over pairs
selected from all 16 sites in the hypercube. On a coarse lattice this difference leads to a suppression in the hypercube
value for the Mexican-hat statistic P3. Since our main conclusion hinges on the value of P3, let us take some care to
estimate this suppression. On a finite lattice we estimate that the contribution from more distant terms is suppressed
by approximately exp( —ma) for each lattice link of separation, where ma is a typical meson mass. For the gauge
couplings of our simulation, ma is of order 1. In the continuum limit ma -+ 0 and propagation to these slightly more
distant points makes little difference. Let us use this rule to estimate the coarse lattice suppression of the hypercube
correlation relative to the odd-even correlation. To this end, we organize the sum of terms in Eqs. (63) and (64)
according to the distance of propagation:

(~'„),—(~„)',= —
—,', T (M;, 'M;, ') —8T(M;.'M;, ')+". ,

(z~so.)~
—(s)s) (o)~ ——

~~s Tr(M, , M, , M,, ) —STr(M, , M, , M,, )+
(o)~ —Tr M.. .

(69)

where we have used translational and rotational invari-
ance to equate terms calculated from different origins.
The omitted terms represent propagation to more distant
sites. If we now drop those terms, ignore the color dis-
connected contributions [from the second pair of paren-
theses in Eq. (62)] and estimate that in each case the

1 ~P3,hypercube ~ 8 ~ 3,odd-even ~ (70)

Below we will see to what extent this estimate is con-
firmed in our calculations.

second term in the sum is exp( —ma) times the first, then
we obtain
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IV. QCD SIMULATIONS

A. Parameters

The Monte Carlo simulations were carried out using
a hybrid microcanonical algorithm for staggered dynam-
ical fermions with a lattice @CD action [16]. We work
on a 10 x 6 lattice at a temperature near the phase
transition. The measurements were made at two gauge
couplings P, namely, P = 5.10, 5.25. In the limit of small
quark mass, the first value of P is expected to lie in the
low-temperature (T ( T, ) phase, and the second one in
the high-temperature (T ) T, ) phase [3]. For each P we
simulate at four values of the bare quark mass, namely,
m = 0.100, 0.075, 0.050, 0.025, and for P = 5.25 at a
fifth value rn = 0.0125. Table III shows the parameter
values and extent of the data sample for the simulation.
Shown are values of the quark mass rn, microcanonical
time step df, gauge coupling P, time to equilibrium in

sweeps n«, fermion and gauge field refreshing interval in
sweeps ny and n&, conjugate-gradient residual tolerance
for the microcanonical step and the propagator calcula-
t, ions r „r&, the number of iterations between measure-
ments N~, the number of measurements NgUg of vari-
ances such as (ir2), the number of measurements N, of
expectation values of the individual meson fields, such as
(x,), and the total number of microcanonical time steps
Nt-, t, . No difference was observed when we changed the
refreshing interval ng or nz from 15 to 50. Our criterion
for equilibrium was that the order parameter (gy) should
approach an apparently steady value up to random fluc-
tuations. The measurement interval was optimized after
estimating the decorrelation time. The latter was found
from the behavior of the order parameter (yy) in a sim-
ulation of 3000 iterations after apparent equilibrium.

ma=. 100 ~

I I I I I I I I I I I l

I I I I

ma=. 075 ~;(
XX+x+.T.

)(
I I I

I I I

x/gi/Xw /i/x /w v v w /vvvn. geppnp, /~pp/~r n.

—V v .i /O'VX .T %+i / IO'Vi/. i /v x/. x/Vi//%+pi g P /k%/ a g g+/ iQ /1't/ a+P P jh P +P + ('X

)(

ma=. 025
i/t W%' 4'Oa.

/lx ggg/aQL+

I I I I

vw/w/Vx/vw/s/i/w/vvx/vvv/'WAR/~RR p, RARA/X~ p /~/x

T. V -i / w/VvVx/Vx/'VV| /VVi g /g/a g QQQ/$Q+Q/ XpL+/g/g
)(

I I I I l I

200 10 30

1/2

6(ol=( ' (1+2) p)
i=1

g

j=l

1
N-i

P = ') (0' —(O))(O + —(0))o2(N —i) .

