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Ferrnion pair production in a strong electric field
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The initial-value problem for the quantum bacl reaction in spinor /ED is formulated and solved
in the semiclassical mean-field approximation for a homogeneous but time-dependent electric field
E(t). We apply the method of adiabatic regularization to the Dirac equation in order to renormalize
the expectation value of the current and derive a finite coupled set of ordinary differential equations
for the time evolution of the system. We solve this system in 1+1 dimensions numerically and
compare the solution to a simple model based on a relativistic Boltzmann-Vlasov equation, with
a particle production source term inferred from the Schwinger particle creation rate and a Pauli-
blocking factor. This model reproduces very well the time behavior of the electric field and the
creation rate of e+e pairs of the semiclassical calculation.

PACS number(s): 11.15.Kc, 12.20.Ds

I. INTRODUCTION

The rate of creation of pairs of charged particles in a
static and homogeneous external electric field was com-
puted long ago [1—6]. This process has been used ex-
tensively in color-flux-tube models to describe multipar-
ticle production in hadronic collisions [6—13). A strong
color-electric field is assumed to be formed between re-
ceding hadronic sources, quarks or hadrons, and quark-
antiquark and gluon pairs emerge in the presence of the
field by tunneling. In models for the production of a
quark-gluon plasma the source for the field is the frag-
menting nuclei.

In solving a dynamical problem with a strong initial
electric field the eA'ect of the produced particles on the
electric field (the back reaction) should be taken into
consideration [11—13]. The construction of the usual
models for quark-gluon-plasma creation has often been
based on oversimplifiieations. One is the modification
of the Schwinger expression for the time-independent
rate of pair production so that it becomes time de-
pendent through the time variation of the electric field
(even though a fixed external electric field is inherent
in Schwinger's derivation); moreover the transverse- and
longitudinal-momentum distributions of the produced
particles are chosen according to results of a WKB calcu-
lation [12] . It is not clear whether this choice is entirely
appropriate.

In order to evaluate the dynamic rate of pair produc-
tion self-consistently, we propose to study the quantum
back reaction of spin-& fields in a spatially homogeneous
classical electric field through the semiclassical Maxwell
equations. The back-reaction problem for quantum fields
has been developed particularly in the study of quantum
fields in curved space [14—19]. In formulating the back-
reaction problem, divergences appear in the expectation
value of the conserved currents, and a renormalization
procedure which guarantees well-defined finite equations

II. +ED IN THE SEMICLASSICAL MEAN-FIELD
LIMIT

The Lagrangian density for electrodynamics is

12 = Qi7" (6„+ieA„)g —mug — F„„F"", —
4 pv ) (2.1)

where the metric convention is taken as (+ ———). For

is required. Adiabatic regularization is a useful approach
which enables one to dispose of these infinities in a way
that is consistent with conventional renormalization for
a variety of spatially homogeneous problems [14—20], and
is easy to implement in a practical numerical procedure.
This method has been successfully applied to the study
of the back-reaction problems in which the matter field
is a scalar field [17—20].

In Ref. [20] we found that results based on calculations
in semiclassical scalar electrodynamics are very similar to
those obtained from a model based on a phenomenologi-
cal relativistic Boltzmann-Vlasov equation. It is of inter-
est to see if the same results obtain for fermions which,
unlike bosons, possess no classical limit, and for which
Pauli blocking, rather than Bose enhancement, implies
a quite diA'erent consequence from the consideration of
quantum statistics.

To apply adiabatic regularization to the case of
fermions, we again express the Fourier components of
the field operators in a WKB-like form. This enables
us to isolate the ultraviolet divergences via an adiabatic
expansion and to perform a mode-by-mode subtraction.
In Section II we derive the coupled equations for the
fields in the semiclassical limit of QED, and in Section
III we discuss the adiabatic regularization procedure. In
Section IV we present our numerical results in 1+1 di-
mensions and compare them with the phenomenological
Boltzmann- Vlasov model.
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the p matrices we use the convention of Bjorken and Drell

I 0, ( 0 o'

(2.2)

where I is the identity matrix and o are the Pauli ma-
trices.

