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The initial-value problem for the quantum back reaction in spinor QED is formulated and solved
in the semiclassical mean-field approximation for a homogeneous but time-dependent electric field
E(t). We apply the method of adiabatic regularization to the Dirac equation in order to renormalize
the expectation value of the current and derive a finite coupled set of ordinary differential equations
for the time evolution of the system. We solve this system in 141 dimensions numerically and
compare the solution to a simple model based on a relativistic Boltzmann-Vlasov equation, with
a particle production source term inferred from the Schwinger particle creation rate and a Pauli-
blocking factor. This model reproduces very well the time behavior of the electric field and the
creation rate of ete™ pairs of the semiclassical calculation.

PACS number(s): 11.15.Kc, 12.20.Ds

I. INTRODUCTION

The rate of creation of pairs of charged particles in a
static and homogeneous external electric field was com-
puted long ago [1-6]. This process has been used ex-
tensively in color-flux-tube models to describe multipar-
ticle production in hadronic collisions [6-13]. A strong
color-electric field is assumed to be formed between re-
ceding hadronic sources, quarks or hadrons, and quark-
antiquark and gluon pairs emerge in the presence of the
field by tunneling. In models for the production of a
quark-gluon plasma the source for the field is the frag-
menting nuclei.

In solving a dynamical problem with a strong initial
electric field the effect of the produced particles on the
electric field (the back reaction) should be taken into
consideration [11-13]. The construction of the usual
models for quark-gluon-plasma creation has often been
based on oversimplifications. One is the modification
of the Schwinger expression for the time-independent
rate of pair production so that it becomes time de-
pendent through the time variation of the electric field
(even though a fixed external electric field is inherent
in Schwinger’s derivation); moreover the transverse- and
longitudinal-momentum distributions of the produced
particles are chosen according to results of a WKB calcu-
lation [12] . It is not clear whether this choice is entirely
appropriate.

In order to evaluate the dynamic rate of pair produc-
tion self-consistently, we propose to study the quantum
back reaction of spin-% fields in a spatially homogeneous
classical electric field through the semiclassical Maxwell
equations. The back-reaction problem for quantum fields
has been developed particularly in the study of quantum
fields in curved space [14-19]. In formulating the back-
reaction problem, divergences appear in the expectation
value of the conserved currents, and a renormalization
procedure which guarantees well-defined finite equations
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is required. Adiabatic regularization is a useful approach
which enables one to dispose of these infinities in a way
that is consistent with conventional renormalization for
a variety of spatially homogeneous problems [14-20], and
is easy to implement in a practical numerical procedure.
This method has been successfully applied to the study
of the back-reaction problems in which the matter field
is a scalar field [17-20].

In Ref. [20] we found that results based on calculations
in semiclassical scalar electrodynamics are very similar to
those obtained from a model based on a phenomenologi-
cal relativistic Boltzmann-Vlasov equation. It is of inter-
est to see if the same results obtain for fermions which,
unlike bosons, possess no classical limit, and for which
Pauli blocking, rather than Bose enhancement, implies
a quite different consequence from the consideration of
quantum statistics.

To apply adiabatic regularization to the case of
fermions, we again express the Fourier components of
the field operators in a WKB-like form. This enables
us to isolate the ultraviolet divergences via an adiabatic
expansion and to perform a mode-by-mode subtraction.
In Section II we derive the coupled equations for the
fields in the semiclassical limit of QED, and in Section
III we discuss the adiabatic regularization procedure. In
Section IV we present our numerical results in 141 di-
mensions and compare them with the phenomenological
Boltzmann-Vlasov model.

II. QED IN THE SEMICLASSICAL MEAN-FIELD
LIMIT

The Lagrangian density for electrodynamics is

(2.1)

where the metric convention is taken as (+ — ——). For

B} _1
£ = Pirh (O +ieAu)Y — miy — ZFu F*,
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the v matrices we use the convention of Bjorken and Drell

[21]:
o_ (10 i 0 o ;
Y _<0 I)x Y —< 0.:'0)1 2_17273y

where I is the identity matrix and ¢° are the Pauli ma-
trices.

In the mean-field approximation we quantize only the
Dirac field, while the electromagnetic field is treated clas-
sically. This approximation may be derived formally as
the leading term in the large-N limit of QED, where N is
the number of charged matter fields [19]. The resulting
coupled field equations read

(i7#0, — ev* A, — m)d(z) = 0,

(2.2)

(2.3)

uF™ = () = S{, 7" ¥]), (2.4)
where the expectation value is with respect to the initial
state of the spinor field. The commutator in the elec-
tric current guarantees a zero expectation value for any
charge-conjugation eigenstate. Expressing the solution
of the Dirac equation as

Y(z) = (y* 0, — ex* Ay + m)¢(z), (2.5)

and inserting (2.5) into (2.3), it follows that ¢ satisfies
the quadratic Dirac equation

(04 = e4u)? = S0 Fy = m?| 6(2) =0, (26)
where ¢ is a four component spinor. Here we consider the
case where the electric field is spatially homogeneous so
that the field strength F#¥ depends only on time. Owing
to homogeneity the semiclassical Maxwell equations (2.4)
allow only configurations where (j°) = 0. We take the
electric field to be in the direction of the z axis, and we
choose a gauge such that only A = A3(¢) is nonvanishing.
Then the second-order Dirac equation becomes

[0+ e2A%(t) 4 2iA(t)ds — iedo A(t)Y°y° + m?] ¢(z) = 0.