(71)

FIG. 1. Expectation value of various hypercube meson
fields at P = 5.10 vs operator index. The ith operator is
x, for i = 1, 2. . . , 16 and is ~, ~6 for i = 17, . . . , 32. The
expectation value of the i = 1 operator, the u meson, is given

separately in Table IV. All values should be multiplied by
10

B. The averaged meson fields and fluctuations

First we report results using the hypercube definition
of the fields. Results for averaged meson fields (o), (ir, ),
(o), and (ir~) are shown in Figs. 1 and 2 and Table IV.
The errors are calculated using the standard autocorre-
lation cutoff formula,

The cutoff k was selected to keep p; ) 0. The result of
a (3,2) Pade extrapolation to the zero quark mass limit
is also shown. It is apparent that within the statisti-
cal errors, the values of all meson fields, except (Ir), are
consistent with zero at all quark masses and at both tem-
peratures.

Results for the ratios of fluctuations of the eight meson

pairs that are related under the continuous axial chiral
transformations and for the correlation P3 are shown in

TABLE III. The Monte Carlo simulation parameters.

m
dt

+eq

Af
74 g

r~, x10
r„x 10

&a ~

N
Rot

5.25
8000

30
37

2

1

50
550
550

35500

0.100
0.02

5.10
8000

30
37

2

1

50
241
241

20050

5.25
8000

30
37

5
2

100
201
327

60800

0.075
0.02

5.10
8000

30
37

5
2

100
119
284

36400

5.25
8000

30
37

5
2

100
111
311

39100

0.050
0.02

5.10
8000

30
37

5
2

100
301
301

38100

0.025
0.01

5.25
8000

30
37

5
2

200
160
461

100200

5.10
8000

30
37

5
2

200
161
212

66400

0.0125
0.01

5.25
12000

25
25

5
2

250
433
433

120250



45 TOWARD AN EFFECTIVE CHIRAL MODEL OF HIGH-. . . 4689

TABLE IV. Expectation values of ir at two values of P for various quark masses. The zero mass value is found by
extrapolation.

5.10
5.25

0.100

1.061(16)
0.770(12)

0.075

0.954(12)
0.635(9)

0.050

0.853(18)
0.390(5)

0.025

0.591(16)
0.199(2)

0.0125

0.1036(10)

0.00

0.33(2)
0.002(5)

TABLE V. The ratios of hypercube meson field fluctuations at P = 5.10. The notation (ir ) means (o ) —(o) .

x'„) / (~')
X$ J
«2
+10
f29

2
8

X$Q

~') /(x,',
P3

0.100

4.1(1)
3s(io)
102(91)
39(14)
3s(i2)
89(72)
29(8)
156(226)

—0.059(1)

0.075

3.12(8)
6.8(5)
7.9(7)
6.9(s)
6.8(5)
7.9{7)
6.9(6)
7.6(7)

—0.061(2)

0.050

2.41(5)
3.s(i)
3.7(2)
3.5(1)
3.s(i)
3.7(2)
3.s(i)
3.6(2)

—0.058(2)

0.025

1.61(4)
1.69(6)
i.73(6)
1.69(6)
1.69(5)
i.73(6)
1.66(5)
1.70(6)

—0.056(3)

0.00

1.54(4)
1.07(8)
1.02(9)
1.06(8)
1.07(7)
1.02(9)
1.03(7)
1.02(9)

-0.057(3)

TABLE VI. The ratios of hypercube meson field fluctuations at P = 5.25. The notation (cr ) means (o' ) —{ir) .
C

+16) /

xs /

1

x2]
XQ

r2

+10

7C]] X

a') /(x',
P3

0.100

2.3(2)
2.1(2)
2.0(2)
2.6(i)
2 8('-)
2.7(s)
2.5(6)
2.6 (6)

—0.054(2)

0.075

1.35(1)
1.55(3)
1.58(3)
1.56(3)
i.ss(3)
1.59(3)
1.56(3)
1.57(4)

—0.052(1)

0.050

1.16(2)
1.24 (3)
i.2s(3)
1.24(3)
i.24(3)
1.25(3)
1.24(3)
1.25(3)

—0.053(2)

0.025

1.04(1)
1.06(3)
1.06(3)
1.06(3)
1.06(3)
1.06(3)
1.06(3)
1.06(3)

—0.051(2)