In the mean-field approximation we quantize only the
Dirac field, while the electromagnetic field is treated clas-
sically. This approximation may be derived formally as
the leading term in the large-N limit of QED, where N is
the number of charged matter fields [19]. The resulting
coupled field equations read

These spinors are chosen to be eigenvectors of n
in the representation (2.2) for the p matrices. The eigen-
values of o. are A, = 1 for s = 1, 2 and A, = —1 for
s = 3, 4. These spinors satisfy the normalization and
completeness conditions

(2.11)

).(x. ) (x )p =2b p
@=1

Substituting (2.8) into (2.7) it follows that the mode func-
tions fk, (t) satisfy

(iy" ct„—ep" A„—m)~t(z) = 0, (2 3) d2fk, (t) z . dA
~k(t) —iA, e fk, (t) = 0, (2.12)

&.F""= (j") = 2([& ~'@]) (2.4)

g(z) = (ip"0„—ep~A„+ m)P(z), (2.5)

and inserting (2.5) into (2.3), it follows that P satisfies
t, he quadratic Dirac equation

„v(ig„—eA„)2 — o""F„,—m— Q(z) = 0, (2.6)

where P is a four component spinor. Here we consider the
case where the electric field is spatially homogeneous so
that the field strength I""' depends only on time. Owing
to homogeneity the semiclassical Maxwell equations (2.4)
allow only configurations where (jo) = 0. We take the
electric field to be in the direction of the z axis, and we

choose a gauge such that only A = A (t) is nonvanishing.
Then the second-order Dirac equation becomes

[&+ e A (t) + 2iA(t)(93 —ieBOA(t)p p + m ] p(z) —0

(2 7)

where the expectation value is with respect to the initial
state of the spinor field. The commutator in the elec-
tric current guarantees a zero expectation value for any
charge-conjugation eigenstate. Expressing the solution
of the Dirac equation as

with

cl/k (t) —p3+k& +m, k& = k, +kz, p, = k' —eA' (t)

(2.13)

Equations (2.12) are second-order differential equa-
tions, and therefore for each s there are two indepen-
dent solutions. Let fk+ and fk, be the two indepen-
dent solutions of (2.12), which become positive- and
negative-frequency solutions in the absence of the elec-
tric field. Clearly at the moment we have eight different
solutions for the second-order equation (2.6), namely fk,
for s = 1, 2, 3, 4. However, the Dirac equation (2.3) has
only four independent, solutions. If we restrict ourselves
to solutions which belong to the set s = 1, 2 or to the set
s = 3, 4 we shall see that from each set one can construct
a linearly independent set of solutions of the Dirac equa-
tion. The form introduced in (2.8) allows us to write Q
as

(t ks (z):+/kg (z): (i7 ~o + 7 (l ' e7 A3 + m)(t ks (*).
(2.14)

Explicitly, the two sets of independent solutions of the
Dirac equation may be taken to be

(2.15)

Spatial homogeneity implies that there exist solutions
of the form k Df+ 3 4 (2.16)

(t k. (z) = efk. (t)X. ,

where

(1)
gl —

1 ) g2—
&0)

(2 9) ='iIw,'(i)ff++f:+f,".
—ix, ps f;+f —f: f. )i- . (& &i)

Using Eqs. (2.14)—(2.16) we find (for a given k)
2.8

0„+'0.+ = x.'f,"+D'&f.+ x

(2.10) where either r, s = 1, 2 or r, s = 3, 4. An exactly anal-

ogous formula may be derived for gP g+. By differ-yt
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lim f+ = c,e+' "',
ks (2.18)

where c, are constants. Insertion of these free solutions
in the relation for i]fp @+ yields immediately

entiating these expressions with respect to time and by
using Eq. (2.12), it can be readily verified that these in-
ner products are time independent. As t ~ —oo there
is no interaction between the fermion field and the elec-
tromagnetic field, and we can choose two independent
plane-wave solutions for Eq. (2.12),

if we impose the normalization condition

(2.22)

which fixes the normalization of the mode functions.
We turn now to the calculation of the expectation value

of the electric current. For the sake of simplicity we
choose the initial state to be the vacuum. Using the
anticommutation relations (2.21) we find

oli'lo& = 2&ol[e, v'ello)