(2.7)

Spatial homogeneity implies that there exist solutions
of the form

brs(2) = 5> fiey ()X, (2.8)
where
1 0
0 1
X1 = 1 y X2 = 0 ) (29)
0 -1
1 0
0 1
X3 = -1 y X4 = 0 (210)
0 1
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These spinors are chosen to be eigenvectors of a® = v%43
in the representation (2.2) for the 7 matrices. The eigen-
values of a® are A;, = 1 for s = 1,2 and A\, = —1 for
s = 3,4. These spinors satisfy the normalization and
completeness conditions

S o) (e = 261,

a=1

(2.11)
SO (e )s = 26%

Substituting (2.8) into (2.7) it follows that the mode func-
tions fis(t) satisfy

d fics (1)
dt?

with

+ [wﬁ(t) - i/\,e%] frs(t) =0, (2.12)

k2 = k24k2, pi=ki—eAi(t)

(2.13)

wﬁ(t) = p§+k2l+m2,

Equations (2.12) are second-order differential equa-
tions, and therefore for each s there are two indepen-
dent solutions. Let fi, and f, be the two indepen-
dent solutions of (2.12), which become positive- and
negative-frequency solutions in the absence of the elec-
tric field. Clearly at the moment we have eight different
solutions for the second-order equation (2.6), namely ff‘t,
for s = 1,2,3,4. However, the Dirac equation (2.3) has
only four independent solutions. If we restrict ourselves
to solutions which belong to the set s = 1,2 or to the set
s = 3,4 we shall see that from each set one can construct
a linearly independent set of solutions of the Dirac equa-
tion. The form introduced in (2.8) allows us to write 3
as

Yis(2) = Dy (2) = (17°00 + 7' ki — ey Az + m) ¢, (2).
(2.14)

Explicitly, the two sets of independent solutions of the
Dirac equation may be taken to be

Vi, = e**DfEXs, s =12 (2.15)
and

Y, = e DX, (2.16)
Using Eqgs. (2.14)-(2.16) we find (for a given k)

Tyt =, N frEDIDfE X,

s=3,4.

= 2{wi(t)f;‘*f§* + TEfE
—idops [frEfE - £ 5E] }m (2.17)

where either r,s = 1,2 or r,s = 3,4. An exactly anal-
ogous formula may be derived for wazl)S:F. By differ-
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entiating these expressions with respect to time and by

using Eq. (2.12), it can be readily verified that these in-

ner products are time independent. As t — —oo there

is no interaction between the fermion field and the elec-

tromagnetic field, and we can choose two independent

plane-wave solutions for Eq. (2.12),
lim fki, = ¢ eFiwrt

t— —o0

(2.18)

where ¢, are constants. Insertion of these free solutions
in the relation for 1/1,*71/13: yields immediately

pETyF = 0. (2.19)

Since this result is time independent, it is valid at any
time, and each set ¥, with s = 1,2 or s = 3,4, is
a complete set of linearly independent solutions of the
Dirac equation. Note that these complete systems are not
identical, and orthonormality conditions holds for each
set separately. In principle, we need only one of these
sets in order to expand the field operator ¥ in terms of
single-particle solutions. In order to ensure that with our
initial conditions the Dirac current vanishes at ¢t = 0 it is
advantageous to use both sets in our calculations, as will
be shown in the next section.

Now we can construct the quantized spinor field oper-
ator in the form

¥(@) = [lak] 3 B0, + di(-Rui]

s=1,2

= [l 3 v, + dl(-kwi), (220

8=3,4

where the two lines show the field expressed in terms of
the two alternative bases. Here [dk] = d3k/(27)3. The
fermion fields obey canonical anticommutation relations
{‘Ila(t,x),‘ll}(t,y)} = 83(x — y)bap. The creation and
annihilation operators of each set (r,s = 1,2 or r,s =
3,4) will obey the standard anticommutation relations

{b-(k), b](q)} = {d(k),d}(q)} = (27)°8°(k — q)é,,
(2.21)
J

4661

if we impose the normalization condition

YElyE =,

which fixes the normalization of the mode functions.
We turn now to the calculation of the expectation value
of the electric current. For the sake of simplicity we
choose the initial state to be the vacuum. Using the
anticommutation relations (2.21) we find

(2.22)

(013°10) = 5(0I1¥, v*¥]l0)
(4
= 5/[dk] > {—@!’LT"/O'P!/).J{,
s=1,2
+¢.:,‘7°~/3¢.;} . (223)
Alternatively,
UEDEENICDY { ~uE, O,
$=3,4

+¢E,17°73¢§,}- (2.24)

Averaging the two expressions,
4
. e
©17%10) = & [1an Z{ —i
s=1
+¢;517°73¢;,}- (2.25)

