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Azimuthal asymmetry in lepton-proton scattering at high energies
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We consider the azimuthal angular dependence of the distribution of final-state hadrons in high-
energy lepton-proton scattering. The distribution displays an azimuthal asymmetry due to both
perturbative and nonperturbative effects. At the large momentum transfers attainable, for example,
at the DESY ep collider HERA we expect the perturbative effects to dominate and constitute a clear

test of QCD.
PACS number(s): 13.60.Hb, 12.38.Bx, 12.38.Lg

I. INTRODUCTION

The application of the parton model combined with
quantum chromodynamics (QCD) has exhibited consid-
erable success in describing high-energy processes such
as deep-inelastic leptoproduction. This picture allows us
to isolate the basic pointlike constituent scattering pro-
cess and express the overall cross section as a convolution
of three factors: the distribution function describing the
partons in the initial state, the fragmentation function
describing the distribution of final-state hadrons arising
from the scattered parton, and the parton-lepton hard-
scattering cross section.

Georgi and Politzer [1] proposed the semi-inclusive lep-
toproduction process { +p — ¢ + h + X, where £,¢ are
charged leptons and h is a detected hadron, as a clean
test of perturbative QCD. In particular, they focused on
the azimuthal angular dependence of the hadrons. The
z axis is chosen to be in the direction opposite to the
three-momentum transfer from the leptons, q, and the
z-z plane to be the lepton scattering plane, with the inci-
dent and outgoing leptons having positive z components
of momenta. In this system the azimuthal angle ¢ of the
observed hadron about the z axis can be measured with
respect to the z axis.

Cahn [2] expanded the problem by considering the az-
imuthal angular dependence due to the intrinsic trans-
verse momentum of the partons bound inside the proton.
Because of this intrinsic momentum, perturbative QCD
alone does not describe the observed azimuthal angular
dependence. Berger [3] considered the influence of final-
state interactions in the specific instance of the leptopro-
duction of a pion. The azimuthal asymmetry due to this
final-state interaction is opposite in sign to that due to
the effects studied by Cahn. The azimuthal asymmetries
discussed by both Cahn and Berger are due to nonper-
turbative effects. In the kinematic regime attainable at
the DESY ep collider HERA we expect that the pertur-
bative QCD effects will dominate the nonperturbative
effects, which are described by higher-twist operators in
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the operator-product expansion. This is the motivation
for considering the azimuthal dependence of final hadrons
in ep scattering at HERA. We consider in some detail the
transition from the lower-momentum regime, where non-
perturbative effects dominate, to the purely perturbative
regime.

In Sec. II, we review the kinematics of leptoproduction.
In Sec. III, we define (cos¢) and discuss nonperturba-
tive and perturbative contributions to it. An intuitive
explanation of the azimuthal asymmetry is provided in
Sec. IV. In Sec. V, we present a numerical analysis of
(cos ¢) and compare our results with the data obtained
recently by the E665 Collaboration [4] at Fermilab. We
also discuss the behavior of (cos¢) at large momentum
transfer. In the last section, we conclude that perturba-
tive QCD effects dominate in the kinematic regime that
will be accessible at HERA.

II. CROSS SECTIONS

Let ky (k2) be the initial (final) momentum of the lep-
ton, P; (P;) be the target (observed final-state hadron)
momentum and p; (p2) be the incident (scattered) par-
ton momentum. At high energy, the hadrons will be
produced with momenta nearly parallel to the virtual-
photon direction, ¢# = k{' — k5. We are interested in in-
teractions that generate nonzero transverse momentum
Por, perpendicular to q. We can write the differential
scattering cross section in terms of the laboratory vari-
ables

Q*=-¢*, Pr=Par, ¢,
(1)
L@ _ P _PP
Tk YT R R TR
and the parton variables
2 .
s _ @ _H _P1 P2 2)

= , 2=
€  2p1-q &  pi-g
The azimuthal angle ¢ of the outgoing hadron is mea-
sured with respect to k7.