0.0125

1.01(1)
1.01(1)
i.o2(2)
1.02(3)
1.01(3)
1.02(2)
1.01(2)
1.02(2)

—0.051(1)

0.00

1.000(7)
0.994(10)
1.00(16)
0.971(20)
0.984(21)
0.998(17)
0.994(17)
1.001(17)

—0.051(2)

TABLE VII. Results for the odd-even meson fields at P = 5.10. The notation (o means
C

(a ) —{o);similarly, the notation (n ir) means (ir n) —(ir ) {o);the notation (ir a) means

7C CT — 7C CT

(~)
02

C

7r2

x'~)
x') /(~')

(x'~)
(x'~)
P3

0.100

i.o7{i)
0.10(1)
o.3s4(s)
0.233(3)
3.4(i)

—0.147(3)
—0.146(7)
—0.39(1)

0.075

0.977(7)
0.059(2)
0.319(6)
0.194(4)
s.4(4)

—0.125(4)
—0.118(7)
—O.37(2)

0.050

0.850(7)
0.054(5)
0.282(5)
0.143(2)
5.2(4)

—0.096(3)
—0.097(5)
—0.40(4)

0.025

0.589(9)
0.058(6)
o.233(s)
0.080(3)
4.o(s)

—o.oss(s)
—o.os7(6)
—0.42(3)

0.00

o.2is(is)
0.056(8)
0.206(6)
0.038(3)
4.2(s)

—0.44(3)
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TABLE VIII. Results for the odd-even meson fields at P = 5.25. The notation is the same as
in Table VII.

P3

0.100

O.77(1)
0.014(2)
O.234(2)
0.115(2)

16.3(2.4)
—0.066(2)
—0.065(3)
—0.362(9)

0.075

o.56(4)
0.083(2)
0.195(3)
0.071(2)
2.34(9)

—0.039(1)
—0.038(8)
—0.34(1)

0.050

0.39(1)
a.115(3)
0.178(4)
0.045(2)
1.55(7)

—0.026(1)
—0.024(3)
—0.36(2)

0.025

0.20(1)
0.153(4)
0.177(5)
0.022(1)
1.12(6)

—0.014(1)
—0.013(2)
—O.39(3)

0.0125

0.104(5)
0.155(2)
0.159(2)
0.011(2)
1.O3(3)

—0.0061(2)
—0.005(2)
—0.37(1)

0.00

o.oa9(8)
0.157(3)
0.155(3)
0.007(1)
0.98(3)

—0.36(1)

Tables V and VI. Again a Pade extrapolation to zero
mass is shown. It is apparent from this extrapolation that
within errors, all ratios of fluctuations approach one at
both high and low temperature with the exception of the
ratio (iris) j((o' ) —(o') ). This ratio differs significantly
from one at low temperature, but is consistent with one
at high temperature. On the other hand, the correlation
P3 is small and apparently changes very little from low
to high temperature.

These results for the correlation Ps from the hypercube
definition of the fields may be compared with the results
from the even-odd construction in Tables VII and VIII,
where a few other expectation values are also listed. It is
apparent that P3 is much larger in magnitude, but again
little changed from low to high temperature. Our results
for other powers of the fields change little from low to
high temperature.

Further discussion of these results is deferred to the
concluding section.

V. THREE-DIMENSIONAL U(1) SIMULATION

Since it was not obvious what an action with the po-
tential (3) should give for the ratio of fluctuations of the

~ and o fields (7) and the Mexican-hat statistic (6), and
because mean-field theory is particularly unreliable for a
strongly coupled linear o. model, we carried out a simu-
lation of the closely related lattice U(1) chiral model at
finite temperature. The purpose of this study is to de-
termine the same expectation values in the U(1) model,
so the results can be compared with what we obtain
from full @CD. For simplicity, we use a three-dimensional
model, corresponding to a high-temperature approxima-
tion. The three-dimensional U(1) model (X-Y model)
has a long history [18].