This form will be useful when we turn to the adiabatic
regularization in the next section. The other components
of the current are zero since the electric field is in the z
direction. Using (2.14) we find
Y%, = Al —iv°80 + 71 kL
—(k3 — eA3)y® + mlgi,,
and thus (2.17) and (2.22) give

(2.26)

E P E = XIREDY P D x =20 {( + m? — ped) E R - RERE +idme(fE fE - fiESE)}

= [4Gk + m)fG 1P - 1],

(2.27)

where the index s is not summed over. Inserting (2.27) into (2.25) gives

4
1%10) = e 3 [Tk + I, (Sl - IR
s=1

From (2.17) and (2.22) it can be shown [22] that
2(k1 +m?) (1L P + 1) = 1.
Eq. (2.28) then gives the current as

4
(01%/0) = —2¢ 3 / [dK)(k2 + m2)A, i 2.
s=1

(2.28)

(2.29)

(2.30)
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III. ADIABATIC REGULARIZATION

The difficulty in solving the coupled semiclassical equations (2.3) and (2.4) originates in the fact that the expectation
value of the current (2.30) diverges in the interacting theory. This infinity is related to charge renormalization. The
adiabatic regularization approach is suitable for identifying and removing the ultraviolet divergences [19]. In order
to isolate the ultraviolet behavior of the current integrand by adiabatic expansion, we need to express the mode
equations (2.12) in a WKB-like form. The generic problem is to find a suitable parametrization of the solution of
the differential equation (t) + €(¢)u(t) = 0, where in the present case € is the complex quantity in square brackets in
(2.12). Such a parametrization was found in [23], namely,

mgw:th%fﬁm{A (ﬁhﬂﬂ—&iﬁ%%)m}, (3.1)

where Ny, are normalization constants and Qy; is a real generalized frequency. [The second solution f, for the mode
equation can be found by using its Wronskian. When choosing the form (3.1) for fﬁ's, the second solution does not
have a simple form, and for this reason we expressed the current (2.30) in terms of the positive-frequency solutions
only.] By substituting (3.1) into (2.12) we obtain the WKB-like equation for Qy,:

Q 3 QL eA eA eAQ
2 ks ks 2 ks
- 3, 2. . , 3.2
ka (t) 20, + 2 qu + wy + (29‘“ ) As 20, + A Q]Z(, ( )

As in the bosonic case, the equation for  is a second-order nonlinear differential equation.

This equation enables us to study the large-momentum behavior of the solutions. It will be shown that an adiabatic
expansion of (3.2) to second order is needed to identify and isolate the divergences in the current (2.30). The adiabatic
expansion, an expansion in powers of 1/wy for large k, is obtained by successive iteration: Inserting the zeroth-order
solution QECOJ) = wg into the right-hand side of (3.2) one obtains Q2 up to second order; inserting this value to
the right-hand side the fourth order is obtained, and so forth. It is not difficult to see that higher-order adiabatic
approximations contain terms of higher order in 1/wy.

Noting that

—CApg

+ O(1/wy), (3.3)

Wk =
Wk

we have up to second order

Qus = wic — eA (M wi — pa) /4wi + O(1/wp). (3.4)
We shall refer to
Qg)’mm = [wk —eA (Aswx — p3) /4wﬁ] (3.5)

as the minimal second-order adiabatic approximation. Using the ansatz (3.1) the current reads

310\ : 2 |V, s|2 eA(t’) ’
(017%10) = —26§/[dk](h+m2),\, [Q;;Texp{—/\s/gks(t,)dt }] (3.6)

Egs. (2.17) and (2.22) determine the normalization constants, and we define

-1

. . . 2
INksiz / eAlt') 2 —AseA Qs 2
= —As dt' > = - Qs — As2p3Qs 3.7
Pl =g o (0 “et (B T ) e T ARk (37
to represent the constants of the square brackets in (3.6). With the identity
k3 +m® = [ + psllwk — ps) (3.8)
we obtain
A=(0]5°0)

Wk — P3 Wk + p3 -3
=e [ [dk “ __ “ + O . (3.9)
6/[ ]{wk+eA(wk+p3)/4w;’( wi — eA(wk — p3) /4w (i )}
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At large-momentum, we approximate

1
= ~1
1+ eAfwyk + ps3]/4wi

ed
F @[wk + p3].
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(3.10)

After we perform the angular integrations and drop terms which are odd functions of p3, the Maxwell equation

becomes
A= (01%)0) = —e24 /[dk] ( ) + (finite part) (3.11)
=—e?Abe? + (finite part)
where
6625/[dk] (J—g—p—g’s)zi wdk[ LA (3.12)
i 2wy 4m? Jo (k2 +m2)z  3(k? + m2)2

The current in (3.11) diverges logarithmically, as ex-
pected, with the same divergence as the vacuum polar-
ization II(g2 = 0). We define, as usual,

=Zz"12%4
(3.13)

ek = (14 e%6e*)™! = Ze?, Ar

so that eA = eg Ar. We can also write Z = (1 — e%6¢?).
Multiplying (3.6) by Ze/er we obtain

4
Ap — ehApbe* =epy /[dk](ki + m?)(=,)T, (k).

(3.14)

Upon subtracting the last term on the left-hand side,
(3.14) becomes

AR_eR/[dk

4
J| (k% +m?) ) " (=A)T, (k)
s=1

2 g (L _ P 3.15
+erAR m—ﬁ ) (3.15)

so the expression for A is finite [see Eq. (3.11)]. Since
this is so, and since I'y depends on e and A through
the product eA = egAgr only, the R subscripts will be
omitted from now on.

