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A systematic calculation of the effective potential, renormalization, the nontrivial ultraviolet fixed

point, and dynamical symmetry breaking in four-fermion theories in space-time dimension 2(D (4 is

presented up to next-to-the-leading order in the 1/N expansion. It is shown that the order-1/N correc-
tion definitely increases the anomalous dimension of the composite operator 4+ at the fixed point. Some
general conclusions on the relation between nontrivial fixed points and the phase transitions in dynami-

cal symmetry breaking are also given.
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I. INTRODUCTION

In recent years, the study of theories with a nontrivial
ultraviolet (UV) fixed point and a large anomalous dimen-
sion has become one of the attractive subjects in quantum
field theory. From the practical point of view, gauge
theories with a nontrivial UV fixed point and large anom-
alous dimension give rise to the possibility of construct-
ing walking technicolor theories which may avoid some
fundamental difficulties of technicolor theories (the large
anomalous dimension reduces the Aavor-changing neutral
current and increases the pseudo-Goldstone-boson
masses) [1] and constructing the top-mode standard mod-
el (dynamical Higgs model based on the top-quark con-
densate) [2]. Theoretically, a nonperturbative study of
field theories with a nontrivial UV fixed point is interest-
ing in its own right. As a field-theory model the four-
fermion theory is of special interest since it provides a
simple and clear scenario of dynamical symmetry break-
ing (DSB) [3,4] and it is an important ingredient in walk-

ing technicolor dynamics and the top-mode standard
model. Furthermore, it is also closely related to con-
densed matter physics. In perturbation theory, it is well
known that the four-fermion theory is renormalizable
only if the space-time dimension D is D 2. However, in
an interesting paper, Wilson [5] showed, in the large-N
limit, that even if 2 & D & 4 the four-fermion theory may
have a finite continuous limit with a special choice of the
bare coupling constant. Moreover, Rosenstein, Warr,
and Park [6] examined the broken-symmetry phase in the
case of D = 3 and proved, in the framework of effective
field theory, that the 3-dimensional four-fermion theory is

*Mailing address.

renormalizable to any order in the 1/N expansion. This
is interesting because it provides an example of nonper-
turbative renormalization which exceeds the perturbative
renormalizability limit D 2, and, moreover, the 1/N ex-
pansion is a widely used nonperturbative approach so
that much interesting physics can be discussed in this
model (especially pions, as pseudo Goldstone bosons, ex-
ist when the space-time dimension is greater than two)

[7]. Recently, a more transparent description has been
given by Kikukawa and Yamawaki [8] and the space-time
dimension is generalized to 2 & D & 4 so that the case of D
very close to 4 can be examined. In Ref. [8], the calcula-
tion is given in the N~ ~ limit with a particular choice
of the renormalization scheme. They have studied explic-
itly the nontrivial UV fixed point and the anomalous di-

mension of the composite operator 0+ which may give
important hints to the study of walking technicolor
theories and the top-mode standard model. The obtained
anomalous dimension y++ at the critical point is D —2

which is really large when D is close to 4 from below.
Since in the real physical problems N is not so large, a
further study up to next-to-leading order in the 1/N ex-
pansion is actually needed for examining whether the
largeness of y++ can still be maintained when order-1/N
corrections are taken into account.

In this paper we give a systematic study of the eftective
potential, renormalization, nontrivial UV fixed point,
DSB and the anomalous dimension of the composite
operator in four-fermion theories with discrete and con-
tinuous chiral symmetries in space-time dimension
2&D &4 up to order 1/Nin the 1/N expansion. We first

give general results without specifying the renormaliza-
tion scheme and then take a convenient subtraction
scheme which is easy to implement to higher orders in

1/N expansion to obtain the order-1/N corrections to the
UV fixed point and y++. An interesting result of our cal-
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culation is that the order-1/N contribution definitely in
creases the anomalous dimension of 'k% at the fixed
point. This supports the study of models based on the
idea of a large anomalous dimension of O'P [1,2]. We will
also give, in this paper, some general conclusions on the
relation between the nontrivial fixed points and the phase
transitions in dynamical symmetry breaking.