(2.19)

dk b, k k +dt —k
s=3,4

(2.2o)

where the two lines show the field expressed in terms of
the two alternative bases. Here [dk] = dsk/(2x)s. The
fermion fields obey canonical anticommutation relations

(t, x), »Ift&(t, y)) = bs(x —y)b p. The creation and
annihilation operators of each set (r, s = 1, 2 or r, s =
3, 4) will obey the standard anticommutation relations

{b„(k),bt(q)) = (d„(k), dt(q)) = (2x) 6 (k —q)b„,

Since this result is time independent, it is valid at any
time, and each set i]»+, with s = 1, 2 or s = 3, 4, is
a complete set of linearly independent solutions of the
Dirac equation. Note that these complete systems are not
identical, and orthonormality conditions holds for each
set separately. In principle, we need only one of these
sets in order to expand the field operator 4' in terms of
single-particle solutions. In order to ensure that with our
initial conditions the Dirac current vanishes at t = 0 it is
advantageous to use bo/h sets in our calculations, as will
be shown in the next section.

Now we can construct the quantized spinor field oper-
ator in the form

@(k)= f[dk] ) [b(k} +d, d,
.d!(—k)d„]

s=1,2

= -, f[dk[ ): d». 'v'v-'d;.
s=1,2

+d». v v dk. )
Alternatively,

(2.23)

4

(}}lf'Ib)=
d f [dkl ): -0»». 'v'v»d~+,

s=1

+di, v'v'd'„,
) (2.25)

This form will be useful when we turn to the adiabatic
regularization in the next section. The other components
of the current are zero since the electric field is in the z
direction. Using (2.14) we find

707sy„', = a, [ -i~os. +7'k,
—(ks —eAs)7 + m](t„+„ (2.26)

(b}lj 10) = —J [dk] ) —d»», vkv»d»»,

s=3,4

+di. v'v'bb». ) (~ &4)

Averaging the two expressions,

(2.21) and thus (2.17) and (2.22) give

dk. 'v'v'0;. = x!f,'&'v'v'&f; x".=». ((b» +.I.' »')f» f» —f—»". f'. + d»»(fk.+f». —f».+f» ))
= A, 4(ki+m )If~+, I

—1, (2.27)

where the index s is not summed over. Inserting (2.27) into (2.25) gives

4

(b}lf'Ib}) = k) f[dk[(k'k+ ~')». (I.f». l' —Ifk. l')
s=1

From (2.17) and (2.22) it can be shown [22] that

2(&i+ m') (Ifg. l'+ If~, l') = 1.

Eq. (2.28) then gives the current as

4

(&If'Ib} = —2» ) f [dk](b» + m»)». If»+ I'
s=l

(2.28)

(2.29)

(2.30)
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III. ADIABATIC REGULARIZATION

The difficulty in solving the coupled semiclassical equations (2.3) and (2.4) originates in the fact that the expectation
value of the current (2.30) diverges in the interacting theory. This infinity is related to charge renormalization. The
adiabatic regularization approach is suitable for identifying and removing the ultraviolet divergences [19]. In order
to isolate the ultraviolet behavior of the current integrand by adiabatic expansion, we need to express the mode
equations (2.12) in a WKB-like form. The generic problem is to find a suitable parametrization of the solution of
the differential equation ii(t) + c(t)u(t) = 0, where in the present case e is the complex quantity in square brackets in
(2.12). Such a parametrization was found in [23], namely,

fx, (t) = Nx, exp —eBx, (t') —A, dt'I,
1 eA(t')

20ks 0 ( 2 kp P )
(3.1)

where Ni„are normalization constants and Qi„ is a real generalized frequency. [The second solution f&, for the mode
equation can be found by using its Wronskian. When choosing the form (3.1) for f&, , the second solution does not
have a simple form, and for this reason we expressed the current (2.30) in terms of the positive-frequency solutions
only. ] By substituting (3.1) into (2.12) we obtain the WKB-like equation for 0&, .