On a regular periodic lattice, we introduce a U(l) field
on each site z. The Hamiltonian is

U = o. + iver. (73)

The finite-temperature partition function is given by

H = ) [I —U(z) Ut(y)] + m) [1 —U(z)] + H.c.,

((,v) z

(72)

where (z, y) refers to unique nearest neighbors. A

symmetry-breaking term has been included. VVe define
the meson fields through

Z = (dU)e-~~, (74)
m a=. 1 C)0

V Vi/VVVVYV iwrir . .V Xxr Vw/. .XYr&Rr rxr xR

/wary/iigy

Rir g

I Pma= 075
Y Iver YYVYvv)'i 2 .i/ J(i/vi/ir vvvv v i/vi/

P tm, i R $ v R/iRR/i/ir'i/ i/ xR/iRJ'-&"
C

J! ma=. 050
r ~ Vw v w )CYi/v. .X vi/ir'ir'i/vir'VVi/v~JRRP /iP R —/i RAg /X /iR/iRR/iRr'i/iR/i

ma='O05
Viriiri/i/i/vvi/i/ i/ i/v Yvi/i/i/i/vvvv~i/vssP rlhRR/ir'i/iR/i ( R/i /iRRR/'ir'ir'ir'i/iP /iR/'i/i

ma='. Oi26 ',
Vvvvi/ir'i/i/vi/' iT/ Vi/ Yi/xrvi/i/vi/i/i/vi/~~
r ~AR/ERR/i/i/i/ $ /' /ir&/irriri/i/i/i/iP R/ViRRR

X

1 ma=0
0 YV v i /i/i r i/ VV V i r ~%'2v i/ Yv v v i/ i/i/ i/ i/i/ v i/ v vv

r ~R+RRRRRRR v ri/i '/i»/i/i/i/i/i/i/iri/i/i/i/i

10 20 30

FIG. 2. Same as Fig. 1, except at P = 5.25.

where, as usual, P = JjT in terms of the coupling con-
stant J and temperature T. At m = 0 this model is
known to have a continuous chiral-symmetry-restoring
phase transition, which can be located by measuring the
order parameter O' = Re(U) as a function of inverse tem-
perature P and symmetry-breaking parameter m, whenI is not too small. As we shall see, it can also be located
from the ratio of chiral fluctuations of vr and o. .

On a 10s lattice for each P and m we performed
2000 warmup Metropolis iterations followed by 10000 it-
erations to make 200 independent measurements. For
m = 0.001 we performed 50000 iterations to make 1000
measurements. The averaged results are shown in the
Table IX. Also shown is an extrapolation of the results
to zero mass. The extrapolation is subtle, since on a fi-

nite volume there is no symmetry breaking at zero mass.
A proper extrapolation would take the large volume limit
first and then take the zero mass limit, using a form con-
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sistent with chiral perturbation theory, [19].For present
purposes we chose the expedient of omitting the smallest
mass point in order to carry out the extrapolation of the
potentially symmetry-sensitive quantities, namely, u and
the fluctuation ratio (n2) /(o2) . From the extrapola-
tion we can see from (a) that the critical point is between

P =0.44 and 0.46, consistent with previous results [18].
tA'e note that the fluctuation ratio tends to one at high
temperature, but differs from one at low temperature,

just as in QCD. The Gaussian model would also be ex-
pected to yield a ratio of one. Thus the high-temperature
result merely reflects the restoration of chiral symmetry
and evidently does not distinguish between a Gaussian
model and a Mexican-hat model. By contrast, the corre-
lation function P3 stays negative with no dramatic depen-
dence on m in both the broken-symmetry and restored-
symmetry phases, whereas we would expect it to drop to
nearly zero in the Gaussian model. Note that the values

TABLE IX. Chiral model results. The zero mass values were obtained by extrapolation as
described in the text. The notation (0 ) means (n ) —(n) .

0.44
0.44
0.44
0.44
0.44
0.44
0.44

0.04
0.03
0.02
0.01
0.005
0.001
0

0.32(5)
0.29(5)
0.24(5)
0.11(5)
o.o5(5)
0.02(2)
0.01(2)

0.026(50)
-o.ooo(5o)

0.020(50)
o.oo6(5o)
0.010(50)
0.010(22)
0.009(20)

(-')/(-').
1.15(7)
1.12(2)
1.08(3)
i.o2(s)
1.01(1)
1.00(2)
0.99(1)

Pg

—0.48(1)
—0.49(3)
—O.49(4)
—0.51(3)
—0.50(8)
—0.50(3)
—o.5o(4)