If only the simplest composite operator %% is con-
cerned, the effective potential can be calculated either in
the conventional auxiliary field formalism [4] or in a new
formalism dealing directly with Vip [9,10]. However, if
we want to consider further the vacuum expectation
values (VEV's) of more complicated composite operators,
the latter formalism is more convenient than the former
one [10,11] since introducing an auxiliary field for a
higher-dimensional composite operator will lead to the
appearance of higher-dimensional interactions (super-
ficially nonrenormalizable) which causes unnecessary
complications. For the sake of further applications, we
will take, in this paper, the formalism given in Ref. [10].

This paper is organized as follows. In Sec. II we con-
sider the four-fermion theory with discrete chiral symme-
try in space-time dimension 2&D &4. We first give (in
the N~ ~ limit) a systematic way of determining the re-
normalization constants based on the property of the
effective potential. This shows explicitly the renormaliza-
bility of the theory. From the obtained renormalization
constants we calculate the UV fixed point and the anoma-
lous dimension of %%. Then we calculate the order-1/N
contributions. Section III deals with the four-fermion
theory with a continuous chiral symmetry in dimension
2(D (4. Some general conclusions on the relation be-
tween the nontrivial fixed points and the phase transi-
tions in dynamical symmetry breaking will be given in
Sec. IV. The final section (Sec. V) is a concluding re-
mark.

II. FOUR-FERMION THEORY
WITH DISCRETE CHIRAL SYMMETRY

Consider the simplest four-fermion theory in space-
time dimension 2 &D &4:

X(%,%)=ip,i8%, + (%,%, )
2N

where a =1,2, . . . ,N is the subscript for the internal de-
gree of freedom. %,(x) is a four-component Dirac spinor

[8], and the coupling constant g has dimension 2 D. —
This theory is symmetric under the discrete chiral trans-
formation %,(x)~@~V,(x) [12]. To study the dynamical
breaking of this discrete chiral symmetry, we consider
the generating functional

Z[I,I,K]=exp(i W[I,I, K])

= fn~ne

Xexp i x %% +I%+%I

+K(g /N )%4+P (K) ]

(2)

where I, I, and K are external sources. P(K) is a pure
source term which should be

P(K)= g K'
2N

in order to satisfy the consistency condition [9]. The
classical fields g, P, and X are defined by

5W .
~

5W
~

5W g ~~+~Sr '
SJ

'
SIC N

where X is the connected part of the classical field of
(g/N) f% and its value at I,I,K=O gives the VEV of
(g /N)%'%. We first make a partial Legendre transforma-
tion

r'[q, y, K]= W[I,I,K] f d x(Iq+qI) . —

The formula for 1" given in Ref. [10] for the present
model is

r [Q, Q, K]= f d &[&(Q,Q)+K(g/N)pQ+(g/2N)K ] i TrlniG, '—
fd xb, i 0 Texp ifdDxX—z 0

2g P2PI( H, )
(6)

in which the trace Tr is in the functional sense, the quan-
tity b is defined by

G, in (6) is a special propagator with II, as the self-energy
which is now

where I ~ is the loop contribution to P and G is the
physical propagator, II, in (6) is a specially chosen part of
the proper self-energy independent of the external
momentum

iG =i8+—K —b,S

the interaction Lagrangian Lz is defined as the terms
trilinear and quadrulinear in 4 and 4 in
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X(g+'II, Q+'p)+K(g/N)(g+%)(/+4) and the last
term in (6) means the sum of all partially two-particle-
irreducible vacuum diagrams with respect to II,
[P2PI(II, )] defined in Ref. [10] except the P2PI(II, ) dia-
gram (g/2N)[TrG, ] (in the diagram, the propagator is

G, and the vertex is determined by Xl ).
From (3), (4), and (7) we have

I [P,P, X]=I [P,P, K]—Jd x K f/+—X (9)

—K —5=X
N

with which the propagator 6, can be written as

iG, '=i8+X .

The effective action I is then obtained via a further
Legendre transformation

from which we get the effective potential

V„[q,q, X]=—r[q, y, X] Jd x . (10)

Since the VEV's ( 4 ) and ( 4 ) vanish eventually, we
shall ignore g and g in the following calculation, i.e.,

V.s = V.s.[X].
Our system of doing the nonperturbative renormaliza-

tion is based on the property of the effective potential.
Let us define the renormalization constants Zz, Z and

the renormalized quantities XR, g„as

ZrXR~ g=Z-gR .