Consider now the difference between the exact expres-
sion (3.15) and its adiabatic approximation. Examining
(3.9), (3.10), and (3.14), we can write

l+m2)Z( Ae)T4 (k)

s=1

2
=B _ 2L (W2 —xd)+ Ret). (3.16)
2wy

Wk

Ry (t) is the difference between the exact current inte-
grand and its minimal adiabatic approximation. At large
momentum this minimal adiabatic approximation has to
match the exact integrand up to terms that fall off as

O(1/w3d), so the remainder Ry(t) falls off faster. Substi-
tuting (3.16) into (3.15) and using (3.9)—(3.11) the finite
Maxwell equation reads

A= e/[dk]Rk(t).

Superficially it seems that the second derivative of A ap-
pears only on the left-hand side of (3.17), but in fact
the subsidiary condition (3.16) defining Ry is an intrin-
sic part of (3.17).

We are interested in solving an initial-value problem
where the initial conditions for the Maxwell equation are
given by

At=0)=

(3.17)

—Eo, A(t=0)=0, (3.18)

and where the initial state is the adiabatic vacuum, se-
lected by matching the exact solutions in (3.1) to their
adiabatic approximation, viz.,

Qs (t = 0) =wi(t = 0),
(3.19)
Qus(t = 0) =y (t = 0) .

Nonvacuum initial conditions may be handled in a
manner analogous to the bosonic case, by adding to the
current expectation value nonzero particle number den-
sities, without changing the initial conditions (3.19). As
in the bosonic case the initial conditions are not com-
pletely arbitrary, because the asymptotic form of the adi-
abatic expansion (3.16) in which A and Ry appear must
be consistent with the finite renormalized Maxwell equa-
tion (3.17). By substituting (3.19) into (3.7) and (3.16)
we find that A(0) = 0, but

Ri(0) = 2’;3 {1 -

1+ e?2E2/4wi }
(1 + 2 B3 /8wd)? — (2 E3p /5]
(3.20)

is not zero. However, the integration over k in (3.17)
is zero by the charge conjugation symmetry ps — —ps.
Hence we find A(0) = 0 in the initial value of the Maxwell
equation, and the initial conditions (3.19) are consistent
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with the renormalization requirements. We emphasize
that choosing Rk(0) = 0 is not consistent with the initial
conditions (3.19).

Given such a set of consistent initial conditions, one
can evolve the set of back-reaction equations (3.2), (3.16),
and (3.17). Even though the results we present below
are limited to the simpler (1+1)-dimensional case, we
do have some experience with a full (3+1)-dimensional
calculation for scalar electrodynamics [24]. The following
technical comments should apply to the fermion problem
as well. By stepping the back-reaction equations forward
in time, one arrives at {A, A, Qxs, Qks} at each time. In
principle, A can be calculated without using (3.17): One
can examine the asymptotic behavior of I';(k) at large
momentum and extract both Ry and A. For instance,
one can parametrize the left-hand side of (3.16) as

2p3 eA «a 15
we=m) gt
k k

(3.21)

and directly extract the value of A. The fitted value
of A depends, however, on the number of terms used to
expand the above series. In addition, at some momentum
a fit to a finite series in powers of wgl breaks down.
Instead, we propose an iterative scheme making use of
(3.17). We take Ry to be zero at an extremely large
momentum as a trial value, so 4 is extracted from (3.16)
automatically. Using this value for A we use (3.16) to
extract Ry for each k up to this very large momentum.
Then, substituting Ry in (3.17) we get a new and slightly
different value for A. This procedure_may be iterated
until convergence of the sequence of A, Ry is reached.
Thereafter the next time step 1s taken.

IV. SEMICLASSICAL QED IN 141 DIMENSIONS

For the sake of simplicity we solve semiclassical QED in
1+1 dimensions for a system that initially is taken to be
in an adiabatic vacuum state, with given initial electric
field and zero initial electric current. We follow the same
steps as in the (3+1)-dimensional case. Let us indicate
the modifications for 141 dimensions. The 7y matrices
are given by

o_ (10 1 (01
7—(0_1!7— _101

and 4! plays the role that 42 played in the (3+1)-
dimensional case. For a spatially homogeneous elec-
tric field, we choose a gauge where A = 0 and define
Al! = A(t), so that the second order Dirac equation be-
comes

(4.1)

[0+ e2A%(t) + 2iA(2)01 — iedo A(t)Y°y! + m?] ¢(z) = 0.
(4.2)