In the parton model, the semi-inclusive scattering cross
section can be written in terms of the parton variables:
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do
dzy dydzy d?Pr

with d®Pr = PrdPrd¢. The sum over i and j runs
over all types of partons (quarks, antiquarks, and glu-
ons). The cross section dé;; describes the partonic semi-
inclusive process

(k) +i(p1) — €(k2) + j(p2) + X . (4)

F;(€,Q?) is the probability distribution describing an ¢-
type parton with a fraction £ of the target’s momentum,
pt = &P}, and D;(€,Q?) is the probability distribution
for a j-type parton to fragment producing a hadron with
a fraction €’ of the parton’s momentum, Pj' = £'py. Both
dé;; and the Q? dependence of F; and Dj can be calcu-
lated in QCD perturbation theory. It has been shown [5]
that, to lowest nontrivial order in «,, the factorization
exhibited in Eq. (3) obtains and all large logarithms can
be absorbed in F; and D;. In Eq. (3) higher-twist effects
are neglected.

In zeroth order in a4, the parton cross section is given

by
dEr;j _ 27I'(lf2 2
dedydzd%r = yQ? [+ 1=y
x Q76:6(1 — 2)8(1 - 2)6%(pr), (5)
where the Q; are the electric charges of the quarks (in
units of e). Inserting Eq. (5) into Eq. (3), we get the
standard result
do _
d.’EH dy dzH dZPT -

Qy’g’f [1+(1 - 5)28%(Pr)
x Y QiFi(zn, Q") Di(zn, Q7).
(6)

Note that the transverse momentum Py vanishes in the
zeroth order in a;.

To first order in «, the parton scattering processes
develop nonzero pr and nontrivial ¢ dependence. The
relevant processes are

q(p1) + 717 (9) = 9(p2) + 9(p3), (7)
q(p1) + 7" (9) — q(p3) + 9(p2), (8)
g(p1) +7"(¢9) —q+4, 9)

where ¢ is a quark or an antiquark, g is a gluon and 7*
is the virtual photon.! The Feynman diagrams for these
processes are shown in Figs. 1(a)-1(c). In terms of the
variables defined in Egs. (1) and (2), we can express p;
as

! We consider only the electromagnetic case. To be complete,
the weak interaction should be included. The weak interac-
tion case is more complicated, but the qualitative features are
unchanged.

d&’,‘j

= 3 drdzdpr dg d€’ S(zn — £2)3(n — €'2)8°(Pr - €'Pr) Fi(6. Q") oy, D€ @,
2]

3)

(10)

-
ph = (1 —z — z+2z2)py + 2¢* + P,

where pr = (0,pr,0) with py -pr = ¢-pr = 0. For
massless partons we have

2

P = Iparl? = 2220302 (an

Similarly we write
p_Z PR SR
kY = =(2-y)p} + —¢" + k7, (12)
Y Yy
with k2 = (1 —y)Q?/y?, where kr is defined in the same

way as pr. Therefore we find

2

k1~p2=%(1—x—z+2mz——xyz)—-k7'pq', (13)

and

Qz
kz-P2=2T,y[(1—f)(l-y)(l—z)+rzl—kT'pT-

(14)

The semi-inclusive parton scattering cross section is
given by

k2 k2
ky k
P2 P2
Ps
7 P 7
(2)
k2 2
ky k
Ps Ps
P2
2 P 2
(b)
k2
k
Pa(ps)
n
ps(pa)
(<)
FIG. 1. Feynman diagrams for {p scattering at order «a,.
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doi; _ ang
dedydzd?®r ~ 1672Q*

yL,,,,Mi‘;"

x6 (P - Z(1-2)1-2)@?), (1)
J

64

(k1 - p1)? + (k2 - p2)® + (k2 - p1)* + (k1 - p2)?

where L, (M}") is the square of the leptonic (partonic)
current, « is the electromagnetic fine-structure constant
and @, is the charge of the scattered quark. LWM,»‘;." for
the processes in Egs. (7), (8), and (9), i.e., i = qq, q¢g,
and gq, are written as

Ly MP = ——a,Q?
Hethes oy P1-P3 P2 P3

(16)

647 ”
L,yMM =—a,Q"
Heae 37 P1-P2 P2 - P3

Lu,,]\/fg“q" = 87a,Q?