We know that V,s (or I ) is the generating functional for
proper vertices which are related to the S-matrix ele-
ments. If the theory is renormalizable, V,& should be in-

dependent of the momentum cutoff A after the renormal-
ization of X and g [9], i.e.,

V,s[X(A),g(A), A]= V,s[Zz(A, p)X~(p), Z (A, p)g„(p), A]

V ff[XR(P) gR(i »i ] (12)

where p is an arbitrary scale parameter serving as the
subtraction point in the renormalization. %e shall see
that Eq. (12) will determine the renormalization con-
stants Z& and Z . For convenience, we introduce the
dimensionless coupling constants [5,8]

From (11)and (15a) we have

V s.= 'NZ X [ Z— g~
' F(D)A—

+G(D)Z ~Xz ~ ] (16)

g =ZggR

1S

Z
D —2

A Z
p g

Now we show the details of the calculation.

A. Leading order

D —2 —~ D —2
gR =gRP

Then the renormalization constant Z defined as

(13}

(14a)

(14b)

We see that the requirement (12) can be satisfied if Zz
and [Z~ 'g„' F(D)A —] are A independent, and this
is certainly possible. This explicitly illustrates that the
theory is renormalizable. Actually a finite Zz (p in-

dependent) may be absorbed into the definition of Xz so
that we can take, to this order,

Zg 1 e (17)

Indeed, to leading order, X is just the physical mass of
the fermion which should be renormalization-group in-
variant so that it is not renormalized, just as (17) shows.
The A independence of [Z gz

' F(D)A ] c—an be
written as

To leading order of the 1/X expansion, the last term in
(6) does not contribute. So we have

g
' F(D)AD '="—' A-— (18a)

d k
V,s.[X]=,'Ng X +iN tr I—ln(—It,'+X)

(2~)D

=
—,'NX [g F(D)A +G(D—)iX~ ],

where Ao is a finite dimensionless constant to be deter-
mined by the renormalization condition defining gR at
the subtraction point; i.e., Ao depends on the renormal-
ization scheme. The determination of Ao will be con-
sidered later (18a) giv. es

(15a)

where the trace tr is taken with respect to the spin degree
of freedom, and or

Z =1 gF(D)A +gA—op (18b)

F(D)= 8

(4vr) ~ I (D/2)(D —2)
16I (2—D/2)

(4~) D (D —2)

(15b)

Z =[1 gF(D)](A/p) +—gAO . (18c)

The renormalization-group P function P(git) can be
calculated directly from (18c}:
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a
@g~)=u

~ ga =(D 2—)gs(1 g—~/gR) &

l4 gA
where

—1
g~

=—Ao

(19)

(20)

X [1+gg G (D) I &a /p I

' —ga ~ 0 ] ~ (21)

(21) holds for arbitrary values of ga. The physical vacu-
um should be determined by the minimum of V,trlXs I,
i.e., the solution of d V,tr/d Xa =0 which is now

Ix„/pl[1 g, /—g'+ ,'g D—G(D)I&&/s I (22)

(22) has two possible solutions. It is easy to check from
(21) that the true minimum is

r

gR —gR
1/(,D —2)

2(gJ

DG(D) go+A .
(23)

Therefore the discrete chiral symmetry is unbroken if
g~ &g„*, while it is dynamically broken if gz &gz. gz is
just the critical point separating the two phases. The re-
normalized critical coupling constant obtained in Ref. [8]
is different from the bare critical coupling constant g, .
Actually this is not essential since gz is renormalization
scheme dependent.

The renormalization of the external source E and the
composite operator %% can be written as

K =ZirKg, (4%)=Z@@(%"P)g . (24)

%e see that gz is a nontrivial UV fixed point of the
theory. (18b) and (19) coincide with the forms obtained
in Ref. [8], while, instead of taking a particular subtrac-
tion scheme, we give a general scheme-dependent expres-
sion for gg here [cf. (20)).

Using (17) and (18) we can express the effective poten-
tial (15a) in terms of the renormalized quantities X„and
A:
V,s(Xz)= NP ga— (Xz/p)

suits (19), (21), and (27) hold for both g~ )gz and

Now we consider the determination of Ao. A natural
and simple way of normalizing gz at the subtraction
point p is to refer to the tree-level relation

1 Veff

8Xg xR p
(28)

From (21) and (28) we obtain

8(D —1)I (2—D/2)Ao=
(4n ) (D —2)

(29)

The critical coupling constant gs is then given by (20)
and (29). The subtraction scheme in Ref. [8] is different
from (28). It corresponds to

8(D —1)I (2—D/2)8 (D/2, D/2)Ao=
(4m ) (D —2)

(30)

which differs from ours by a finite renormalization. Since
(28) is simple, we shall take this scheme throughout the
calculation to determine the order-1/N corrections.