The Dirac equation in two dimensions has two indepen-
dent solutions. Either

f:1X17 f):le (43)

or
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fk+2X27 fk_2X2 (44)

may be taken as the basis set of independent solutions.
Here v°y'x, = A,xs with A; =1 and A, = —1, and wz
i1s now given by

wit) = p?+m?, p =k —eAl(t) (4.5)
Xs are given by
1 1

The current expectation value is

0.5
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FIG. 1. (a) Time evolution of the scaled electric field
E and current j, with initial value £ = 1.0 and coupling
e?/m? = 0.1. Solid line is semiclassical QED, and dashed line
is Boltzmann-Vl]asov model. (b) Same as (a), but the dashed-
dotted curve is the Boltzmann-Vlasov model with the Pauli
blocking correction, Eq. (4.18).
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k

A= 01'10) = 2 [ SEm* 7 - 1),

- (4.7)

Notice that in two dimensions there is no spin, and thus
there are half as many terms as in (2.30) after summation.

Now that we have the matter field equation (2.12) cou-
pled to the Maxwell equation (4.7), we can solve the
system numerically. However, the parameter e in these
equations is not yet renormalized. This renormalization
can be done in the same way as in Section III. In two-
dimensional QED the charge renormalization is finite and
we find that §e> = (6wm?)~!. Therefore in the renor-
malized Maxwell equation, A can be isolated [in contrast
with (3.15)], and we obtain

:rrrv[r1T|]—1111|uxV||;
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FIG. 2. Asin Fig. 1, but for initial field £ = 4.0.
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. _ eR % 2 _ _p—l_
Ar = 1—e§26e2/27r{m Z[ )\,I‘,(k)]+2wk},

s=1,2
(4.8)
Merdr Qo
C.(k) = 2 —As€RAR _ ks
3( ) wk+ ( QQIC; Qka
-1
+Qi, - /\3217191”] : (4.9)

The last term in the curly brackets in (4.8) does not
contribute to the integral but was included for numerical
purposes. The set of equations (3.2) and (4.8) with the
initial conditions (3.18) and (3.20) defines the numerical
back-reaction problem.

We show in Figures 1 and 2 the time evolution of the
scaled electric field £ = eE/m? and the induced cur-
rent j = ej/m3 as functions of 7 = mt. Stability was
attained for these results, as well as for those presented
below, with the time step d7 = 5x10~* and a momentum
grid with dk = dk/m = 0.003, forcing very long running
times. With these strong initial electric fields we find
that the induced current increases rapidly and becomes
saturated at a constant value for some time, then it de-
creases until it saturates at a higher constant value in the
opposite direction, after which clear plasma oscillations
are seen.

The saturation in the first period is easy to understand.
In a classical kinetic picture, we have j = 2en(v), where n
is the density of particles (or antiparticles) and v is their
velocity. j saturates as v is driven to the speed of light
by the strong electric field; then E changes its sign and
the existing particles, together with the newly created
particles, are accelerated in the opposite direction until
again they almost reach the speed of light. Because of
the additional produced particles the absolute value of j
in the second plateau is larger than in the first one.

The envelope of the electric field amplitude decreases
substantially only in the first few oscillations and remains
almost constant at later times; i.e., the pair production
happens essentially in the first stages of the evolution.
In subsequent oscillations n is larger and E is weaker,
and therefore the frequency of oscillations increases. For
quantitative comparisons to classical plasma oscillation it
should be noted that as long as the particles are relativis-
tic the frequency of plasma oscillations depends not only
on n but also on the strength of E; the weaker the field
the higher the frequency, in contrast with the nonrela-
tivistic case where the plasma frequency does not depend
on the amplitude of E.

As time progresses, there develops a highly oscillatory
behavior (as a function of k) for the integrand in (4.8).
However, we expect that the particle creation rate de-
creases for weaker electric fields, and that the particle
number becomes approximately conserved at late times.
Let us define the particle number density in phase space
by expanding the exact fermionic field operator ¥ in

terms of the lowest, zeroth-order mode functions f,EO)(t).
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FIG. 3. (a) Momentum distribution of produced pairs, for the evolution shown in Fig. 1, at time 7 = 600. The abscissa is
the scaled kinetic momentum p = k — A, with kK = k/m. (b) Data of (a) after binning (histogram), compared with Boltzmann-
Vlasov model (curve). (c) Data of (a) after binning (histogram), compared with Boltzmann-Vlasov model with Pauli blocking
(curve).