(k1 -p1)? + (k2 - p3)® + (k2 - p1)? + (k1 - p3)?

(k- p3)? + (k2 - p2)® + (k2 - p3)? + (k1 'Pz)z'

(17

P1-P2 P1°P3

The expression in Eq. (17) is obtained from Eq. (16)
by interchanging p, and p3. Figures 2(a)-2(b) exhibit
Eq. (16) and Eq. (18) as functions of ¢ for some fixed
values of z, y, and z. Note that for an incident ¢ the
scattered q tends to appear at ¢ near 180° for all z values.
For an incident g the ¢ dependence has the symmetry
that z — (1 — z) corresponds to ¢ — 180° — ¢.

III. THE DEFINITION OF (cos ¢)
AND INTRINSIC TRANSVERSE MOMENTUM

The average value of cos ¢, which measures the front-
back asymmetry of Pap along the k;p direction, is given
by

1ot (&) —
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®o8f_. _ —..— — — 2=0.1 |
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FIG. 2. Parton cross sections as functions of ¢ for (a)

C4+qg—tC+qg+gand (b)€+g—L+qg+q.

(18)

s
fda(o) cos ¢ + fdd(l) cos ¢
[do©® + [do(V) ’

(cos @) = (19)

where do(®)(do(1)) is the lowest-order (first-order in ay)
hadronic scattering cross section defined in Eq. (3), and
the integrations are over Pr, ¢, zg, y, and zg. It follows
from Egs. (5) and (15) that the numerator in Eq. (19)
will receive contributions only from the second term (the
first term integrates to 0), while the denominator receives
contributions from both terms. Thus (cos @) is thought of
as an order-a, quantity in perturbation theory. However,
this situation can vary significantly when we consider how
(cos ¢) is evaluated in actual experiments. The definition
of the data set for a typical experiment will generally in-
volve a transverse momentum cutoff p.. Only hadrons
with transverse momenta above the cutoff (Pr > p.) will
be included. Since Py = 0 in the zeroth order in a4, eval-
uating {cos ¢) for a data sample with p. > 0 implies that
there is no contribution from the lowest-order processes
to either the numerator or the denominator. Therefore
(cos ¢) is independent of o, at this order in perturbation
theory.

However, partons have nonzero transverse momenta
as a consequence of being confined by the strong inter-
actions inside hadrons of finite size. The characteristic
magnitude of this intrinsic transverse momentum is a few
hundred MeV. As Cahn [2] showed, there is a contribu-
tion to (cos ¢) from the lowest-order processes due to this
intrinsic transverse momentum. Such contributions are
generally referred to as higher-twist effects and can, at
least formally, be analyzed in the context of the operator-
product expansion. We choose to take a more pedestrian
but more explicit approach. In order to study the contri-
bution of intrinsic transverse momentum and to explicitly
analyze the transition from the nonperturbative to per-
turbative regimes, we define a simple model of the intrin-
sic transverse-momentum distribution in both the parton
distribution and fragmentation functions. In particular,
we assume that the parton distribution, as a function of
the intrinsic parton transverse momentum p, is a product

Fi(€,Q%) — d%Fi(¢, p, Q%) = d%Fi(£,Q%)f(p),  (20)

where the F; are the previously defined distribution func-
tions. We further assume that f(p) can be parametrized
as a Gaussian,
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7(0) = (lpl = p) = ===, (21)
normalized to unit integral,
JEZORR (22)

The average intrinsic transverse momentum is given by
(pr) = ay/7/2. [If we use the actual transverse momen-
tum variable pr = £p instead of p in Eq. (21), the mo-
ments of the distribution functions F; do not factorize.
Therefore we choose the form in Eq. (21) to guarantee
the factorization.] We use a similar form for the intrin-
sic transverse momentum distribution in the fragmenta-
tion functions. Again we assume a dependence on only

o'l =p'"
Di(€',Q%) — ' Di(¢', ¢, Q%) = &% Di(¢',Q)d(p),
(23)
and
J
déy; , ~
Todyd: T Q2 O Q26i;6(1 — 2)6(1 ~ 2)5%(pr
X(1+(1—y)2— X /T—y(2-

where % is the unit vector in the direction of the k7 per-
pendicular to q. We also have to modify §2(Pr — &'py)
in Eq. (3). In the center-of-mass frame of the virtual
photon and the incoming proton we can write