0.45
0.45
0.45
0.45
0.45
0.45
0.45

0.46
0.46
0.46
0.46
0.46
0.46
0.46

0.04
0.03
0.02
0.01
0.005
0.001
0

0.04
0.03
0.02
0.01
0.005
0.001
0

0.37(4)
0.35(4)
0.30(5)
o.i7(5)
0.08(5)
0.02(5)
o.o5(4)

o.43(4)
0.41(4)
0.34(5)
0.26(5)
0.22(5)
o.o2(2)
0.21(4)

0.014(50)
0.012(50)

—0.007(50)
0.004(50)
0.012(50)
0.004(50)
0.001(50)

-0.026(48)
—0.008(48)

0.014(49)
—0.003(50)

o.oso(5o)
—0.013(22)

0.01(2)

1.21(6)
1.19(1)
i.is(5)
1.04(5)
i.o2(2)
0.998(6)
0.991(6)

1.29(7)
1.27(6)
1.17(4)
1.11(5)
i.o7(s)
1.01(7)
i.o5(3)

—0.48(2)
—0.48(2)
—0.49(2)
—0.48(3)
—0.52(6)
—0.45(3)
-0.46(4)

—0.47(1)
—o.47(i)
—0.48(2)
—0.49(1)
—0.50(3)
—0.49(2)
—0.49(3)

0.47
0.47
0.47
0.47
0.47
0.47
0.47

0.48
0.48
0.48
0.48
0.48
0.48
0.48

0.04
0.03
0.02
0.01
0.005
0.001
0

0.04
0.03
0.02
0.01
0.005
0.001
0

0.47(4)
0.42(4)
0.41(4)
0.31(5)
0.21(5)
0.03(5)
O.22(4)

0.50(4)
0.49(4)
0.46(4)
0.41(4)
o.ss(4)
0.10(2)
0.34(3)

0.009(48)
—0.006(48)

0.020 (49)
0.074 (49)
o.oso(5o)

-o.o5o(5o)
—0.02(5)

0.008(47)
O. O25(47)

—0.063(48)
-O.O55(49)

0.014(50)
—0.006(22)
—0.008(30)

i.ss(2)
1.31(1)
1.29(1)
1.16(1)
1.06(1)
1.00(3)
1.05(1)

1.46(2)
1.44(1)
1.38(1)
1.30(1)
i.23(4)
1.01(1)
1.21(2)

—0.46(1)
—0.47(1)
—0.47(1)
—0.49(2)
—0.49(2)
—0.51(3)
—0.50(2)

—0.45(1)
—0.45(2)
—0.46(1)
—0.48(1)
—0.49(2)
—0.49(1)
-0.49(1)

0.50
0.50
0.50
0.50
0.50
0.50
0.50

0.04
0.03
0.02
0.01
0.005
0.001
0

o.55(4)
0.54(4)
0.51(4)
0.40(4)
0.32(5)
0.10(2)
o.ss(5)

0.027(46)
—0.008(47)

0.011(47)
0.015(49)

—0.041(50)
—0.008(22)

0.002(20)

1.61(1)
1.58(1)
1.52(2)
1.31(1)
i.25(2)
i.o2(s)
i.2o(2)

—0.44(2)
—0.44(1)
—0.45(2)
—0.48(3)
—0.51(4)
—o.4s(4)
—O.49(2)
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are close to those we obtained from full QCD with the
odd-even definition of the chiral fields.

VI. DISCUSSION

Our results can be explained simply according to the
following model.

(1) Parity invariance and the vectorlike symmetries
hold for all masses and both temperatures. These condi-
tions require

(n, ) = (% ) = 0 for a = 2 3, . . . , 16,

(a) =o

(2) The surviving continuous U(l) subgroup of chiral
SU(4)xSU(4) is spontaneously broken at low tempera-
ture and restored at high temperature.

(3) All discrete axial symmetries are broken sponta-
neously at low temperature.

(4) The local efFective potential resembles that of a
nonlinear o model at both low and high temperature with
no appreciable change.

Parity alone would not account for the vanishing of
all but (o), regardless of mass and temperature. There-
fore, we need the vectorlike symmetries. If any of the
discrete axial syrnrnetries were valid at low temperature,
we would have (o) = 0 in the chiral limit, which is not
found. The vanishing of (a) does not by itself distinguish
a restoration of the axial-like symmetries at high temper-
ature from a restoration of the U(1) symmetry. However,
the observation of chiral multiplets [3, 4] argues in favor
of a restoration of the U(1) symmetry. Our results are of
course consistent with a restoration of the discrete axial
symmetries at high temperature, but they do not require
it.

