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I. INTRODUCTION

[P( tx), K(y, t)]=i/( tx)5( xy) . (1.2)

In (1.2), K =
—,'(11/+$11) is the generator of scale trans-

formations of the fields. The choice of (1.2) over (1.1)
corresponds to implementing scale transformations uni-
tarily, rather than field translations. Quantum mechani-
cally, this choice is perfectly acceptable. For a more de-
tailed discussion, see Ref. [8].

The Euclidean generating functional that we shall con-
sider is

Z[j]=fD'/exp —S[p]+fjp (1.3)

where S[P] is the usual free field action in d dimensions,

S[P]=f d x[—,'(VP) + —,'moP ] . (1.4}

In a previous work [1] (henceforth known as I), we
used the tactics of derivative expansions [2] to examine
the possible nontriviality of a classically free scalar field P
quantized with a scale-covariant measure. Such measures
were proposed by Klauder [3] and examined by himself
and others [4,5], motivated by questions of triviality [3],
nonrenormalizability [6], and, less directly, by new ways
to quantize gravity [7].

Scale-covariant measures arise naturally if, instead of
the equal-time canonical commutation relations

[$(x,t), II(y, t)] =i5(x y),—

where II(x ) is the field conjugate to P(x), we adopt the
equal-time affine commutation relations

One possible realization of D P is in terms of DP, as in

[3]

DP t&0 (1 7)

D'(Attp)=DP, A(x})0 . (1.8)

We remark that we cannot simply set f=0 in (1.7) be-
cause of the logarithmic divergence at small P. Thus the
way that f vanishes is crucial. If the IVM is regularized
by putting it on a cubic lattice having lattice spacing a, it
can be shown [8,11,12] that

where the product is taken over all space-time points. A
classically free theory quantized with the new measure
D'P, as in (1.3), has been termed a pseudofree theory by
Klauder. Our aim is to determine if there are any choices
of f for which the pseudofree theory of (1.3) in an in
teracting theory. This will be sufficient to demonstrate
that noncanonical quantization can change the
equivalence class of a field theory, as anticipated in Refs.
[3—8]. With one possible exception [9], this has not been
confirmed outside special cases such as the large-N limit
[10]

Despite earlier optimism [3], the results of Monte Car-
lo calculations [4,5], high-temperature series expansions
[3,5], and the derivative expansion of I show that scale-
covariant measures of the form (1.7) do not lead to in-
teracting theories for nonzero f. However, the
independent-value model (IVM) [11],in which the kinetic
term —,'(VP} is omitted from S[P] of (1.4}, provides an

example in which a nontrivial theory can be achieved
provided f~0. In these circumstances D'P is formally
scale invariant, viz. ,

It is the measure D'P that reflects the unitary nature of
field scaling; for positive functions A(x ) )0, D P exhibits
the scaling behavior

ZivMI j]=fD'0exp —f ,'moW'+ —fj O

is non-Gaussian in j if and only if

(1.9)

D'(AP) ~D'P . (1.5) f=O(a") as a~0 . (1.10)

This is to be contrasted with the canonical measure
DP, derived from (1.1), that preserves the translation in-
variance

Specifically, if

f=ha m"

D(/+A) =Dttp, VA(x) . (1.6) then, by direct construction [8],
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ZivM[J]

=exp bmo fd x f (coshju —1)e

1 5Z[j]=exp —c —V
2 6j

exp — —m0 + j
c=1

(1.13)

(1.12)

where m =bm0+ .
The contrast between functionals such as (1.12) and

their canonical counterparts is rejected in the operator
formalism. Here the IVM scalar field takes a bilinear
form in terms of annihilation and creation operators in a
"translated" Fock space [11], with an unconventional
operator-product expansion. This indicates how the
commutation relations (1.2), based on operator products,
can be inequivalent to their canonical counterparts (1.1).