Qi„3Ak, 2 t eA eA eAQk,
2A 40~ " 2Q '2Q ' A~ks ks ks ks ks

(3.2)

As in the bosonic case, the equation for 0 is a second-order nonlinear differential equation.
This equation enables us to study the large-momentum behavior of the solutions. It will be shown that an adiabatic

expansion of (3.2) to second order is needed to identify and isolate the divergences in the current (2.30). The adiabatic
expansion, an expansion in powers of 1/~i, for large k, is obtained by successive iteration: Inserting the zeroth-order

solution 0&, ——~k into the right-hand side of (3.2) one obtains 0 up to second order; inserting this value to
the right-hand side the fourth order is obtained, and so forth. It is not diKcult to see that higher-order adiabatic
approximations contain terms of higher order in I/~k.

Noting that

4dk— '+ O(1/ ), (3.3)

we have up to second order

Qi, = ~k —eA (A, ~i —ps) /4~'„+ O(1/~i, ). (3.4)

We shall refer to

(3 6)

as the minimal second-order adiabatic approximation. Using the ansatz (3.1) the current reads

(Olj IO) = —2e) [dk](kz+ m )A,
'

exp —A, dt'INi„l' eA(t')
20k, Qk, t'

s=l
(3.6)

Eqs. (2.17) and (2.22) determine the normalization constants, and we define

p, (k) = '
exp

I
—4,

ks

eA(t'), 2 )

—A, eA

~..(~ )

2
—1

+ ~ks As 2p30ks
2 kB)

(3.7)

to represent the constants of the square brackets in (3.6). With the identity

&i+ m' = [~k+ ps][~k —psl

we obtain

(3.8)

A = (oIj'Io)

~k + eA(uzi, + ps)/4~k ~k —eA(cut —ps)/4~k
(3.9)
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At large-momentum, we approximate

1 eA, [~i +P3].
1 + eA[~k + p3]/4~„4]dk (3.10)

After we perform the angular integrations and drop terms which are odd functions of p3, the Maxwell equation
becomes

A = (0~j )0) = —e A [dk] 3
—

&
+ (finite part)

24 k 24)k

= —e A be + (finite part)

where

(3.11)

2

be—: [dk] i(24)k 2]e/k 47I
dk

k

($2 + m2) 3(P2 + m2)
(3.12)

The current in (3.11) diverges logarithmically, as ex-
pected, with the same divergence as the vacuum polar-
ization II(q2 = 0). We define, as usual,

O(1/~i, ), so the remainder Rk(t) falls off faster. Substi-
tuting (3.16) into (3.15) and using (3.9)—(3.11) the finite
Maxwell equation reads

eR ——e (1+e tIe ):—Ze aR ——Z-'~'X A=e dkRkt . (3.17)

(3.13)

so that eA = eRAR. We can also write Z = (1 —eR2be2).

Multiplying (3.6) by Ze/eR we obtain

AR —eRARt]e = eR ) [dk](k& + m )(—A, )r, (k).

Superficially it seems that the second derivat, ive of A ap-
pears only on the left-hand side of (3.17), but in fact
the subsidiary condition (3.16) defining Ri8 is an intrin-
sic part of (3.17).

We are interested in solving an initial-value problem
where the initial conditions for the Maxwell equation are
given by

(3.14) A(t=0)= —Ep, A(t=0)=0, (3.18)

/' 1
+eRAR

I

(24)i 2]di )
(3.15)

so the expression for AR is finite [see Eq. (3.11)]. Since
this is so, and since I', depends on e and A through
the product eA = e~A~ only, the R subscripts will be
omitted from now on.

Consider now the difference between the exact expres-
sion (3.15) and its adiabatic approximation. Examining
(3.9), (3.10), and (3.14), we can write

(k,'+ ')) (-~,)r, (k)
@=1

Upon subtracting the last term on the left-hand side,
(3.14) becomes

4

A~ ——e~ dk k&+ I —A, I', k
@=1

and where the initial state is the adiabatic vacuum, se-
lected by matching the exact solutions in (3.1) to their
adiabatic approximation, viz. ,

Qi„(t = 0) = cui, (t = 0),
(3.19)

Qi„(t = 0) = ~k(t = 0) .