We turn now to our main result, namely the value of
the Mexican-hat statistic P3. As expected, the hypercube
value is considerably smaller than the odd-even value.
The ratio is about 1:7.5 at low temperature and 1:7 at
high temperature, quite close to our estimate (70). Let
us check our two assumptions that led to this estimate,
namely, whether the color disconnected terms are negligi-
ble. In Tables VII and VIII are shown values for the con-
tribution to the quantity ~ o — x2 cr

&
com-

ing from connected diagrams and values (ii a ) —(n' ) (o')
for both connected and disconnected contributions to the
same quantity. We see that the difference is indeed small,
suggesting that the contribution of the disconnected dia-
grams is at most as large as the statistical error. There-
fore, our approximation is justified.

For this reason we believe that, but for the suppression
resulting from a coarse lattice, our results for P3 would be
equally large with both definitions. The odd-even value
for P3 is approximately —0.4 with no dramatic depen-
dence on rn in both the broken-symmetry and restored-
symmetry phases, whereas in the Gaussian model we
would expect it to drop to nearly zero with increasing
temperature. Putting this result together with the mean-
field theory analysis of the Appendix and the U(1) chiral
model simulation, we find that only the strongly coupled

Mexican-hat potential and the essentially equivalent non-
linear o model are consistent with the QCD simulation.

Consequently, we find that our results for Js and the
rough equality of the fluctuations of the meson fields
at low and high temperatures shown in Tables VII and
VIII favor an effective nonlinear U(1) chiral model that
changes little across the phase transition. Further work
is needed to establish whether these results hold in the
continuum limit. It would also be interesting to extend
the comparison between the actual and effective models
to measurements of screening lengths.
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APPENDIX: MEAN-FIELD LINEAR 0 MODEL

We consider an SU(2) lattice linear cr model in the
high-temperature approximation. Write the action as

where r ranges over the sites of a cubic three-dimensional
lattice and

V(s, o) = A(ir + o + f ) —po.

We want to compute expectation values on t,he Gibbs
ensemble

do „de„exp [—PH (ir, o )].

With the negative sign (Mexican-hat shape) the mean-
field approximation is not good for strong coupling, since
the dominant field configurations tend to form spin waves
and vortices with strong correlations in angle between
neighbors. Thus the global mean value is a poor approx-
imation to the actual value of the neighbor. However, for
weak coupling and for strong coupling with the positive
sign (bowl shape) we expect to do better. In a mean-
field approximation we consider the single-site partition
function

Z„= der dx exp —H„m, o
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where

Hss(7r, o) = 3(s' —t) /2a + 3(o —o) /2a + P(s, o ),

where t is the mean value of x and ~ is the mean value
of o.. Now x = 0 and for small p, o. oc p, so

H„(7r, o ) = A(7r' + o')2 + (3/2a' y 2Af') (s' + o')
—aped + const.

So with a redefinition of constants, and a rescaling of the
fields, the mean-field action takes a form resembling the
bowl potential:

H„(x,0) = A'(s 2 ~ o ~ 1) —p'o + const,

where

A'=A/ kft'

lJ = o(P
4 2A

+ fv
I 3

4a2A

Notice that this form of the potential is inappropriate for
strong coupling with the minus sign (hat) choice, since
p' would become imaginary. In that case we must use

TABLE X. Expected values of the Mexican-hat statistic
for the linear n model with two choices for the sign s. The
minus sign gives the Mexican-hat form and the plus sign gives
the bowl form.

8.00
4.00
2.00
1.00
0.50
0.10
0.02

0.001

Ps (0)
—0.46877
—0.43911
—0.39507
—0.34867
—0.31010
—0.25620
—0.23277
—0.21867

P.(0)
—0.04150
—0.06394
—0.08978
—0.11572
—0.13901
—0.17740
—0.19733
—0.21072

H„(s,o) = A'(s y o —1) —)(t'o + const

with a redefinition of p' that takes the square root of a
positive quantity.