There is reason to believe that the limit f~0 in the
measure (1.7) is also important for the full noncanonical
theory. A considerable effort [13] has been expended on
attempting an analytical solution in this case, essentially
without any success. In fact, calculations about non-
Gaussian measures are most easily performed on the lat-
tice, and we shall follow I in using a lattice to convert the
Euclidean theory of (1.3) into a d-dimensional spin sys-
tem. Treated as a continuous-spin ferrornagnet, the
single-site spin distribution acquires a factor da/~o

~

'

As f~0, this distribution becomes so singular that the
Lebowitz inequality, which bounds the dimensionless
coupling constant y4 from below, no longer holds [3,4].
This bound is crucial in the proof of triviality, and its
violation permits a change in universality class. Some
caution is required because the continuum theory does
not seem to exist for fixed 0& 1 2f &1, for—which the
analogue spin system displays a first-order transition
[4,5]. However, the limit f~0 can exist. This paper, in
almost its entirety, will be devoted to examining the vari-
ous ways in which f can be taken to zero in (1.3) and
(1.7).

The tuning off will require some delicacy, and an ana-
lytic or semianalytic approach is necessary. The well-
tabulated approach of using the high-temperature series
is, however, predicated on the existence of second-order
transitions and may be deceptive as f~0 through posi-
tive values. Instead, we shall continue with the approach
of I and build upon the noncanonical success of the IVM
by expanding about it in powers of field derivatives.

Formally,

presence of derivatives of the field P, as will be shown.
In Sec. II we display the formal series in c, at c = 1, for

the dimensionless four-point coupling constant at zero
momentum, y4. (For its definition see I. We merely note
that, if the Lebowitz inequality is satisfied, then y~ 0.)
In Secs. III and IV we try to choose f so that y4%0 in
the continuum limit; that is, we try to choose f so that we
have a noninteracting theory. Despite the relative brevi-
ty of the series, we believe that we have the makings of a
nontrivial pseudofree theory, as explained in Sec. V.

II. SERIES EXPANSION FOR y4

Our starting point is the series expansion in powers of c
(at c =1) for the dimensionless four-point coupling con-
stant y4. [This was given in I in Eq. (5.19) of that paper. ]
The relevant expansion parameter is

1y= (2.1)

+(2f 1)[4df ' —d(10f —3) ]y'—/f
+o(y')], =i (2.2)

We note that y4 vanishes when 2f =1, as it must from
(1.7), and we recover the canonical free theory.

The series (2.2) is the start of an infinite double series
for y4 of the form

y4=y A (cy, 1/f ),

where

N

A(cy, 1/f )= g c "hkiy "(1/f )',
k, 1)0

in which

(2.3)

(2.4)

hk1 —0, k) l ) 1 . (2.5)

The powers of c count the number of field derivatives
that have been included. Higher powers require greater
effort. It will be seen that relatively short series are
sufficient to establish a pattern. We have calculated hk1
for k, 1 ~ 5. The results are given in Table I.

The IVM is obtained from the k =0 terms of (2.4) at
c=1,

where a is the lattice spacing and M is the fixed renorrnal-
ized mass of the P particle (defined by the pole of the
two-point function).

The reader is referred to I for the details of the series,
which will not be recalculated here. For example, to or-
der y

—d/2
yq= [(2f—1)f+4d(2f 1)fy—

The parameter c is a bookkeeping device. It will be set to
unity after the partial series in c have been evaluated.
Setting c to zero recovers the IVM of (1.9).

We should not assume that D'P of (1.13) is necessarily
the D'P of the IVM, as given in (1.11). The vanishing of
f as a ~0 can be understood as a renormalization effect
(with f an effective coupling) that will be modified by the

IVM — d/2 1
f4 (2.6)

which corresponds to putting cy=0 in the double sum
for A. In the continuum limit, y ~ 00 and y4 vanishes
at fixed f. However, provided f -y [i.e., f=O(a )],
y4 has a negative, finite continuum limit, as we had an-
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TABLE I. Values of the coefficients hk& of Eq. (2.9) in arbitrary dimension d for k, l ~5.