From (15b) and (16) we see that the coefficient G(D)
blows up when D=4 so that the renormalized theory
does not hold in the exact 4-dimensional case unless

ga =0 (a trivial theory). However, we can examine the
behavior of the theory when D is close to 4 from below.
It is interesting to notice that gg [cf. (20) and (29)],
y++I, [cf. (27)], and IX& I [cf. (23)) are smooth func-

gR gR

tions of D when D is close to 4. In particular, when D is
close to 4, the renormalization-scheme-independent quan-
tity y++I is close to 2.

B. Next-to-leading order

To order 1/N, the effective potential is

V, [X]=—,'N& [g F(D)A +G(D)IZI ']+ U,

(31)
where U is the order-1/N correction to V,ff contributed
by the P2PI(II, ) diagrams shown in Fig. 1, and it is

Since K couples to 4 and 4 in exactly the same way as
the composite operator %% does, we must have

(25) with

dDk
U = ——f -ln[1+iB (k)]

2 (2n)
(32a)

Z- =Z =(A/i )D-'Z-'
g

(26)

From (26) we obtain the anomalous dimension of the
composite operator %%:

We know that X is the connected piece of ((g/N)V%).
Since X is now independent of A [cf. (17)],we have, apart
from an irrelevant constant factor,

dD .k —X8 (k)=4ig, , (32b)
(2m ) (p +X )[(p —k)'+ &']

In (32) the momenta are Euclidean. The integration (32b)
can be carried out with the standard techmque and the
result is

a
7'qq, = —p ~

lnZq, q, =(D —2)g~ /g~ .
Bp

(27)
(a) (b)

This coincides with the result in Ref. [8). At the critical
point, y++=D —2, which is independent of the renor-
malization scheme as it should be [4]. Note that the re-

FIG. 1. P2PI(II, ) diagrams contributed to the last term in
(6). The shaded line stands for the propagator G„and the bar
at the vertex indicates that the indices of the two fermion lines
on the same side are paired.
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B(k)=ig F(D)AD ~ — D—G(D)~X~D ~ — D—(D —2)G(D)[Q(k, X)] 'kD —2 D —2

2 8

X 8 ——1,——1;—[1+Q '(k, X)] —8 ——1,——1;—[1—Q (k, X)]
D D 1 ) D D 1

2 '2 '2 2 '2 '2 (33)

where
1 /2

Q(k, X)—:1+
4k

Here we have introduced the incomplete P function

8 (p, q;z)—:f 'r~ '(-1 r)—'d-r .
0

Evidently

8(p, q;l)=8(p, q), 8(p, q;0)=0 .

To order I /N the renormalization constants Zz and Z will now have the form

Zz =1+6/N,

Zg = [1 gF(D)]—(A/p) +g [ AD+ A, /N)+gc/N,

(34)

(35a)

(35b)

2b

N
(36a)

where b and c are A-dependent constants which will be determined by the requirement (12), and A, is a finite constant
to be determined by the normalization condition (28). With (11)and (35), we can write V,s and U as

2 D —2 D —2
1 D ) ~R ~R b ~1 C

V.s[XR]=—Nv A 1+g„G(D) 1+ gR Ao+ gR + U
2 p p N N N

U= dk k 'l 1—
(4~) "I (D/2) I+g~ [F(D)(A/p)' —Ao]

D —2 D —2

A 1
X .F(D) — — DG(D)—

p 2 p
D —2

D(D —2)G—(D) — [Q (k, Xq ) ]
8 p

X 8 ——1,——1;—[1+Q '(k, X )]
D D 1

2 '2 '2

8 ——1,———1;—[1—Q '(k X )]
D D 1

2 '2 '2 (36b)

To do the renormalization, we need to extract the divergent part from U. First we notice that U can be written as

U=U)+U2, (37)

A

(4~) "r(D/2)

U2— 1
dk k 'ln

(4~)'"r(D /2)

g&F(D)(&/p)1—
1+g~ [F(D)(A/p) —Ao]