We then analyze the expectation value of P3 on the
single site action in the limit p' ~ 0. We use polar
coordinates x = t sin 8, o' = t cos 8, and must evaluate

OO 2'
(s o) ~ It'N —tdt d8t sin 8cos 8exp[—A'(t + 1) ],

0 0

(7r ) ~ N tdt d8t sin 8exp[—A'(t + 1) ],
0 0

OO 27l

(a) p'N tdk —d8t cos 8exp[ —A'(t +1) ],
0 0

where

OO 27'

N = t dk d8 exp[—A'(t 6 1) ].

Simplifying, we have

I

where

(t") = J eh("+' exp[ —i'(t'+ 8)'],

with s = +1. In Table X we give a sampling of results
for the expectation value Ps(0) for either choice of the
sign s. We see that in the limit A ~ 0 both distributions
(s = +1) give the same value Howev. er, with s = 1 the
result is never less than —0.22.

[1] L. Dolan and R. Jackiw, Phys. Rev. D 9, 3320 (1974).
[2] See the review by F. Karsch, in Quark-Gluon Plasma,

edited by R.C. Hwa (World Scientific, Singapore, 1991).
[3] C.E. DeTar and J.B. Kogut, Phys. Rev. Lett. 59, 399

(1987); Phys. Rev. D 36, 2828 (1987).
[4] S. Gottlieb, W. Liu, D. Toussaint, R.L. Renkin, and R.L.

Sugar, Phys. Rev. Lett. 59, 1881 (1987); A. Gocksch, P.
Rossi, and U. Heller, Phys. Lett. B 205, 334 (1988).

[5] J. Kogut, M. Stone, H W. Wyld, S H. Shenker, J.
Shigemitsu, and D.K. Sinclair, Nucl. Phys. B225, 326
(1983).

[6] E. Laermann, R. Altmeyer, K.D. Born, M. Gockeler, R.
Horsley, W. Ibes, T.F. Walsh, and P.M. Zerwas, in Lat-
tice '90, Proceedings of the International Symposium,

Tallahassee, Florida, 1990, edited by U. M. Heller, A. D.
Kennedy, and S. Sanielevici [Nucl. Phys. B (Proc. Suppl. )
20, 380 (1991)].

[7] T.H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
[8] T.W.B. Kibble, J. Phys. A 9, 1387 (1976); T.A. De-

Grand, Phys. Rev. D 30, 2001 (1984); J. Ellis and H.
Kowalski, Phys. Lett. B 214, 161 (1988); CERN Re-
port No. CERN-TH-5316/89, 1989 (unpublished); A.H.
Mueller, in Quark Matter '88, Proceedings of the 7th
International Conference on Ultrarelativistic Nucleus-
Nucleus Collisions, Lenox, Massachusetts, 1988, edited
by G. Baym, P. BraunMunzinger, and S. Nagamiya
[Nucl. Phys. A498 (1989)].

[9] C.E. DeTar, Phys. Rev. D 42, 224 (1990).



4694 CARLETON DeTAR AND SHAO-JING DONG 45

[10] S. Gavin, M. Gyulassy, M. Plumer, and R. Venugopalan,
Phys. Lett. B 234, 175 (1990)

[11] For two recent examples, see C.E. DeTar and T. Kuni-
hiro, Phys. Rev. D 39, 2805 (1989); A. Gocksch, Phys.
Rev. Lett. 67, 1701 (1991).

[12] N. Kawamoto and J. Smit, Nucl. Phys. B192, 100 (1981).
[13] H. Kluberg-Stern, A. Morel, O. Napoly, and B. Peters-

son, Nucl. Phys. B220, 447 (1983).
[14] J. Kogut, M. Stone, H. W. Wyld, S.H. Shenker, J.

Shigemitsu, and D.K. Sinclair, Nucl. Phys. B225 [FS9],

[i5]

[16]

[17]
[i8]

[i9]

326 (1983).
M. Gell-Mann and M. Levy, Nuovo Cirnento 16, 705
(1960); J. Schwinger, Ann. Phys. (N.Y.) 2, 407 (1958).
J.B. Kogut and D.K. Sinclair, Nucl. Phys. B280, 625
(1987).
M. F.L. Golterman, Nucl. Phys. B273, 663 (1986).
See G. Kohring, R.E. Shrock, and P. Wills, Phys. Rev.
Lett. 57, 1358 (1986), and references therein.
A. Hasenfratz et al. , Nucl. Phys. B356, 332 (1991).