2
8d
8d~ —20d
32d
60d —160d
512d +208d

—384d

—1
—4d
16d —4d2
—112d /3
(440d —68d ) /3
( —13 120d' —13 920d

+ 14016d)/30

0
0
—3d
40d /3
( —98d' —51d ) /3
(2320d'+8120d

—5024d)/30

0
0
0
—4d /3
(21d —d )/3
(200d' —1160d2

+288d)/30

0
0
0
0
—d/6
( —100d +72d )/30

0
0
0
0
0
4d /30

1

by"
(2.7)

for some n )0 (not necessarily integral) and fixed b & 0.
The series (2.4) then takes the form (c = 1)

—d/2 y y h b I k+nl

k)11)0

Let us assume that

(2.8)

A(y;n, b ) = A (y, by")= g h„,b'y"+"'
k, 1

(2.9)

has the large-y (continuum) behavior

A(y;n, b)-yt'"'"' as y ~ ~ . (2.10)

A necessary condition that y4 remain finite and nonzero
(i.e., that the theory is nontrivial) is

p(n, b)=dl2 . (2.11)

The remainder of this paper is devoted to examining the
circumstances under which (2.11) is likely to be true,
given our knowledge of the partial series

ticipated earlier. [There are no difficulties with stability
because the six-leg vertex ys =y (2f —1)(3f—I)lf
is positive in this limit. ]

In I the calculations were performed at fixed f, but
with our earlier comments in mind, we shall now explore
the possibility that f vanishes in the continuum limit, not
necessarily as f -y ~, but as

calculations of [9] based on the high-temperature series,
which show a change in universality class for large f
from that of the Gaussian theory. Thus, for n &N, the
model behaves nontrivially in d =2 and 3 dimensions and
is otherwise trivial.

Of course, for fixed n we must take N )n, ultimately.
At the opposite extreme, if we take n =0 in (2.9), we re-
cover the partial series

N

~~(y;Q, b ) = g hkib y" .
k, 1=0

(2.14)

This is just the partial sum for A(y, b), the series for
fixed I/f =b. In I we showed that, for b &2, the series
did not permit a simple power behavior, corresponding to
the absence of a continuum limit (anticipated on other
grounds [4,5]). However, for b (2, p is calculable. Thus,
if there were continuity in p(n, b ) as n varies from 0 to N,
the results of I would fix the extreme behavior. In reality
the situation is much more complicated, but the results of
I remain a useful touchstone.

III. LOOKING FOR NONTRIVIALITY

Let us return to the IVM of (2.6), rewritten as
—d/2

rvM
X4 (2f —1) . (3.1)

Consider paths in the plane with axes labeled by —lnf
and —lny (Fig. 1). The physical region (y ~ ao ) as f~0
lies in the top left quadrant. The choice (2.7),

N

A~(y;n, b)= g h„,b'y"+"',
k, 1=0

(2.12)

for N ~ 5 as derived from Table I.
Before going into detail, some general observations can

be made. First, for n )N, A. N is independent of b, and
the approximants for p are those obtained from the series -(ny

A(y, 0)= g bkoy",
k

(2.13)

in which b is set to zero in (2.9). That is, for n )N we
derive a b-independent p identical to that obtained from
the limit f~ ec (for the same N), even though we are
considering the case f~0. As we saw in I, the f~ao
limit of the pseudofree theory is identical to the strong-
coupling limit of an interacting AP canonical theory, as
calculated in [2]. This is independently confirmed by the

FIG. l. ( —lnf )-( —lny) plane for the IVM with d =4. The
physical region corresponds to ( —lny ) approaching —~. Non-
triviality can only be achieved as (

—lnf ) approaches + ~ along
lines such as a and b with gradient —2. The model is trivial
along line c and singular along lines d and e.
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D' C' B' A'

1-2f i

All

,
—40

1/y

—lnf =lnb+n lny (3.2)

describes a line, slope —n (0, with intercept lnb.
To be specific we take d =4. Then only for lines with

gradient n =d/2=2 is there a nontrivial limit in the
second quadrant. Lines for which the slope is shallower
give vanishing y4 in the limit, lines for which the slope is

steeper give a divergent y4 in the limit.
In particular, a vertical line (fixed y, vanishing f) gives

a singular y4. We observe that, had we not known in ad-
vance to choose n =1, the existence of lines along which

FIG. 2. (1—2f )-y ' plane for the IVM in d =4 dimensions.

