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Fermion zero modes around a general multivortex background are analyzed in supersymmetrized
self-dual (Maxwell —) Chem-Simons Higgs systems, using the index theorem and other means. In the
models with an %=2 extended supersymmetry, a simple connection is established between all indepen-
dent fermion zero modes and corresponding bosonic zero modes. We provide a supersymmetry-based
explanation of the result.
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I. INTRODUCTION

Recently, there has been a surge of interest in (2+ 1)-
dimensional gauge-field theories. This is partially due to
the novel possibility involving the Chem-Simons term
[1],which can significantly alter the long-distance behav-
ior of the theory (e.g. , the statistics of local excitations).
The characteristics of allowed solitons are also affected
by the presence of the Chem-Simons term. As is well
known, the usual (2+ 1)-dimensional Abelian Higgs mod-
el supports only electrically neutral vortices as topologi-
cally stable soliton solutions [2]. But with the Chern-
Simons term introduced into the theory, we can have
electrically charged vortices [3] that are (extended)
anyons [4]. It is conceivable that these anyonic vortices
may turn out to have a significant dynamical role, say, in
determining the phase structure of (2+1)-dimensional
gauge theories.

With some special choice of the Higgs potential in
(2+ 1)-dimensional gauge models, one can obtain interest-
ing limiting theories in which the minimum-energy
static-soliton solutions satisfy first-order differential equa-
tions, called the Bogomol'nyi or self-duality equations.
This happens for a specific scalar quartic coupling in the
usual Abelian Higgs model [5], while in the case of the
"minimal" Chem-Simons Higgs model (i.e., without the
Maxwell term in the action) a specific sixth-order poten-
tial form is required [6,7]. As described in Ref. [8], there
are also more general self-dual systems in which both the
Maxwell and Chem-Simons terms are simultaneously
present. A remarkable feature with these self-dual sys-
tems is the existence of static multisoliton solutions
which represent static configurations of several lumps, ei-
ther superimposed at one point or separated in space.
One can confirm this fact by counting independent zero
modes to the boson fIuctuation equations in the back-
ground field of a particular soliton solution, and the index
theorem is useful for the purpose.

The appearance of self-dual structures for certain spe-
cial Higgs potentials may be ascribed either to extended
supersymmetry [9,10] or to suitable dimensional reduc-
tions of the 4D self-dual Yang-Mills system [11]. In the
presence of the Chem-Simons term, the super-
symmetry-based understanding (for the case of the
minimal Chem-Simons Higgs model) was provided in
Ref. [12], while that through dimensional reduction of
the 4D Yang-Mills system is yet to be uncovered (but, see
Ref. [13]). In the present paper, we shall elucidate the
role of supersymmetry further by studying fermion zero
modes around a multisoliton background in the context
of the fully supersymmetrized versions of the above-
mentioned (2+1)-dimensional self-dual systems. The in-
dex theorem and supersymmetry-based relationships will
be two of our main theoretical tools. Note that fermion
zero modes are very important in the quantum study of
the models, representing the degeneracy of the soliton
states (in contradistinction to bosonic zero modes which
become collective coordinates [14]). In supersymmetric
models in particular, they account for the soliton super-
multiplet structure [15]; in this sense, our analysis also
constitutes the first step toward a quantum theory of su-
persymmetric Chem-Simons vortices.

For the models under study it is found that all fermion
zero modes around the general multivortex background
are simply related to the corresponding bosonic zero
modes (discussed earlier in Refs. [7] and [16]), indepen-
dently of the fact that there ought to be a few fermion
zero modes related to supersymmetry transformations of
the background classical solution. Note that similar ob-
servations were made previously for other self-dual sys-
tems [17],but in our case the situation is more complex.
We shall here provide a simple understanding for this
fact by suitably extending the argument given by Zumino
some time ago for the instanton background case [18].
The N =2 supersymmetry is crucial. Much of our discus-
sion will be addressed to the self-dua1 Maxwell —Chern-
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Simons system of Ref. [8], which contains other self-dual
systems mentioned above as limiting cases.