”Z(QQ,O,O,—Pl), Plp =(E1)010;PI)3 (26)

where, in the limit M?/Q? < 1, P = Q*/4zu(1 — zH).
Thus the spatial momentum of the struck quark is p; =
p— (1 — &)P;1. With the struck quark fragmenting into
a hadron according to Eq. (23), the three-momentum of
the hadron can be written as

Py=¢pat+p' =¢lp-(1-EP1]+ /" (27)
Since p' is defined to be perpendicular to p2, we have

p-p=(1=P1-p (28)
Thus we can decompose p' as
P, p P,
p’ = (p’ — P12 Pl) + P2 Pl) (29)

where the vector in the parentheses is perpendicular to q,
and the second vector is parallel to q (and P;). Therefore
J

2 2
d(p') = bzi Y,
again with unit integral. Note that the two-dimensional
transverse momentum p (p') is defined to be perpendicu-
lar to the direction of motion of the incoming proton (out-
going parton). These Gaussian forms are, in fact, moti-
vated by experimental measurements of intrinsic trans-
verse momentum effects in, e.g., Drell-Yan and jet frag-
mentation experiments. They also have the virtues of
being simple and of providing an easily understood and
qualitatively accurate description of the experimentally
observed behavior of (cos¢) at low values of @ and of
the transverse momentum cutoff, where nonperturbative
effects dominate. At large values of @, the contribution
to (cos ¢) from these intrinsic transverse momenta is, in
any case, negligible compared to the order a,, perturba-
tive result. This will be discussed in detail in Sec. V.

If we allow the initial partons to have intrinsic trans-
verse momentum, p; = £P; + p with P; - p = 0, the
parton cross section at lowest order is modified to

(24)

8(pr - x)*
+ _(—Q2—(1 -9,
[
the hadron’s transverse momentum, perpendicular to q,
is given by

(25)

’

Pl'p
P

Pr=¢p+p - P;. (30)

Using Eq. (28), we can write the magnitude of this vector
as

Pp = (p+ o)t - TP
1
2
=(@p+p) - oL L) (31)

To keep our formulas simple we will neglect the term of
the order p?/Q? so that Pt = ¢'p + p’. For average val-
ues of p and p’ of the order of 500 MeV with @ larger than
a few GeV and with small z g, the error of this approxi-
mation is less than 10%. In the numerical work displayed
in the figures we use the full expression of Eq. (31). Us-
ing a delta function of the form 62(Pr — &'p — p') along
with the distribution functions of Eq. (20) and the frag-
mentation functions of Eq. (23), we obtain, including the
integrals over p and p/,

2 2 — /1'___ 2 )
/da(o) cos¢ = —Sw%w ZQ?F}‘(.’L’H)D]'(ZH)——%/ drz2e™® (32)
v - QV? + a2z, Jpu ramn
where p. is the transverse momentum cutoff for the observed hadrons. We also have
2
(0) — Pc
/da 27l’ ZQJF (:CH)D (zH)exp (—W)
14+ (1-y)? 1—y a?b? zga’® 2 2

g { Yy 4 y@? | b2 + 2%4a? &7 z§a2> (e + %+ 2y (33)
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Thus we see that including intrinsic transverse mo-
mentum leads to a nonzero, negative (cos¢) even for
the lowest-order cross section, as was already clear from
Eq. (25).