The top left-hand corner (f=0, y = ~) gives the continuum in-

teracting limit. Approached along the line ABCD, the model is

trivial. Along the line A'B'C'D' the model is singular. For a
given value of y4, it is possible to find a curve (e.g., A"B"C"D")

in which a nontrivial continuum limit can be achieved. The
numbers displayed against the points are the values of y4 chosen
in the example.

y4 vanishes, and adjacent lines along which y4 diverges
would have strongly implied lines along which y4
achieved a nonzero limit.

This can be justified from a different viewpoint. Figure
1 provides the best way to discriminate between different
n and b, with large (small) b corresponding to lines with
large positive (negative) intercepts. However, consider
the alternative provided by Fig. 2. Suppose, not knowing
that we needed curves with n =2 for nontriviality, we
had chosen a straight-line path with n = 1, for which the
continuum limit is trivial. Then, as we go toward the top
left corner (f=0, y = oo), y4 vanishes. Specifically, con-
sider the points A, B, C, and D (given schematically in
Fig. 2) at which y4 takes values —40, —30, —20, and
—10, say. At each of the four points, take the vertical
lines of constant y

' (AA', BB',CC', DD'). Suppose, for
example, now that we wished to find a path on which
y4= —60. Assuming continuity in y4, along the vertical
lines, each possesses a point (A",B",C",D") for which
y4= —60. Joining these points gives a path on which the
nontrivial continuum limit can be recovered as y~ ao.
Different choices of y4 naturally require different paths,
all parabolic near the top left corner of Fig. 2.

Before attempting to replicate these results for the full
theory, there is a further calculation to be performed. It
was trivial, from (3.1), to see that y4 diverges as f~0
for fixed y. In general, we assume that, for fixed y,

(3.3)

as f~0. Let pz(y ) denote the Nth approximant to P(y),
as calculated by the method of [2]. We find that

24. 3

[1631.2+47. 19y ' —7.67y +O(y 3)]'

( )
768

[235.4+12.41y ' —1.53y +O(y )]'
18.75

[101431.8+7728.2y
' —806.4y +O(y ) ]'

(3.4)

In each case pz(y) ~0, for large y (Fig. 3), showing
that y4 diverges (negatively) as f~0 for fixed y at least
as severely as for the IVM.

IV. RESULTS IN d + 2 DIMENSIONS
FOR INTEGER n

The results of I were very sensitive to the value of the
dimension d, and we expect that to be the case here also.
We shall consider the dimensions in ascending order.

p

A. d =2 dimensions

A necessary condition that the theory be nontrivial in
d =2 dimensions is, from (2.11), that

p(n, b)=1 . (4.1)

Taking the IVM (with n =d/2) as a guide, we first con-
sider this possibility for integer values of n 1, for which

0
0.015

I I 1

0.010
1/Y

FIG. 3. Approximants for the critical index p of (3.3) for the
partial series of (2.4) at k =5 with N=3, 4, and 5, and denoted
by squares, triangles, and circles, respectively. The approxi-
mant for p with partial series (2.4) at k =4 is also given by the
crosses. For all values of N and large y, p~) 0. p is approxi-
mately constant over the range shown.
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A(y 1 b )=hpp+(h]p +hp]b )y+(h2p+h ]&b )y

+(h3p+h21b)y +( hi p+h 3, b +h 22b )y'

+(h,p+h4, b+h»b'}y'+O(y') . (4.2)

the series (2.9) can be used directly.
For n = 1, the series A (y; 1,b ) takes the form

Adopting the method of I, we use the series (4.2) to cal-
culate the extrapolants for pN(l, b) for p(l, b) when
N =2, 3,4, 5. Here N denotes the highest power of y tak-
en in the partial series A z(y; 1,b ). Details of the method
can be found there. For the case in hand,

(1 b) (b —16)
(b 2b+—320)

( b)
4(b 16)