Nonvacuum initial conditions may be handled in a
manner analogous to the bosonic case, by adding to the
current expectation value nonzero particle number den-
sities, without changing the initial conditions (3.19). As
in the bosonic case the initial conditions are not com-
pletely arbitrary, because the asymptotic form of the adi-
abatic expansion (3.16) in which A and Ri, appear must
be consistent with the finite renormalized Maxwell equa-
tion (3.17). By substituting (3.19) into (3.7) and (3.16)
we find that A(0) = 0, but

2P3
~ ~

& (~k —~3) + R~(t) (3 16)
24)k

2P3 1+ e2Et]/4]d„
[(1+e 8' /8te„)ee —(e 8ee/88te„]e])

(3.20)

Ri, (t) is the difference between the exact current inte-
grand and its minimal adiabatic approximation. At large
momentum this minimal adiabatic approximation has to
match the exact integrand up to terms that fall off as

is not zero. However, the integration over k in (3.17)
is zero by the charge conjugation symmetry p3 + p3.
Hence we find A(0) = 0 in the initial value of the Maxwell
equation, and the initial conditions (3.19) are consistent
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fermions in one spatial dimension. This selection rule is not, however, built into the usual WKB arguments [6] used
to determine tunneling rates based on energy balance alone. ] Initially, f(p, 0) = 0. Eq. (4.11) may be solved using

the characteristics ~« ——eE, giving

nm2
f(p, t) = — dt' IeE(t')I ln 1 —exp

I
—,I b(p —eA(t') + eA(t)).

o E leE(t') I)
The 6 function allows us to perform the integration, and hence

sm'
f(p, t) = —) ln 1 —exp I—

leE(t;) I y

(4.12)

(4.13)

where the t s satisfy p+ eA(t) —eA(t;) = 0 and t; ( t.
The field equation for A is

d A

cB
= /total = /cond + gpol~

where the conduction current is

j,~„g = 2e ——f(p) t)
dp p
2' Ep

with e„= gp + m, and the polarization current is [12]

(4.14)

(4.15)

2 dp dN
JPoj E 2

~P g] g

[The factors of 2 in (4.15) and (4.16) account for the
antiparticles. ] Inserting (4.12) into (4.15) reduces the system to a single equation

(4.16)

contributions of the

d2A e2
dr'

0

A(r') —A(r)
2

A(r') —A(r) + 1

e2

z sgn(E(r)) ln 1 —exp
E() ]

(4.17)

in terms of the dimensionless variables A = eA/m, E,
and r.

The time evolutions of E and g are shown in the dashed
curves of Figures 1(a) and 2(a). In the former, we see
that for an initial field E,-0 ——1 there is good quanti-
tative agreement between the results obtained with the
two very different methods. The oscillations are slower
and the electric fields decay more slowly in the semiclas-
sical calculation than in the Boltzmann-Vlasov model.
For E,—0 ——4 the plasma frequencies turn out to be very
different in the two calculations.

The kinetic theory can be improved by use of a source
term that takes Pauli blocking into account. We replace
the right-hand side of (4.11) with (see Appendix B)

dN
„,„„„=—[I —»(p t)]l«(t) I

am~
x ln 1 —exp —

I
b(p).l«(t) li.

(4.18)

With this source term the agreement between the kinetic
theory and the quantum theory is even more striking, as
demonstrated by the dashed-dotted lines in Figures 1(b)
and 2(b). The improvement is especially dramatic in the
strong-field case, Figure 2.