D —2

1+ 'DG(D)
2(1 —g„AO) p

D —2

(37a)

+ D(D —2)G (D—) — [Q (k, Xp ) ]
4 p

x 8 ——1,——1;—[1+Q (k, X~)]D D 1

2 '2 '2

D D 18 ——1 ——1' —[1—Q—'(k X )]
2

'
2 2

(37b)
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U, is a XR-independent constant, so that it can be simply subtracted from V,& without a8'ecting physics.
In the special case of D= 3, (37b) reduces to

2 gg gg k +4IXaI kUz= f dk k ln p+ IX+ I+ arctan
0 1 gR Ao 1 gR Ao 2k

which is of the same form as the result given in Ref. [13]but with Ao unspecified.
To extract further the divergent part from Uz [cf. (37b)] it is sufficient to put

dU2
U =

2 dA+(A —independent terms)

and work out only the part j(d Uz/d A)d A. After lengthy calculations, we get

Uz = Uz" + Uz '+(finite terms),

f dA A 'ln[1+H(g, D)A ],
(4n ) I'(D/2)

(38a)

(38b)

'D —2

Uq
' —— (D —1—)F(D)p

1

4 p p

where

D —2
D —2 8 A+ ln—

H(ga, D) DB(D/2 1,D/2—1) p— p
(38c)

2g I'(2 —D/2)B(D/2 1,D/2 —1)—
H(g~, D) =

(417) (1—g„A )
(39)

1n(A/p)
DB (D/2 1,2 —D/2—)B (D/2, D/2)

'D —2 (40)
A D ( —2)ln(A/p)

g„DB(D/2 1,2—D/2)—B (D/2, D/2)

Similar to (17), we have ignored in b a possible finite constant which is irrelevant in the calculation of P(g„) and y++.
The finite V,tr[X+ ] can then be written as

2

V.s[Xz l=
2

&V gz
' —

gR Ao+
p

D —2

1+ga G (D)
p

(41a)+UI,

where UI is obtained from subtracting the A-dependent part from U; i.e.,

UI ——U —Ui —U2" —U
D —2

A gR ~R
dk k 'ln 1+ 'DG(D)

(4~) "I (D/2) 2(1—
g~ Ao) p

D —2

The term U2" is also a XR-independent constant and can be simply subtracted from V,z. The only relevant divergent
terms are those in Uz' ' which have exactly the same type of IX+/pI dependence as those in the leading order V,tr [cf.
(36a)]. Therefore the divergences can be completely eliminated by suitable choices of b and c which are

+ D(D —2)G (D)—1 k
4 p

[Q(k, X ))

r

X B ——1,——1;—[1+Q '(k, X ))
D D 1

2 2 '2

B ——1,——1;—[1——Q '(k X )]
D D 1

2 '2 '2
'D —2 —1

X 1+H(g~, D)
k

p

2(D —1)p+
D —2

'D —2
(D —2)lnA/p,

H(gR, D)

4p ln—A D

+ P ~R

p DB (D/2, D/2) p
(41b)
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The constant A, determined from (41) and (28) is

D 3 2 (D —1) 1(2—D/2)
(477 )D~ (D —2)

(42)

The above calculation shows explicitly how the four-fermion theory is renormalized up to order 1/N. From (35) and
(40) we get the explicit formulas for Zx and Z:

Aln-
p

NDB(D/2 1,2——D /2)B(D/2, D/2)
(43a)

D —1Z = 1 gF(D—) 1—
2)V

(D —2)ln—A
p

NDB (D/2 —1,2 —D/2)8 (D/2, D/2)

D —2

A)
+g Ao+ (43b)

The renormalization-group P function up to order-1/N can be directly calculated from (43b), and it is

«gR ) =(D 2)gR
gg 11—

NDB (D/2 1,2 ——D/2)8 (D /2, D/2)
(44)

where

+2 (D —1)
(45)

Note that the correction —[NDB(D/2 1,2 —D—/2)8(D/2, D/2)] is independent of the renormalization scheme
which determines A o+ A

&
/N.

From (41) we can calculate the extremum condition d V,tt/DXR =0 w»c»s

1 2D —3

1 — + gRDG(D) —1—
g~ 2

(D —1)

D —2-
R =0.