Then the corresponding Fock-space creation and destruc- In modeling the creation of a quark-gluon plasma in

tion operators agco) and bg’) become time dependent, and heavy-ion collisions, a flux-tube model has been used,

employing a relativistic Boltzmann-Vlasov equation with
a particle source term. As in our calculation, one studies
the evolution of a system with a homogeneous (color-)
electric field, which initially contains no particles [10-
may be computed by a Bogolyubov transformation (see 13]. Let us compare the results of this phenomenological
Appendix A). The resuit is shown in Figures 3(a) and  model to those of our semiclassical analysis. The rela-
4(a). Clearly, the occupation number does not exceed tivistic kinetic equation in the presence of a homogeneous

n(k;t) = (01al(£)al”(¢)]0) (4.10)

one in accordance with the Pauli principle. electric field is
J
of of dN wm?
ht Bl - = _ _ - L
B +e 3p = didzdp leE(t)]In [1 exp ( |eE(t)|)] 8(p), (4.11)

where f(p,t) is the (z-independent) classical phase-space distribution, expressed as a function of the kinetic momentum
p, and the right-hand side is the fermion pair-production rate in 141 dimensions. We assume that the particles are
produced at rest [10]; i.e., the source term is proportional to §(p). [The singularity on the right-hand side of (4.11)
for m = 0 is spurious in that there can be no pair production from a classical homogeneous electric field for massless
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- ] r T L 4
1O ; - o) | - © ]
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FIG. 4. The same as Fig. 3, but for the evolution shown in Fig. 2 (i.e., initial field E= 4.0), at time 7 = 200.
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fermions in one spatial dimension. This selection rule is not, however, built into the usual WKB arguments [6] used
to determine tunneling rates based on energy balance alone.] Initially, f(p,0) = 0. Eq. (4.11) may be solved using

the characteristics %’} =eF, giving

2

f(p,t) = — /Ot dt' |eE(t')| In [1 — exp <-E%)] 5(p— eA(t') + eA(t)).

(4.12)

The 6 function allows us to perform the integration, and hence

f(p,t) = —5;1“ [1 —exp ("E%)] ’

where the t;’s satisfy p+ eA(t) — eA(t;) =0 and ¢; < t.
The field equation for A is

d?A . . .
'Eiz— = Jtotal = Jcond + Jpol,

where the conduction current is

. dp 14
=9 —~ = t
Jcond 6/2 & f(p7 ) ’

with €, = \/p? + m2, and the polarization current is [12]

. 2/@ dN
Jeol = EJ 2n épdtd:z:dp

[The factors of 2 in (4.15) and

(4.16)

(4.13)

(4.14)

(4.15)

(4.16)

account for the contributions of the

antiparticles.] Inserting (4.12) into (4.15) reduces the system to a single equation

d?A A(r') = A(7)

2
[ ~
— sgn(E(t))In |1 —exp | —

2]

in terms of the dimensionless variables 4 = eA/m, E,
and 7. _

The time evolutions of £ and j are shown in the dashed
curves of Figures 1(a) and 2(a). In the former, we see
that for an initial field E,—o = 1 there is good quanti-
tative agreement between the results obtained with the
two very different methods. The oscillations are slower
and the electric fields decay more slowly in the semiclas-
sical calculation than in the Boltzmann-Vlasov model.
For E;—¢ = 4 the plasma frequencies turn out to be very
different in the two calculations.

The kinetic theory can be improved by use of a source
term that takes Pauli blocking into account. We replace
the right-hand side of (4.11) with (see Appendix B)

daN (1= 2f(p,t)]|eE(2)]

dtdzdp
x In {1 —exp (-%)] 8(p).

(4.18)

e? T - T
o | ar E()|n [1-exp | ———
u ™ /0 \/[/i(r’) - fi(f)]z +1 | I ’ ( IE(T/) )

(4.17)

With this source term the agreement between the kinetic
theory and the quantum theory is even more striking, as
demonstrated by the dashed-dotted lines in Figures 1(b)
and 2(b). The improvement is especially dramatic in the
strong-field case, Figure 2.

The amplitude of the electric field approaches a limit-
ing value after a few oscillations, meaning that thereafter
the production of particles is negligible. In the boson
case an analogous effect is seen when Bose enhancement
[20] is considered, but it sets in somewhat later than for
fermions. The constant amplitude reflects the absence of
pair creation from virtual photons and the exponentially
small spontaneous pair creation at this stage of the evo-
lution. The fact that the electric field reaches its limiting
value more quickly for fermions than for bosons may be
due to the difficulty of producing more fermions once the
low-momentum states have been occupied. Our semiclas-
sical description is equivalent [19] to QED with a large
number N of flavors. In the large- N limit any processes
involving virtual photons are excluded. To include pair
production via a virtual photon one must go to the next
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order in a 1/N expansion. A systematic 1/N expansion
for the pair-production problem can be obtained by using
Schwinger’s closed time loop generating functional [25].

The distribution function f(p,t), measured after the
electric field has reached an almost constant amplitude,
may be compared to the quantum theory’s n(k) after the
latter is smoothed, as shown in Figures 3 and 4. The
curves have a relative displacement due to the slightly
different value of A. This comparison displays the ne-
cessity of including the Pauli blocking term in the phe-
nomenological model. In the absence of this term the
occupation number exceeds one if the initial electric field
is strong enough as can be seen in Fig. 4(b). This is to
be expected since the source term in (4.11) is very large
for a strong electric field and it is the 1 — 2f term that
suppresses the violation of the Pauli exclusion principle.