With the typical sizes of a and b of the order of a
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momenta of the partons simply cannot produce hadrons
with transverse momenta larger than p. and the effects
from o(®) are exponentially suppressed. Therefore, for p,
larger than 2 GeV, (cos @) is, to a good approximation,

fdo) cos ¢

few hundred MeV, we expect that for p, > 2 GeV the (cos @) ~ ey (34)
contributions from o(®) [Eq. S32), Eq. (33)] are negligible Jdo .
compared to those from o(1). The intrinsic transverse The numerator can be written as
|
/d(f(l) cos¢ = /dQPT cos ¢ do
d(CH dy dZH dZPT
_ 8o, a? (2 - y)\/l - dz dz
=35 / / ZQJ(A + B; +Cj), (35)
where
= %2 —2)(1-— (ZH 52\ p. (22 o2
AJ (1~£)(1—Z)[Iz+(l 13)(1 z)]FJ(va)DJ(Z’Q)w
o :l:(l - Z) (TH 2 ZH 2
BJ_ (l_x)z[x(l_z)'l'(l“x)z]F](1:,Q)DG(T,Q), (36)
o z(1 C(FH 2
Cj=- \/z(l )(1~2x><1—2z)FG( @) D; (£,¢7).

These expressions are identical with previous perturbative results as in Ref. [1] (except for the sign of C;) and Ref. [7].

The denominator can likewise be written as

/do'(l) dO’

d’P
/ Td:cH dydzH d2PT

=§a¢;21/ dz/ dZZQ (AL + B +C)),
where

=1 (51.9) ([1+(1—y)2]_ﬁi_

i} 1-2)(1-2)

2 2

B; = F; (*£,q?) ([1+(1—y)2]x_z_421(.1__‘_i)_
j 2 *H @ 2 2 2
Cj:é'FG(T’Q)([1+(1—y)][z +(1-2)?

The quantities A, B, and C and those with primes
arise from the diagrams Figs. 1(a)-1(c), respectively.

At large zy, the gluon fragmentation function is ex-
pected to be small compared to the quark fragmentation
function. Therefore A; > B; at large zg, and the struck
quarks tend to produce hadrons with negative (cos¢).
The contribution to {(cos ¢) from gluons in the target (C;)
can have either sign depending on whether z > 0.5 or
z < 0.5. When we probe the small zy region where the
gluon contribution dominates and integrate over a wide
region of zy, the asymmetry tends to be washed out.
It is difficult to obtain precise information on the gluon
distribution function at low zg from the measurement
of the asymmetry in the distribution of hadrons. If we
choose, e.g., zg > 0.01, where the quark distribution

224+ (1-2)?

(37)

+2y%(1—z2) +4(1 - y)(1 + 3“)) D; (sz Qz) )

+22(1 -z 4 z2) +4(1 —y)[1 + 3z(1 — z)]) D¢ (z—f-,Qz) ,

(38)

ZH 2
16(1 - y)z(1 - 2) ) D; (£,Q?) .
FEE 16— e1 - ) D (2,0
r
functions are larger than the gluon distribution function,
perturbative QCD predicts a negative {(cos @), since the
main contribution comes from A;.

IV. WHY AN ASYMMETRY?

We can understand why there is an asymmetry at or-
der a, in the context of color coherence at the parton
level. It is known that when a quark-antiquark pair is
produced in a color-singlet state soft gluons tend to be
emitted inside the cone defined by the quark-antiquark
pair. The color field interferes constructively inside the
cone and destructively outside the cone. In our case,
we have an incoming and an outgoing quark [3 in color
SU(3)]. However, we can regard the incoming quark as
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I k,
) 21 2 21
[3 X‘T
(a) (b)
FIG. 3. Two possible cases for the quark and an emitted
gluon.

an outgoing antiquark [3 in color SU(3)] and the pair
as a color singlet. Figure 3 shows the configuration of
the outgoing quark and an emitted gluon in the center-
of-mass frame of the incoming lepton and the incoming
proton. Because of the color coherence, the configuration
of Fig. 3(a) is more probable than that of Fig. 3(b) be-
cause the gluon is inside the cone defined by the quarks.
It is exactly this configuration that gives negative (cos ¢)
after boosting to the photon-proton cm frame, assuming
that we are in a kinematic regime where the observed
hadron is coming from the fragmentation of the quark.