It is easy to check that the true minimum of V,& is

A —A ~

DG(D)[1 —2 (D —1)/N]

(46)

We see that there are still two phases separated by the nontrivial UV fixed point g& which is increased by an amount of
2 (D —1)/NAo by the order-1/N correction.

The renormalization constant Z~~ can still be determined from the relation between X and ((g /N)%% ). Now the

efFect of Zx [cf. (43a)] should be taken into account. The result is

Aln—
Z — = 1+ p

NDB (D/2 —1,2 —D/2)B (D/2, D/2)

from which we obtain

'D —2

z-i
g

(47)

y~~=(D —2) + 1
(D —2) 1 — +1

gg NDB(D/2 —1,2 —D/2)B(D/2, D/2)
(48)

At the critical point gz =gz, the anomalous dimension is increased by an amount of'

[NDB(D/2 —1,2 —D/2)8(D/2, D/2)] by the order-1/N correction which is independent of the renormalization
scheme. This comes from the term b/N in Zx [Eq. (35a)]. The fact that the order-1/N correction increases but does
not decrease y++ is interesting. It supports the study of models based on the effect of large y++ at the critical point

[1,2]. It is interesting to notice that when D is close to 4 from below, the order-1/N corrections to «gR) and
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y —~, [cf. (44) and (48)] decrease quickly with increasing D [due to the increase of 8 (D/2 —1,2 —D/2)], so that

we still have y —
~

~ -2 when D is close to 4 from below.~~ ~~=~R

III. FOUR-FERMION THEORY WITH CONTINUOUS CHIRAL SYMMETRY

The above calculations can be generalized to the four-fermion theory [4]

x(e, V)=e. i w. + g [(e.q. )' —(e.y,e.)'],
2N

(49)

which is symmetric under a chiral U(1) XU(1) transformation. Now we are going to consider two composite operators

(g /N)'P'p and (g /N)%'y5'P. The generating functional is now

Z [I,I,K,K, ]=exp(i W[I,I,K, K5 ])

=f2&2)qiexp i f d x X(ql, +)+I%'+VI+K O''I'—+K5 qliy—5qi+P(K, K5 ) (50)

where K5 is the external source coupling to (g /N)Vi y5%'
The pure source term P(K,K5) determined by the con-
sistency condition [9] is now

P(K, K5 ) = (K +K5 ) . (51)

The classical fields lit, P, X,X5 are defined by

5W
~

5W
5I

5K
=- N~~"

58' g —.Piy5$+—X5 .
5

(52)

To calculate V,tr with the method in Ref. [10), we choose

II, = —i (b, +i y~b 5),
where

(53)

(54)

and I L is the loop contribution to I defined by

I' [P,g, K,K ]=W[I,I,K,K, ]—f d x(I/+/I) . (55)

The relation (8) still holds now and in addition we have

M:—QX +X (58b)

We see that (58a) is exactly of the same form as (15a) pro-
vided X is replaced by M. The renormalization will then
be the same as (15) and (X~ and ~X„~ replaced by M and

Mz, respectively. Therefore all the above large-N limit
results hold with ~Xz ~

replaced by M„. Since V,tr is only
a function of M, independent of the direction on the
X —X5 plane, we can always choose ~Xa ~

=Ma, ~X5a =0
without the loss of generality. The nonvanishing VEV in
the broken-symmetry phase breaks the chiral U(1) XU(1)
symmetry into a diagonal U(1) symmetry and
(g/N)+iy5+ is the Goldstone-boson field. Indeed, it is
easy to check that

~ ~ee'

gy2 I &R I ™R=0.
sz I& I

=0

The existence of this Goldstone boson is consistent with
Coleman's theorem [14] for 2 &D &4. The present case
is much simpler than the case of D=2 in which a Gold-
stone pole [4] in the N~ 00 limit is in contradiction with
Coleman's theorem. A proper explanation for the D=2
case has been given by Witten [15].