The amplitude of the electric field approaches a limit-
ing value after a few oscillations, meaning that thereafter
the production of particles is negligible. In the boson
case an analogous effect is seen when Bose enhancement
[20) is considered, but it sets in somewhat later than for
fermions. The constant amplitude reflects the absence of
pair creation from virtual photons and the exponentially
small spontaneous pair creation at this stage of the evo-
lution. The fact that the electric field reaches its limiting
value more quickly for fermions than for bosons may be
due to the dif5culty of producing more fermions once the
low-momentum states have been occupied. Our semiclas-
sical description is equivalent [19] to @ED with a large
number N of flavors. In the large-N limit any processes
involving virtual photons are excluded. To include pair
production via a virtual photon one must go to the next
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order in a 1/N expansion. A systematic I/N expansion
for the pair-production problem can be obtained by using
Schwinger's closed time loop generating functional [25].

The distribution function f(p, t), measured after the
electric field has reached an almost constant amplitude,
may be compared to the quantum theory's n(k) after the
latter is smoothed, as shown in Figures 3 and 4. The
curves have a relative displacement due to the slightly
different value of A. This comparison displays the ne-
cessity of including the Pauli blocking term in the phe-
nomenological model. In the absence of this term the
occupation number exceeds one if the initial electric field
is strong enough as can be seen in Fig. 4(b). This is to
be expected since the source term in (4.11) is very large
for a strong electric field and it is the 1 —2f term that
suppresses the violation of the Pauli exclusion principle.

Because of the striking similarity between the results
in Figures 3(c) and 4(c), one can use the kinetic theory
model to explain detailed features of the particle distri-
bution as has often been assumed [9—13] in the past. Past
treatments have not, however, included the Pauli block-
ing term which is crucial for strong fields. A direct deriva-
tion of the Boltzmann-Vlasov equation through some
chain of approximations beginning with a field formula-
tion would be of great interest in elucidating the physical
mechanisms involved here. A step in this direction us-

ing the Wigner distribution function has been taken in
Ref. [26].

ACKNOWLEDGMENTS

APPENDIX A

To obtain the number of particles per unit volume of
phase space we consider

~(k;t) = ) (Olb(')'(k;t)b(')(k;t)IO),
s=1,2

(Al)

We wish to thank Dr. I. Paziashvili for drawing our
attention to Refs. [14]—[16], and for very helpful discus-
sions concerning them and this work in general. This
work was partially supported by the German-Israel Foun-
dation. Further support was provided by the Ne'eman
Chair in Theoretical Nuclear Physics at Tel Aviv Uni-

versity. The work of B.S. was supported by a Wolfson
Research Award administered by the Israel Academy of
Sciences and Humanities. Y.K. thanks the Theoretical
Division of Los Alamos National Laboratory for their
hospitality. J.M.E. thanks the Institute for Theoretical
Physics of the University of Frankfurt, and its director,
Professor Walter Greiner, for their hospitality, and the
Alexander von Humboldt-Stiftung for partial support of
this work.

i'(z) = [dk] ) b( )(k;t)u, , i, (t)e
'

@=1,2

+d(0) ( k. t)v i (t)ei j~ddt ik.x

having defined

(A2)

V„k

( (~„+m)

ere p

/2~k(~k+m) /

( —cr x
+2~k(uq+m)

(u k+m) „)

(A3)

Here &p" are the spinors

(0)v'=
I 0 I

(A4)

These u„k(t) and v„k(t) have been chosen to satisfy

4'(z) = [dk] ) [b, (k)Qq+, + dt( —k)Qq, ], (A6)
s=1,2

in terms of the time-independent operators b, (k) and

dt( k) The o—pera. tors b„(k; t) and d„(k; t) are re-

lated to the operators b, (k) and dt( —k) by the following
time-dependent Bogolyubov transformation:

b(')(k; t) = ) ~„'„(t)b,(k) + P„'„(t)d,t(—k),

(A7)

d,""(-k;t) = ). P':(t)b. (k) + ~~ (t)d '(-k)
s=1,2

Since we expand the field using two different bases (A2)
and (A6), which are distinct even without interaction,
the Bogolyubov transformation (A7) has a matrix form.
From the canonical anticommutation relations it follows
that

) . (I~~, l'+ l&k, I') = 1

r=1,2

(A8)

tl„k tL„' g —0«, V„k V,- k —0«, 'U, „k V& k = U.t 0 t 0

(A5)