For comparison we can consider a “toy” model with
scalar gluons. If we assume that the gluon is a scalar
particle, A*, B*, and C*® corresponding to A, B, and C
in Eq. (36) are given by

e 1 — ¥ (r4z-2
Ai_?\/(l—:l;)(l—z){ + 2az}

o (2.0%) 0, (2.7,

B == -+ [
(L e)0s(20), @
ci=0

If we also assume the scalar gluon to have the same cou-
pling constant, group theory factors, Fg and Dg as the
vector gluon, (cos @) is positive. Therefore the sign of
(cos @) itself confirms that the gluon is a vector rather
than a scalar particle. The analogous explicit results to
Fig. 2 but for this toy scalar model are exhibited in Fig. 4.

V. NUMERICAL ANALYSIS

Finally let us consider how (cos¢), as defined in
Eq. (19) with Pr cutoff p., behaves numerically in
our simple model including both next-to-leading-order
QCD and intrinsic transverse momentum. We use the
Harriman-Martin-Roberts-Stirling (HMRS) (set B) par-
ton distribution functions [6] for F;(£, @?) in Eq. (20). In
order to keep the analysis as simple and transparent as
possible, we use analytic parton fragmentation functions.
This is to be contrasted with earlier studies using Monte
Carlo simulation for the hadronization process [7]. We
choose Sehgal’s parametrization [8] for the quark frag-
mentation functions to pions,

L (a) 4
101 92100GeV, z=0.3, y=0.5 +
= X — 2=0.1
3 o8 - 2201
3 ---- 2=05
-] — — 2=0.7 |
§ 0.6 | c—- 2=0.9
X
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o
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—— — T~ _
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(deg)
1ot (b E
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!
P osf *
2
£ 0.6 .
3
3
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g
3 2=0.1,0.9
0.2F B
2=0.3,0.7 o o _
=505 oo EE e
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FIG. 4. Parton cross sections for a scalar gluon as func-

tions of ¢ for (a) £+¢ — £+ ¢+gs and (b) £+ g, — €+ qg+7q.

1
Dj(z) = -[0.05 + 1.05(1 — z)?], (40)
and the gluon fragmentation function to pions,
Dg(2) =-01-2.1z + -2-2-2 +42Inz. (41)

As suggested earlier the gluon fragmentation function
is “softer” than that of the quarks, D¢ (z) < D;(z) for
z > 0.21. This functional form for the gluons is obtained
by assuming that the gluon first breaks up into a quark-
antiquark pair, and then the quarks fragment into the
observed hadrons. At large zy, the hadrons from quark
fragmentation will dominate. For the sake of simplic-
ity we also neglect the QCD-induced scale dependence
(renormalization) of these fragmentation functions. For
the kinematic regime of interest we do not expect there
to be a large variation and, in any case, this variation
will largely cancel out in the ratio defining (cos ¢).

To proceed we must deal with the fact that the pertur-
bative expressions in Egs. (36) and (38) are divergent as
and z approach 1. This limit corresponds to the situation
when the emitted gluon is soft and is relevant whenever
we include hadrons with small Pr in our calculation, i.e.,
for small values of the cutoff p.. Such an infrared di-
vergence is an artifact of the way we have treated the
perturbative expansion. For a sufficiently inclusive quan-
tity it would be canceled by the virtual-gluon contribu-
tions. In any case, the region where the difficulty arises
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is where the fixed-order perturbative calculation is not
valid. This is the regime that we expect to be described
by the lowest-order perturbative result including intrinsic
transverse momentum. In order to define a perturbative
result that can interpolate over all regions of phase space,
we control the integration of the order-a; cross section
so as to ensure that the contribution from the potentially
singular region is bounded by the lowest-order contribu-
tion to the total (fully integrated) cross section. In par-
ticular, we require that the integration of the order-c,
contribution satisfy In(1 — z)In(1 — z) < 37/4a,. The
Pr cut p. introduces a similar (but physically motivated)
constraint of the form (1 —z)(1 —z) > (pc/zuQ)? [recall
Eq. (11)]. Thus the former, ad hoc constraint is numeri-
cally relevant only for p./Q < 0.01. Except for astronom-
ical values of @ this corresponds to the nonperturbative
regime where the order «;, perturbative contribution it-
self is not dominant. For larger values of p, we obtain
the usual perturbative result. Thus our ad hoc constraint
is only technical and has no impact on the physics con-
clusions.