Because of the striking similarity between the results
in Figures 3(c) and 4(c), one can use the kinetic theory
model to explain detailed features of the particle distri-
bution as has often been assumed [9-13] in the past. Past
treatments have not, however, included the Pauli block-
ing term which is crucial for strong fields. A direct deriva-
tion of the Boltzmann-Vlasov equation through some
chain of approximations beginning with a field formula-
tion would be of great interest in elucidating the physical
mechanisms involved here. A step in this direction us-
ing the Wigner distribution function has been taken in

Ref. [26].
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APPENDIX A

To obtain the number of particles per unit volume of
phase space we consider

n(k;t) = Y (06O (k; 1)b{ (k; )[0)

s=1,2

(A1)

where we expand the field operator ¥(z) in terms of the
adiabatic order zero-mode functions, viz.,
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V(z) = ][dk] >

r=1,2

[bﬁo)(k;t)ur,k(t)e”if“’*dt

+d£0)f(—k; t)Ur,—k(t)Ci Jwwdt | gikex

)

(A2)
having defined
1wk+m r
2wy ¥
Ur k = s
- w7‘
V2wk(wk+m)
(A3)
—ow <Pr
V2wk(wk+m)
vr,——k =
[(wetm) r
2wy ¥
Here " are the spinors
1 0
pl = (0>, 5022(1)- (A4)

These u, k() and v, k(t) have been chosen to satisfy

f 1

u,yktvr/ x=0.
(A5)

They are not the t — oo limits of . On the other hand,
the field operator has the expansion (2.20),

Ur k Ur' k = 67‘1", Urk Ur'k = 6rr’>

¥(@)= 1 3 baowi, + di(-I0v], (A0)

s=1,2

in terms of the time-independent operators b,(k) and
di(—k). The operators bgo)(k;t) and ng)T(k;t) are re-
lated to the operators b, (k) and d}(—k) by the following
time-dependent Bogolyubov transformation:

B t) = Y ag ()bs (k) + B, (t)ds ' (),
s=1,2
(A7)

O (—kit) = 3 Fr(t)bs(K) + i (1) (k).

s=1,2

Since we expand the field using two different bases (A2)
and (A6), which are distinct even without interaction,
the Bogolyubov transformation (A7) has a matrix form.
From the canonical anticommutation relations it follows
that

> (et I + 188, 17) = 1,

r=1,2

(A8)

independent of time.
Substituting (A7) into (A2) we obtain
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\Il(:c):/[dk] S [b0) (e R 4 By et Tex)

s=1,2r=1,2
dl(—K) (B urace ]+ aghv, e S ontt)] ex (49)
We then identify 1/{3 and ¥, as

—3 dt * H dt ik-x
"/)lts = Z (a‘l,cruf,ke i ex +:8k:'v";—ke [ )e ’
r=1,2

1/)1:, — Z (ﬂi’grur,ke_ifwkdt + a;;:-vr,—keifw'(dt) eikx (AIO)

r=1,2

The number of particles (or antiparticles) produced per unit phase space volume at a given momentum is then
given by
ki) = 3 Oult kKO D10 = S S 18 OF. (A11)
r=1,2 s=1,2r=1,2
We now calculate |45, |2
in (A10) by vlk we find

Sl =S 1812 (A12)

r=1,2 r=1,2

in terms of the solutions of the quadratic Dirac equation f;. Multiplying the first equation

Using (2.13) and (2.14), ¥;, can be written as
Ui, = DAL xs = (700 — 7o + m) fif xs (A13)
We may use the Dirac representation of the ¥ matrices to recast 1,[)1*:3 explicitly,

(i +m) 0 -ps  (=p1 +ip2)

A 0 (100 + m) (—p1 — ip2) P3

b= p3  (p1 —ip2) (=10 + m) 0 ’ (A14)
(p1+ip2)  —ps 0 (—ido + m)

and it follows that
ifii + (m = ps) il
—(p1 +ip2) fify (A15)

—ifi + (m + p3) fif
(p1 +ip2) fify

b = DfﬁXl

I

. (pl - iPZ)fl—:—z
ifi, + (m— PS)fltz

U, = Dfixe = : A16
k2 = Dhiaxe (p—ip) fh (A16)
ifify +(=m = p3) i,
Let us also write u, j  and vr‘_kT in their explicit form
uia! =(wk+m, 0, ps, p1—ip2)/\/ 2wi(wk +m),
uz' =(0, wx+m, p1+ipa, —p3)/\V2wk(wK +m),
(A17)

v, k' =(—ps, —p1+ip, wk+m, 0)/\/2wi(wk +m),
va, k' =(=p1 —ipa, +p3, 0, wy+m)/\/ 2wx(wi + m).

Thus, we obtain
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(wk +m + p3) [ka:1 - zfltl]
\/ka(wk + m) ’
(b + ip2) [wnfi — ifi]

\/ ka(wk + m)

Bia] = lvr,—x" o5 | =

Bzl = vz, Wi | =

(A18)
("‘)k +m - p3) [wkf]tl + zf}jl]
\/ka(wk + m) ’
—(p1 + iPz) I:‘-"kf:l + lfl-:l]

1) _ tot | =
a Up g Y
| k2| | 2k k1| ,———_2‘411((‘-0}( )

To see the difference between the two different bases, we observe that in the free case f} = c,e~*“k! (A15) and (A16)
are different from u; x and us k.