The calculation of the order-1/N correction to V,z. is
also similar to that in the previous model. Now

—E —6 =Xg
5 5 5 (56)

V s(M) =
—,'NM [

' F(D)A +6—(D)M ]

+U+U~, (59)
Thus the propagator 6, is now

iG, '=i8+X+iy&X5 . (57)

To leading order in 1/1V expansion, there is no contri-
bution from the P2PI(II, ) diagrams and we get the
effective potential U~ = ——f In[1+iB,(k)] .i d k

2 (2m. )
(60a)

where U is given in (32) with X replaced by M, and U~ is
the contribution by the P2PI(II, ) diagrams shown in Fig.
1 with an extra iy~ attached to each vertex. The result is

V fr(M)= 2NM [g F(D)A +G(D)M ] (58a) where
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D 2 . 2d p p —pk —M

=ig F(D)A -— D—G(D)M ' — D—(D —2)G(D)k [Q(k, M)]
2 8

X B ——1,——1;—[1+Q (k, M)] B ———1,——1;—[1—
Q (k, M)]

D D 1 D D 1

2 '2 '2 2 '2 '2 (60b)

The presence of U, in (59) makes coupling constant renormalization diff'erent from (43b). It is now

D —2Z = 1 —gF(D) 1—
N

2(D —2)ln—A
p A

1VDB ( D /2 —1,2 D /2—
)B ( D /2, D /2 )

[1 gF(D—)]
p

D —2

+g Ao+ (61)

Correspondingly p(gz ) and y —
+ are all diFerent from (44) and (48). They are now

/3(g~ ) = (D —2)gg
2

XDB (D/2, —1,2 —D/2)B (D/2, D/2)
(62)

and

D —2 gR
y —@=(D—2) + 2(D —1) 1 — +1

gg &D(D —1)B(D/2 —1,2 D/2)B(—D/2, D/2) (63)

where g is given in (45). At the critical point g„=g„,the renormalization-scheme independent order-1/Ã correction
to y++ is

D —2i' (D —1)B(D /2 —1,2 D /2)B (D—/2, D /2)

which is also posltlve. In the case when D ls close to 4 from below, this correction also becomes small quickly
After renormalization, the finite effective potential is

2

V,tr(M~ )= XP, g~—
2 p

where

I+g~ G (D) gR AO+ + Uf+ U5f, (64a)

(4~)'"r(D /2)
1+ DG (D)

2(1 —g„AO)

D —2
MR

D —2

+ D(D —2)G (D—)1 k
4 p

[Qn-'(k, M, )+Q'-'(k, M„)]

X B ——1,——1;—[1+Q (kM~ )]
D D 1

2 '2 '2

B ——1, —1;—[1——Q (k, M~ )]
D D 1

2 '2 '2

k
X 1+0(g~,D)

p

D —2 —1 D —2 D ( —2)ln—A
MR

II(g, ,D) p

4(D —2) ln
A

MR+
D (D —1)B(D/2, D!2) p,

p

D

(64b)
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The qualitative conclusions are not violated by the order-I/N correction.
With the obtained B (k) and B~(k) we can calculate the four-point Green s function and the 2~2 scattering ampli-

tude. The amputated four-point Green's function is simply

1 1
G,'&,'z(k „k2,k3, k4) =—5,&5,& — + — +crossed terms,

I+iB(&s ) 1+iB5(&s )
(65)

where s = —(k&+k2) . After analytic continuation to Minkowskian momenta [s =(kl+k2) ], we get the 2—+2
scattering amplitude. We give here the explicit form of the scattering amplitude for D=3 as an example:

4m.i
abed ~ ab cd

v's

&s +2M'
(s —4M„) ln

s —2M~
i m

—8(s —4M+ )
&s +2M'

&2 ln
&s —2M~

i n —8(s —4M+ )

(66}

This coincides with the result given in Ref. [16].

IV. RELATION BETWEEN THE NONTRIVIAL
FIXED POINTS AND PHASE TRANSITION
IN DYNAMICAL SYMMETRY BREAKING

P g
+I (gR )

g
Q(gR P)

Bp ~gR
(67)

and the solution is

Q(gz, p)=constXp exp —d
g dx

(68)

We give here a general discussion on the relation be-
tween the nontrivial fixed points and the phase transi-
tions in DSB (phase transition of the second kind). Sup-
pose there is a DSB phase transition and the broken- and
unbroken-symmetry phases are separated by the critical
point g„'. Let Q(ga, p) be a dynamically generated physi-
cal observable of dimension d serving as an order param-
eter (for instance, the physical mass). Q(ga, p) exists in
the broken-symmetry phase and goes to zero at gz =gz.
In the following discussion d )0 will be assumed as what
it is in the usual cases. Since Q(ga, p} is a physical ob-
servable, it should be independent of the arbitrary scale
parameter p. Therefore it satisfies the well-known
renormalization-group equation [4,17]

I

The first conclusion we can draw from (70) is that the
critical point gz separating the two phases must be the
fixed point ga since Q(gs, p) depends on gz as a function
of gz —gz and Q(gz, p) can go to zero only at g„=g„'.