Perhaps the most interesting feature of our analysis is
the amount of structure we see in the quantity (cos¢)
as a function of the transverse momentum cutoff p..
As suggested earlier nonperturbative effects are negligi-
ble at large values of p. because the assumed intrinsic
transverse momenta in the distribution and fragmenta-
tion functions are too small to produce Pr > p.. There-
fore (cos ¢) exhibits structure as one goes from the region
dominated by nonperturbative physics to the perturba-
tive regime. This is illustrated in Fig. 5 where (cos ¢} is
plotted as a function of p. along with recent data from
the E665 Collaboration at Fermilab [4]. These data cor-
respond to @2 > 3.0 GeV? with (Q?) = 11.2 GeV? and
the ranges 0.003 < zyg < 0.15, 0.2 < z < 1.0 and
0.1 < y < 0.85. The theoretical curves correspond to
integrating over the same ranges. In order to make an
average over the wide range of Q?, we use the relation
Q? = 2M Ezyy, where M is the proton mass and E is the
initial lepton energy in the lab frame. F is fixed at 490
GeV in the numerical analysis, while it is sharply peaked
at 490 GeV in experiments. The various curves corre-
spond to different values of the parameters a and b, de-
fined in Eq. (21) and Eq. (24), respectively. We see that
our simple Gaussian model for the intrinsic transverse
momentum distributions describes the experimental data
reasonably for a &= b = 0.6 GeV. This corresponds to an
average intrinsic transverse momenta of 0.53 GeV. For
these parameter values, the nonperturbative result is less
than 10% of the perturbative result when p. > 2.0 GeV,
and negligible for p. > 3.0 GeV. However, nonperturba-
tive effects cannot be neglected in the experimental data
from E665 Collaboration, where they analyze samples
of hadrons with the momentum cutoff smaller than 2.0
GeV.

An interesting feature of both the data and the theo-
retical model is the presence of a minimum (i.e., a maxi-
mum of the magnitude |(cos ¢)|) or dip at p. =~ 1.0 GeV.
For small values of p, the nonperturbative contributions
dominate and |{cos ¢)| is an increasing function of p.. For
pe > 1.0 GeV the nonperturbative effects are relatively
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FIG. 5. (cos¢) for (a) various values of a with b6=0.6 GeV
and (b) various values of b with a = 0.6 GeV.

suppressed and the perturbative effects are dominant but
exhibit a relatively small value for |(cos¢)|. Hence the
position of the dip in these low Q? data identifies the re-
gion where nonperturbative and perturbative effects are
comparable.

In more detail, Fig. 5(a) displays results for fixed
b = 0.6 GeV and varying a. For large a, the initial
parton can have large transverse momentum. Since the
nonperturbative effect is proportional to the magnitude
of the transverse momentum, the magnitude of the non-
perturbative (cos @) should increase as a increases. This
is clearly illustrated in Fig. 5(a). Figure 5(b) indicates
that the behavior of (cos¢@) as b varies, with fixed a =
0.6 GeV, is more complicated. As b increases, the po-
sition of the dip shifts to larger p. with little variation
in the magnitude of the effect. Although our model for
the intrinsic transverse momentum distribution is an ad
hoc construction, it seems to describe the experimental
data reasonably with only two parameters. The values of
these parameters that fit the data are also plausible, cor-
responding to intrinsic transverse momenta of the order
of 500-600 MeV.

If we shift our focus to larger Q2 values and larger
transverse momenta for the hadrons, the nonperturba-
tive contribution is much less important. The model
results are no longer sensitive to the detailed assump-
tions about the intrinsic transverse momentum distri-
bution. Figures 6(a) and 6(b) show (cos¢) for @ =10
GeV, and 100 GeV, respectively, averaged over the ranges
0.05 < zg <0.15,02 <y <08and 0.3 <zyg <1.0.
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FIG. 6. (cos¢) for (a) Q = 10 GeV and for (b) Q = 100
GeV.