(16b +496b +32516b +101760b+1172480}'

pq(1 b)=9(b 16) (729b +69498b +5 598 828b +78619672b +1338961920b

+2 776 958 976b + 12 350 062 592)

p~(l, b)=16(b —16) (65536b +12550144b +1433409536b +42803614539b +1075917665637b

+9 076 399 564 459b +73 835 378 488 661b +88 741 717 823 853 b +291 339 511005 117)

(4.3)

p~( 1,b )~ 1 as b ~ oo . (4.4)

We first note that pz is very sensitive to the value b.
However, for all calculated orders, we observe that

various values of b We .have observed that p(n, 0) is in-

dependent of n. Therefore we are not surprised that, for
n=4,

At the other extreme, we see that

p~(l, b)=1 as b~0,
for N & 2. Specifically, we have, for b =0,

px(4 o}=1

just as for n =1. However, we now have
(4.5)

p~(4, b)~0 as b~~,

(4.8)

(4.9}

p3 =0.946,

p4= 0.997,

p5=0. 991 .

(4.6)

unlike the case for n =1.
In fact, the n =4 case is typical of the range 1 & n

N 5. In Fig. 6 we show p3,p4, p5 as functions of b for
n =2, 3, 5. In each case pz(n, b ) decreases from pz = 1 at

+(hqp+h~~b)y +O(y ) (4.7)

It follows that p2 and p3 are independent of b, whereas p4
and p5 depend significantly upon b. Thus p2, p3 can only
give a good estimate when b «1. As b becomes large,
only extrapolants with N ~4 will reflect the true scaling
character of the large-N series.

In Fig. 5 we display the extrapolants for d =2, n =4 at

The series (4.6) must converge to p=1 for N~ oo be-
cause, as we observed earlier, it is the critical index for a
strong-coupling canonical theory, and such a theory is
nontrivial in d =2 dimensions. The sequence (4.6) pro-
vides a positive check on the accuracy of our scheme in
low order. In Fig. 4 we plot p&(l, b ) for N =2, 3,4, 5 for
0&b & ~ ~ We see that these functions agree quite well
over the whole range of b. (Even the N =2 approximant
is in good agreement for b ) 16.)

For n ) 1, the agreement between low-N approximants
becomes worse as n gets larger, as one might expect from
our earlier comments.

For example, for d =2 and n =4,

A (y;4, b ) =hpp+h»y+h, py'+h, py'+(h4p+h»b )y

1.2

).0i;

0.8::

0.4-

0.0
0.0 0.5 1.0

FIG. 4. Plot of p as a function of b*=b' l(l+b' ) in

d =2 dimensions for n = 1, where the squares, straight crosses,
triangles, and slant crosses denote the two-, three-, four-, and
five-line extrapolants, respectively.
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1.2 1.2

1.0- 1.0

0.8— 0.8

04- 0.4-

0.0
0.0 0.5 1.0

0.0
0.0 0.5

i

1.0

FIG. 5. Plot of p as a function of b*=b' /(1+b' ) in
d =2 dimensions for n =4, using the notation of Fig. 1.

1.2
(b)

b=0 to p&=0. These additional results give nothing
new, as is seen when we plot p5 for different n over a wide
range of b (Fig. 7). We shall return to this later.

1.0

0.8-

B. d =3 dimensions

The calculations for d &2 dimensions are much less
complicated than for d =2 dimensions. A necessary con-
dition for nontriviality in d =3 dimensions is that p = 1.5.
For integer n we plot, in Fig. 8, the behavior of p(n, b)
for different b. We observe that, qualitatively, the picture
is very similar to that for d =2 dimensions.

In particular, for n =1—5 the theory will be trivial
apart from the b ~0 limit when we recover the nontrivi-
ality of the canonical strong-coupling theory. This en-
ables us to estimate the errors in low-order perturbation
theory. For example, for n =2,

0.4-

0.0
0.0 0.5 1.0

p3=1.247,

p4= 1.369,

p5= 1.385,

(4.10}

1.2

1.0

not yet achieving 1.5. On the other hand, the b ~ 00 lim-
it at n =1 still gives pz(1, ao )=1, for all N, now not a
desirable goal.