Using (A18), (2.17), and (2.22) it is straightforward to show that equation (A8) is satisfied. Finally we find that
the number of particles produced is given by

loea | = Jus o il | =

wk+A 3 . . " . v
n(a)= 30 ETEE IR 4 IR E - (TR - £l )
s=1,2
or s=3,4

; 2
2 —AzeA Q 2
wk + Asp3 [wk + ( 2Qu, znk,) + Q5 — 2kaks]

= 2 o = . (A19)

or 3234 [“"lzc + (_2?7::4 - 2%:‘,) + Q2 - /\sQPSka]

Averaging these two summations, we find
4
wk + /\s . . *+ ¢ ox
nlit) = 37 R RGP+ AL — (AT~ A D))
s=1
. . 2
2 “Ased _ S 2 _

~ i:wk+/\sp3 [‘”k'*' ( 2. 2nk.) + Qi QWkas] (A20)
- 4

w . . 9 .
s=1 . [wl% + (‘2’}1::4 - Q%ks) + 912(3 - A32P3Qk,]

In 1+1 dimensions the number of produced particles per unit length at momentum k is obtained by replacing ps by p;
in Eq. (A20) and dividing by 2. This is the quantity which is computed from our numerical solution of the equations
and plotted in Figures 3(a) and 4(a).

APPENDIX B

We derive here the Pauli blocking correction factor of Eq. (4.18). The operators b,(k;t + At) and di(—k;t + At)
are related to the operators b,(k;t) and d}(—k;t) by the following Bogolyubov transformation:

be(k;t + At) = aner (t + At) b (k;t) + Bir (T + At) dl(=k; ),

(B1)
d' (=k;t + At) =i, (1 + At) b (k; 1) + ap (t + At) dl(=k; ).
From the time independence of the anticommutation relations it follows that
lar (t + AL + |Bur (t + AL = 1. (B2)

Let us denote the density of particles (antiparticles) in momentum k and spin state r at time ¢ by nkir(t). We
emphasize that the wave number k refers to the canonical momentum of the produced particle(s), which remains
constant in time. We shall denote by p the corresponding time-dependent kinetic momentum [see (2.13)]. Using the
Bogolyubov transformation (B.1) the number of particles at time ¢ + At is given by
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n(k;t+ A= Y (nf (O ()i, (Dnics(0)[b} (it + At)b, (ki t + At)nf, ()nidy(t)ngy (t)niy (1))

r=1,2

= > {lawr(t + A)Pnf (t) + [Bir (t + AL)P[1 = ng, (1))}

r=1,2

= > {0 (1) + |Bir (t + A)P[L = 0, (t) — ng, ()]}

r=1,2

Because of the homogeneity of the problem, at each mo-
ment the number of particles is equal to the number
of antiparticles with opposite quantum number r, i.e.,
nf (t) = ng,(t). The probability to create particles in
each of the two spin states is equal, so that |8k ()| =
|Bk2(t)|?. Introducing n(k;t) = ni,(t) + ngt,(¢) in (B3)
we obtain
n(k;t + At) = n(k;t) + 2|k (t + At)|*[1 — n(k;1)].
(B4)

Finally we write the rate of pair production in 3+1 di-
mensions as

An(k;t)

At
where Ry = |By(t + At)|?/At is the rate of pair produc-
tion when n(k,t) = 0. Schwinger’s result for pair pro-
duction assumed that no particles are initially present.
We will assume as a reasonable ansatz that even in the

presence of particles Ry is given by Schwinger’s form for
pair production from the vacuum. Thus we assume

Ry =— |eE(t)|In [1 — exp (—”—(Té%;n%))]

= 2Rx[1 — n(k; )], (B5)

X 5(k” — eA(t)), (B6)

where the particles are assumed to be created at rest,
L.e., with kinetic momentum p; = kj — eA(t) = 0.
The effect of Pauli blocking 1s incorporated by the fac-

(B3)

tor multiplying this form of Ry in (B5). In 1+1 dimen-
sions there is no spin, and therefore the analogous result
has the form

n(k;t + At) = n(k;t) + |Be(t + AL))*[1 — 2n(k;1)],

(B7)
and we can write the rate of pair production as
ED = Relt — 2n(ks0)], (BS)

where Ry = |Bi(t + At)|?/At . Now we can identify the
canonical phase-space density n(k;t) with the Boltzmann
density function in terms of the kinetic momentum p,
viz.,

n(k;t) = f(p,t) = f(k —eA(t),1) . (B9)

We conclude that in the phenomenological Boltzmann-
Vlasov approach, Pauli suppression is properly taken into
account by the source term given in Eq. (B.8). This is
precisely what we have used in (4.18).

We note that in [20] the normalization of the source
term was smaller by 27 than in (4.11) and at the same
time the definition of the current was larger by 27 than
in Eqgs. (4.15) and (4.16). When one takes the Pauli-
blocking term into account in Eq. (4.18) [or the boson
enhancement factor in Eq. (17) of Ref. [20]], one must use
the normalization convention of this work. The numerical
results presented in [20] reflect correct normalization.
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