The solid line is the full expression for (cos ¢) in Eq. (19)
and the dashed line is the perturbative result of Eq. (34)
[the two curves are effectively identical in Fig. 6(b)]. For
either @ value and for p, > 2 GeV, we see that non-
perturbative effects are negligible. In this regime the
perturbative results are also insensitive to our regular-
ization procedure for the z and 2 integrals. On the other
hand, (cos ¢) still exhibits structure as a function of p,.
Its magnitude, |{cos )|, still has a maximum but now
at p./Q =~ 0.1, approximately independent of Q. This
perturbative structure was hidden by the dominant non-
perturbative contribution in Fig. 5. We can understand
this behavior qualitatively by considering the dependence
on p. of the numerator and denominator in Eq. (19)
separately. Both are monotonically decreasing functions
of p.. However, for small p, values the denominator
(the total semi-inclusive cross section) initially falls much
more rapidly than the numerator leading to an increasing
|{cos ¢)|. For p./@ > 0.1 the denominator falls somewhat
more slowly than the numerator until p./Q > 0.5 when
the roles are again reversed. This structure leads to the
observed feature that after the first maximum in |{cos ¢)|
there is a local minimum followed by a gradual increase.
The detailed structure of this latter behavior is depen-
dent on the relative role of all three processes [Egs. (7),
(8), and (9)] and may prove useful in isolating features
of the gluon structure and fragmentation functions. By
varying the choice of renormalization scale and the choice
of structure functions, we estimate that the theoretical

uncertainty in our results, due to higher orders in the per-
turbative expansion and uncertainties in the distribution
and fragmentation functions, to be of order 10%. This
high level of precision arises from the cancellation of ef-
fects in the ratio defining (cos ¢). Detailed measurements
of this quantity at HERA will provide both general and
detailed tests of the underlying QCD structure.

VI. CONCLUSION

We have seen that a simple model calculation, in-
cluding both the first nontrivial order in perturbative
QCD and nonperturbative physics in the form of intrin-
sic transverse momentum in the lowest-order cross sec-
tion, offers a simple understanding of existing data on the
azimuthal structure of the hadronic final state in deep-
inelastic £p scattering. In particular, we have analyzed
the dependence of the azimuthal asymmetry parameter
(cos ¢) on the transverse momentum cutoff p., which de-
fines the sample of hadrons. An attractive feature of
this analysis in our simple model is that we are able to
track the dependence on p. over a kinematic range that
encompasses both the nonperturbative and perturbative
regimes. The study seems to nicely interpolate between
earlier analyses that focused either on low values of p. [9]
or on larger values [10]. We note that the dependence of
(cos ¢) on p. displays a remarkable amount of structure
and matching this structure to the data serves to iden-
tify the transition region between nonperturbative and
perturbative physics.

The model employs Gaussian distributions of intrinsic
transverse momenta in both the initial and final states.
For p. < 2 GeV, (cos ¢) depends sensitively on the width
parameters of these Gaussians, a and b and thus on non-
perturbative physics. The range of a and b values re-
quired to describe the present data imply average in-
trinsic transverse momenta in the reasonable region of
500-600 MeV. At large values of Q@ with p, > 2 GeV,
the details of the nonperturbative contributions do not
matter since these contributions are suppressed. In this
regime, {cos ¢) is independent of a, (at the order calcu-
lated here). However, (cos ) displays nontrivial depen-
dence on the momentum cutoff p. that is characteristic
of the nature of QCD and of the structure of the target
hadrons.? In particular, the precise form of the depen-
dence is a function of the spin of the exchanged gluon
and of the relative contributions of the quarks and glu-
ons in the target. Detailed measurements of (cos ¢) ver-
sus p. will provide detailed tests of our understanding of
the strong interactions. Finally we have seen that the
existing data for (cos¢) are predominantly in the non-
perturbative regime but that perturbative QCD should
dominate in the expected kinematic regime at HERA.

2We note that Monte Carlo simulations of the hadronic final
states that neglect the correlations between the leptonic and
hadronic parts of the scattering amplitude, which lead to the
perturbative asymmetry, will be unable to produce the correct
azimuthal angular dependence of the final-state hadrons.
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