They are not the t ~ oo limits of itbP. On the other hand,
the field operator has the expansion (2.20),

where we expand the field operator @(x) in terms of the
adiabatic order zero-mode functions, viz. ,

independent of time.
Substituting (A7) into (A2) we obtain
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hk(z) =f [h(k) ) ) b(,k) (hkk„k, ,ke ' " ' yPk'„v„ke' " ')
@=1,2r=1,2

as —i f wkdt h
ss i j thckdt ik.x~ O'kr Vr, —k~ (A9)

We then identify @k+, and @k, as

r=1,2

r=1,2

J dh, '(
Ch)

'k.+ krvr kC (A10)

The number of particles (or antiparticles) produced per unit phase space volume at a given momentum is then
given by

&(»t) = ) (0.lb""(»t)&'"(»t)l0.) = ). ). I&k.(t)l'. (A11)
r=1 2 s=1,2 r =1,2

We now calculate lpk„l2 in terms of the solutions of the quadratic Dirac equation fk+ . Multiplying the first equation

in (A10) by v„k we find

). Iv,', k@k.l' = ) . IPa'„I' (A12)
r=1,2 r=1,2

Using (2.13) and (2.14), gk+, can be written as

gk, —Dfk, y, = (ip clo —7 p, + m) fk, y, .

We may use the Dirac representation of the p matrices to recast gk, explicitly,

((t'&0 + m) 0 p3 ( pl—+ ip2) )
0 (i(9o + m) (—pi —ip2) ps

ps (pl —ip2) ( iso + m) 0
((p, + ip, ) -p, 0 (-iso+ m) $

and it follows that

(A13)

(A14)

~ki fkl ~l+ — +
( ifki+(m —ps)fkl )

—(pi + ip2)fki
-ifki + (m+»)fki

(pl + ip2)fki )
(A15)

+ —" +
( (pi —ip2)f

if„+, + (m —»)f„+,
(» —'p2)fk2

I, f„', +(- p.)f;,i-
(A 1|))

Let us also write u„k and v„k in their explicit form

tt j,k (tk)k + m 0 p3 pl tp2)//2(c)k((c)k + m)

tt2, k = (0h (k)k + mh pl + ip2h —ps)/+2~k(tdk ~ m),
(A17)

= (—ps, —pi + ip2, ~k+ m, 0)/+2~k(~k+ m),

v2 k ——(—pi —ip2, +p3, 0, cJk + m)//24Pk(4)k + rn).

Thus, we obtain
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(~k + m + Ps) ~kfki ifki
IPkx I

= Ivi
+2~k(~k + m)

IPkz I
= l», -k'@ki I

=
(Pl+ iP2) ~kfki —ifk,

/2(dk(cdk + m)

(~k + m P3) ~kfki + fki

+2~k(~k + m)

(A18)

—(Pi + &Pz) ~kf» + if»
+2uk(uk + m)

To see the difference between the two diff'erent bases, we observe that in the free case f,+ = e, e ' "', (A15) and (A16)
are different from u1 k and u2 k.

Using (A18), (2.17), and (2.22) it is straightforward to show that equation (A8) is satisfied. Finally we find that
the number of particles produced is given by

n(k;t) = ) . '
~klfk. l'+ Ifk, l' —i~k(fk.+fk, —fk, fk. )

s=1,2
or s=3,4

or s=3,4

Cdk + AsP3

2(dk

2
2 -A. eA Ak. 2k + 2g

—
2~ + Qk —24)kQks

2—A, eA, Ak, 2
k + 2Aks 2Aks ks s J3 ks

(A19)

Averaging these two summations, we find

n(k;t) = ) . " '"' ~klf' I'+ lfk. l' —i~k(fk,+fk. —fk.'fk. )
s=1 k

4
~ 4)k + AsP3

44)ks=1

2

k+ 2+„, 2+ ~
+ ~k

k+ 2+ ~ 2+„, + k
(A20)

In 1+1 dimensions the number of produced particles per unit length at momentum k is obtained by replacing P3 by Pl
jn Fq. (A20) and djvjdjng by 2. This is the quantity which is computed from our numerical solution of the equations
and plotted in Figures 3(a) and 4(a).