We first consider models with P=1. If C (0, gz is an
UV fixed point gz =gUv', if C )0, g~ is an infrared (IR)
fixed point ga =g,"„. We see from (70a) that Q(ga, p) can
go to zero at gz =gz only if C (0, i.e., gz* =g Uv. There-
fore the critical point can only be an UV fixed point rath-
er than an IR one.

For models with P & 1, gR is not a simple zero of
P(ga ), gg is an UV or IR fixed point only if P(g„(ga )

and P(gz )gz ) are of opposite signs. This implies that P
is an odd integer. In this case, we have gz =g Uv if C & 0
or gz =g,'R if C )0. We see from (70b) that gg =g Uv can
always be a critical point of DSB with 0=0 at gz =g Uv.
If gz =gt'R, we see from (70b) that it can be a critical
point only if ( —1)' is negative, but this cannot be
satisfied if P is an odd integer. Therefore, g&~ can never
be a critical point.

We conclude that in both the P=1 and P ) 1 cases the
critical point of the DSB phase transition can only be an
UV pixed point. Gross and Neveu [4], pointed out, in the
case of gg=0, that "infrared stable theori-es cannot pro-
duce masses dynamically. " Our present conclusion is a
generalization of this point in the case of ggQO.

Suppose there is a fixed point gz in the theory. For
specific discussions, let us consider here a special class of
models in which the P function, in the vicinity of ga, is of
the simple form

P(g„)=C (gz gz ) (69)

where C is a constant, and P is an integer, and we take
P ~ 1 to guarantee that the running coupling constant ap-
proaches g~ in the ultraviolet or infrared limit. From
(68) and (69) we obtain, in the broken-symmetry phase,

I

B
f

I

I
I

s
I
I
I

constXp (g„—gz), P=1, (70a)
ca&

Q(g„,p)= constXp exp (g —g')d 1 —P
C(P —1)

P)1. (70b)

FIG. 2. Theory with two fixed points: (a) gUv)giR (b)

gUv (g&z. S stands for the unbroken-symmetry; B stands for
the broken-symmetry phase.
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The above conclusions can be easily generalized to
theories with more than one fixed point. For instance, if
there are two fixed points g Uv and g rR only g Uv can be a
critical point of the DSB phase transition. If gUv &g,*R

DSB can always take place in the gz )gUv region but
never in the region gtt &g Uv since otherwise Q(gtt, )M) will

go to infinity at gz =g&R. If gUv &g&R, DSB can only
take place in the g~ (g Uv region, while the g~ )g Uv re-
gion can only be the unbroken-symmetry phase. These
are shown in Fig. 2. The D-dimensional four-fermion
theories (2 & D & 4) discussed in the previous sections be-
long to the P= 1 case in Fig. 2(a) with g,*R=O, which are
concrete examples of the above general conclusions.

V. CONCLUSIONS

We have given a systematic calculation of the effective
potential, renormalization, nontrivial UV fixed point,
dynamical symmetry breaking, and the anomalous di-
mension y++ for four-fermion theories with discrete and

continuous chiral symmetries in space-time dimension
2 & D & 4 up to order 1/N in 1/N expansion. Our system
of doing the renormalization is based on the cutoff in-
dependence of the effective potential. This renormaliza-
tion procedure has been performed in the leading-order
calculation for the coupling constant and the X renormal-

ization. A simple subtraction scheme is taken
throughout the calculation for obtaining the finite order-
1/N corrections. The explicit results for the effective po-
tential, dynamical symmetry breaking, the nontrivial UV
fixed point gz, and the anomalous dimension y++ are all

given up to order 1/X. The interesting result is that the
order-1/N contribution definitely increases (does not de
crease) y++ at the critical point. This supports the study
of models based on the effect of large y+~ [1,2].

We have also given some general conclusions on the re-
lation between the nontrivial fixed points and the phase
transitions in DSB for a certain class of models with
I3(gtt ) of the simple form (69). For instance, the critical
point of the DSB phase transition can only be an UV
fixed point gUv. The case of more than one fixed point
has also been discussed (cf. Fig. 2).
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