0.8-

P

C. d ~4 dimensions

Beginning with d =4 dimensions, it is necessary that
p=2 for there to be a chance of a nontrivial theory. Our
results are given in Fig. 9. There is no indication of non-
triviality, but we note that p& increases with n for fixed
b &0. Two points are worth making. First, for the
small-b limit,

04-

0.0
0.0

I

0.5 1.0

p(n, O} 1.65 (2,- (4.11)

for n =1,2, 3,4, 5. This concurs with the result of I and FIG. 6. Same plot as Fig. 4 for (a) n =2, (b) n =3, and (c) n =5.
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1.2

1.0-

0.8-

0.4—

0.0
0 1 2 3

I t

4 5
0

0

FIG. 7. Plot of p (d=2 dimensions) as a function of n for
n =1, 2, 3, 4, and 5, where the triangles, boxes, and crosses
denote b = 1, 15, and 10, respectively.

FIG. 9. Same plot as Fig. 7, but for d =4 dimensions.

[2] that the canonical A,P theory is trivial in the strong-
coupling limit. (At n =1 the b —+ee limit gives p= 1 as
before. ) Second, for n =0 and b & 2,

p(0, b ) —l.75 & —=2 .d
2

(4.12)

This result was also obtained in I. Thus small b, small n

is not a likely region for finding nontriviality.
For d ~ 5 dimensions we believe the theory to be trivial

for all constant f )0 (from I). Just as for d =4, there
seems to be no hope of nontriviality when n =2, 3,4, 5,
but we shall not display the results here.

V. PRELIMINARY ANALYSIS

2.0

We begin with d 4 dimensions, plotting the results of
the previous section in Fig. 10 in the style of Fig. 1.

Lines a,b,c,d,e,f correspond to n =0, 1,2, 3,4, 5. As we
move from a to b to c to d to e to f, the number of usable
approximants decreases and our conclusion becomes
more tentative. However, there is no reason to expect
anything but triviality in any of these directions.
Nonetheless, as the slope of the lines increases, the inter-
cept (and hence b) also increases, potentially driving us
closer to nontriviality. From Sec. III we know the verti-
cal line g to be leading to a singular theory. There is
therefore the strong possibility of finding a direction be-
tween f and g, for large n, in which a nontrivial theory is
recovered.

The greatest complications occur for small n. The line
a is expected to lead to a trivial theory only when the in-
tercept lnb (ln2. This is well understood numerically for
d =4 in Monte Carlo calculations for which the continu-
um limit (y —+ ee ) is inaccessible [4,5] when b )2 because
of a first-order phase transition. The inaccessible region
is represented schematically in Fig. 10 by the shaded
area.

A first-order transition is predicted by mean-field

1.5- —Lnf '

1.0—

0.5—
-l'ny

0.0
0

FIG. 8. Same plot as Fig. 7, but for d =3 dimensions.

FIG. 10. ( —lnf)-( —lny) plane. Lines b, c, d, and e lead to
triviality in all dimensions, whereas line f gives a singular y4.
The inaccessible (shaded) region is best understood for d =4 di-

mensions.
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theory, and although it had not been checked explicitly,
we expect such a region to exist for d &4 dimensions.
Equally, pseudofree theories for fixed f(—,

' do not seem

to exist in d =2 dimensions [5]. As a working hy-
pothesis, we assume such a region for all d.

For d =2 dimensions and d =2 alone, there is an addi-
tional effect in that the line with n =1 (line b in Fig. 10)
takes us to nontriviality as the intercept lnb increases, but
otherwise the situation is effectively the same, with hope
for nontriviality for large n.

From the observations above, we need a better under-
standing of the situation for large and small n. Some pro-
gress can be made on each front.

quence (5.6) is approximately d independent. This rein-
forces our prejudices that, with fine tuning, nontrivial
pseudofree theories can be found in all dimensions.

B. Speculations for small n

Without any particular expectations for achieving non-
triviality for small n &1, the presence of an inaccessible
region should make itself felt in the approximants.