APPENDIX 8

We derive here the pauli blocking correction factor of Eq. (4.18). The operators b„(k; t + b,t) and d„(—k; t + At)
are related to the operators b„(k; t) and dt( —k; t) by the following Bogolyubov transformation:

b„(k; t + b.t) = nk„(t + Et) b„(k; t) + Pk„(t + At) dt ( k; t), —
(B1)

d' „( k; t + At) = P„'„(t—+ At) b„(k; t) + nk'„(t + At) d„'( k;t)—
From the time independence of the anticommutation relations it follows that

l~'(t+&t)l + IP'(t+&t)l =1
Let us denote the density of particles (antiparticles) in momentum k and spin state r at time t by nk„(t). We

emphasize that the wave number k refers to the canonical momentum of the produced particle(s), which remains
constant in time. We shall denote by p the corresponding time-dependent kinetic momentum [see (2.13)]. Using the
Bogolyubov transformation (B.l) the number of particles at time t + At is given by
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n(k; t+ «) = ) . (n,', (t)n;, (t)n. , (t)n.2(t) l~,'(k t+ «)t (k t+ «) ln'~(t)n»(t)n. ~(t) .~(t))
@=1,2

= ) . {I~t,(t+ «)I'nk„(t)+ I&k.(t+«)I'[I —nt, (t)])
r=1,2

= ) . &-,'.(t)+ it.,(t+ «) i' ll —-,', (t) —-.—,(t)])
r=1,2

(B3)

Because of the homogeneity of the problem, at each mo-
ment the number of particles is equal to the number
of antiparticles with opposite quantum number r, i.e. ,

n&+„(t) = n&„(t). The probability to create particles in
each of the two spin states is equal, so that ~P&q(t)~

~Pkz(t)~ . Introducing n(k; t) = n&&(t) + n&2(t) in (B3)
we obtain

n(k;t + At) = n(k;t) + 2~Pk(t+ At)~ [1 —n(k;t)].

(B4)
Finally we write the rate of pair production in 3+1 di-
mensions as

( ' ) = 2R, [1 —n(l;t)], (B5)

x 6(k)( —eA(t)), (B6)

where the particles are assumed to be created at rest,
i.e. , with kinetic momentum

p~~
=

k~~
—eA(t) = 0.

The effect of Pauli blocking is incorporated by the fac-

where Rk ——(pk(t + At) ( /At is the rate of pair produc-
tion when n(k, t) = 0. Schwinger's result for pair pro-
duction assumed that no particles are initially present.
We will assume as a reasonable ansatz that even in the
presence of particles Rt, is given by Schwinger's form for
pair production from the vacuum. Thus we assume

( z(kj~ + mz)&
Rk ——(eE(t)( ln 1 —exp ~—

(eE(t) ( )

= Rs[1 —2n(k; t)], (B8)

where Rt —~Ps(t + «)~ /« . Now we can identify the
canonical phase-space density n(k; t) with the Boltzmann
density function in terms of the kinetic momentum p,
V1z. ]

n(k; t) = f(p, t) = f (k —eA(t), t) . (Bg)

We conclude that in the phenomenological Boltzmann-
Vlasov approach, Pauli suppression is properly taken into
account by the source term given in Eq. (B.8). This is
precisely what we have used in (4.18).

We note that in [20] the normalization of the source
term was smaller by 2z than in (4.11) and at the same
time the definition of the current was larger by 2x than
in Eqs. (4.15) and (4.16). When one takes the Pauli-
blocking term into account in Eq. (4.18) [or the boson
enhancement factor in Eq. (17) of Ref. [20]],one must use
the normalization convention of this work. The numerical
results presented in [20] reflect correct normalization.

tor multiplying this form of Rk in (B5). In 1+1 dimen-
sions there is no spin, and therefore the analogous result
has the form

n(k; t + At) = n(k; t) + ~A;(t + dEt)~ [1 —2n(k; t)],

(B7)

and we can write the rate of pair production as
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