For n & 1 it is only possible to construct approximants
on the lines of our earlier calculations when n is a posi-
tive integer. To see this consider the first case of n =

—,',
writing

A. Speculations for large n
1—=bz, y =z 2 (5.7)

Suppose, in trying to approach the n ~ ao limit in Fig.
10, we substitute y for f in A of (2.4) by

1/n
1 1

b
(5.1)

rather than (2.7). That is, b =b" is taken to be n indepen-
dent. Then A(y, 1/f ) becomes

' I +k/n
1 1 1

A y, —= g hki
k l&o b f (5.2)

1Ht= ghki
b k

(5.4)

H, is the weighted sum of the Ith column of Table I to all
values of k, of which we know nothing. However, let us
suppose that, for large b, H& is dominated by the first few
terms of the series. If, for sinall f,

1
7 (5.5)

The sum obtained by taking the limit n ~ ao (for which y
is fixed, as in line f of Fig. 10) is

r

A= +Hi 1
(5.3)

»o
where

We now have a 15-term series

A(z;n, b ) =boo+ bhoiz+h ioz +h i, bz

+hzoz +hzibz +(hzzb +h3o)z

+h3, bz +(h32b +h4o)z + (5.8)

1.4—

If we treat this series in the same way as the series in y,
we expect that for b))1 the series will give sensible
answers up to the 14th extrapolant. However, in the
small-b region, the even powers of z, z i'(p =1,2, 3, . . . )

dominate. Thus, when spanning the whole range in b, we
restrict ourselves to approximants pic ( ,', b ), p—=1,
2, . . . , 7. [In fact, the odd approximants p2~+, ( ,',b)—
agree with the even approximants for large b, but behave
irregularly for small b].

The results are given in Fig. 11 for d =2 dimensions.
We find that the even approximants only converge for
small b or for large b. For intermediate values of b, the

then p-no. . Thus, if u) 0, for large n, p) d/2 and we
have a singular theory. We note that, as b —+~, we re-
cover the IVM for which u =1.

Approximants cr& to o. are calculated as before. For
example, at b=10 in d=4 dimensions, ~& takes the
values

1.0—

0.6-

cr2= 1.999,
O.

3
= 1.286,

o.
4
= 1.143,

F5=1.087 .

(5 6)

The sequence (5.6) is plausibly converging to a positive
limit near unity, indicating the existence of a singular y4
in the continuum limit for n sufticiently large. The se-

0.0'-

-0.2
0.0

I

0.5 0.55 091 1.0

FIG. 11. Same plot as Fig. 1 for n =—', sphere the central
block denotes the range of b for which the extrapolants become
complex. For b (

2
the extrapolants are numerically indistin-

guishable.
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approximants become complex. From our previous com-
ments we interpret this as a sign of an inaccessible part of
the fy-' plane. However, some care is needed. Al-
though this region does not make its effect felt at large b
(as we would have anticipated), small b is puzzling. It

may be that, since small b mitigates the effect of large y in
(2.7), such calculations are less reliable.

Even for large b the situation is complicated, as can be
seen by developing pN as a series in b . For example,
the later approximants for b ))1 are

pi2(2 b)= 0.5470

[9.70X10 —4.476X10 b +4.518X10 b +O(b )]' '

pi4( ,' b)=- 0.5913
[2.36X10 —2.32X10 b +3.67X10 b +O(b )]' '

(5.9)

[All previous approximants have been calculated and
higher orders in b in these and (5.9) are also known. ]

As b —+ ~, we find that

for b —109,

p( ,', b)»-1 . (5.11)

ps( —,', ao ) = 1.706,

p, o( —,', ~ ) = l. 360,

p, 2( —,', ~ )=1.183,

p14( —', 00 )= 1.074 .

(5.10)

The sequence appears converging, but it is not possible to
decide whether, as N~~, pz is greater, or less, than
unity. What is more relevant is that p( ,', b) —+p(——,', ~)
from above. Specifically, pz diverges above the upper
boundary of the region in b for which p is complex.

Accepting these caveats, the approximants show that,

Thus, if p( —,', ~ ) & 1, there is a value of b, b„ for which

p( —,', b, )=1.
A similar situation occurs for n =

—,', for which

p20( —,', b ), say, is complex for O(1) & b & O(10 ), ap-
proaching pro( —,', b )=—,

' from above. However, for n =
—,',

p3N( ,', b) is —real, bounded above by p3~(-,', oo), all of
which are less than unity for 3N large. This suggests cau-
tion in identifying the complexity of b with an inaccessi-
ble region in the parameter space. Nevertheless, this in-
termittent behavior is a signal that something is amiss.

The pattern of complex pz( ,', b), pN—( ,', b) [and r—eal

pz( ,', b)] —persists in all dimensions. For example, for
d =3 we have

pi«-,' b)= 1.8708

[2.36X10 —3.48X10' b +8.01X10' b +O(b )]' ' (5.12)

complex for intermediate values of b, greater than 1.5 for
carefully chosen b ))1. Similar expressions to (5.12) can
be written in d =4 and 5 dimensions.

VI. CONCLUSIONS

In the search for nontrivial noncanonical scalar
theories, the most hopeful sign has come from the
independent-value model of (1.9) onward. Different ways
of taking f~0 in the measure (1.7) enables us to recover
trivial, singular, or nontrivial continuum limits for this
derivative-deficient "heavy-mass" limit. We have at-
tempted to build upon this simple model by including
more and more field derivatives, as in our previous paper
I. The parametrization (2.7) gives us a systematic way in
which to let f vanish (whereon we recover a scale-
invariant measure). Our conclusions are the following.

(i) In all dimensions d there are directions in the fy-
plane [or the ( —lnf )-( —

lny ) plane] in which the theory
becomes trivial and adjacent directions in which it be-
comes singular. This strongly suggests the existence of
the paths for large n (and large b) along which a nontrivi-
al theory can be attained in the continuum limit. This is

I

our main result, giving support to the program proposed
by Klauder and developed in the earlier references. As
such, it goes some way to repair the deficiencies of earlier
attempts to build upon the IVM [14].

(ii) For small n (n =
—,', —,'), the approximants show

pathological behavior in becoming complex for inter-
mediate values of b, although they become real again for
large b. This behavior is consistent with a known inac-
cessible region in parameter space for which the continu-
um limit cannot be achieved. Such directions are to be
avoided.

(iii) In d =2 dimensions there is a further limiting case
(n =1, baz oo) in which nontriviality may be obtained.
The fact that b becomes infinite should not necessarily
cause concern. In the language of Fig. 2, taking b ~ 00

for n =1 corresponds to folding the line ABCD (along
which y4 still vanishes) against the singular line
A'B'C'D'. A different parametrization to (2.7) might en-
able us to come in on a nontrivial path.

All this has been achieved with diagrams with % ~5
internal lines, using MACSYMA to evaluate the approxi-
mants analytically. This is a high-order approximation in
comparison to some series that have been developed re-
cently (e.g. , the 5 expansion recently developed by Bender
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et al. [15]}.However, the order of perturbation theory is
low in comparison to current high-temperature series ex-
pansions in the bookkeeping parameter E [9,16] for
which even much older calculations by Baker and Kin-
caid gave series to eleventh order [17]. (We note that our
tactics are similar in spirit to earlier work by Baker and
Johnson [18].)

Would we be more predictive if we were to extend our
series by a few terms? We doubt it. The patterns already
present for N ~ 5 would persist, but would not permit us
to be more accurate in charting nontriviality. It would
take very much longer series to enable us to perform a
useful multivariate approximant analysis on y4, with its
trivial or singular behavior.

Suppose we had found a path along which a nontrivial

pseudofree field theory was recovered. In all likelihood it
would be suSciently complicated that the resulting field
theory would not be easily calculable. (Even the IVM
was difficult enough. ) Our assumption is that the path-
integral functional Z[j] may not necessarily be the most
useful starting point. Rather, we could use the existence
of the nontrivial path integral to attempt, yet again, an
operator approach to the theory. (For example, the in-
corporation of time derivatives of the scalar field in the
ultr aloe al model [2] has an operator realization
superficially similar to that of the IVM, but its relation-
ship to the singular measures in the path integral is un-
clear. } Despite the distance yet to go to construct non-
canonical theories, we consider our results presented here
to provide a modest step along the way.
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