Fermion zero modes of a Dirac operator around the
rotationally symmetric vortex background have been ana-
lyzed in Ref. [19] using partial-wave analysis. For some
specific cases their findings do serve as a useful check for
our more formal considerations. But the models con-
sidered in Ref. [19] do not have built-in supersymmetry,
and as it turns out, their analysis is insufficient to yield

any definite conclusion about the number of fermion zero
modes for the interesting case of the Dirac equations in
N=2 supersymmetric Chem-Simons theories (see Sec.
III).

The organization of this paper is as follows. In Sec. II
we provide first the full content of the %=2 supersym-
metric generalization (and also the N=1 model with
fermion-number violation} of the Maxwell —Chern-
Simons system of Ref. [8], and review briefly some per-
tinent facts on the structure of self-dual vortex solutions.
In Sec. III, we study the fermion zero modes around the
general multivortex background in supersymmetric mod-
els. In the 1V=2 models, we first present the index
theorem analysis and then substantiate it by presenting
the simple formulas for the fermion zero modes in terms
of the corresponding bosonic zero modes (satisfying ap-
propriate background gauge conditions). For the sake of
comparison the fermion zero modes in the %=1 super-
symmetric model are also discussed. Then, in Sec. IV, we
clarify the role of supersymmetry in the relation between
the fermion zero modes and the bosonic ones of the N =2
models. Section V contains a summary and discussion of
our work. In the appendixes, we present the superfield
formulation of the models considered by us and also give
a proof of a certain fact which has been used in the main
text.

II. SUPERSYMMETRIC MAXWELL-CHERN-SIMONS
THEORY

In a (2+1)-dimensional Abelian Higgs model with
both Maxwell and Chem-Simons terms in the gauge-field
action, we can have static-vortex solutions satisfying the
self-duality equations only when the scalar potential takes
a very special form [8]. Just as in the case of self-dual
Chem-Simons Higgs theory [12], requiring an N=2 su-

persymmetry uniquely fixes this special potential form.
(See Appendix A for the proof. ) There also exists an
N=1 supersymmetric model which produces exactly the
same bosonic part of the Lagrangian as that of the N =2
model. We will consider both possibilities here. Con-
struction of these supersymmetric models is facilitated by
the use of superfields. But this superfield formalism is
relegated to Appendix A, and we shall below describe
these models using component fields.

The Lagrangian for the N =2 model is given by

(2.1)

and

X~ '=i py"D„/+i Xy"d~+ tcXX

&—v'2e(yX4 X—A')+ eNyy . (2.3)

Here D„=B„—ieA„ is the covariant derivative, X a real
scalar, p a complex charged scalar, and g(X) a complex
charged (neutral} two-component spinor. Our metric ten-
sor g" has the signature ( —,+,+ ), and the y matrices
satisfy the relation y"y = —g"'—is" y&. This theory
possesses the supersymmetry

5„~„=i(mr~ xr—„n»
5„$=&2rif, 5@=i (Xri riX—),
5„$= &2(—i y"riD„P rieN—P),
5~=y"ri(B„N+ ,'ie„„—&F )+i'(eiP~ +aN ev )

—.

(2.4)

Here the spinor parameter q should be taken as being
complex Grassmannian.

The Lagrangian with N =1 supersymmetry while pos-
sessing the same bosonic sector is

g(i) —~ +~(1)8

where

&'"=i fr"D„0+iXr"d~+,'~(XX'+X'X)

i v 2e(QX'—p X'gp') eNQQ . —

(2.5)

(2.6)

The charge conjugate of y is denoted g' and is obtained
by complex conjugation in the Majorana basis. Note that
fermion number is not preserved here, and this theory
possesses an IV=1 supersymmetry only. The Grassman-
nian transformation parameter g must be now taken as a
real (i.e., Majorana) spinor, and the detailed N= 1 trans-
formation rules are that the formulas for 5„A&,5&P, and
5P' assume the same form as those given in Eq. (2.4),
while the rules for 5„$and 5~ should be changed to

5„$= &2(i y"riD„P—+ rieNQ),
(2.7)

5~=y"ri(r}„N+ ,'ie„,&F"—) i'(eight —+aN ev ) . —

See Appendix A for further explanations of the construc-
tion of the theory.

When the coupling strength K for the Chem-Simons
term becomes zero, both of the above Lagrangians are
essentially equivalent and reduce to the N =2 supersym-
metric Abelian Higgs model [10]. In another extreme
limit of very large ~ (with the ratio e /a fixed), the neu-
tral scalar field N (spinor field X) can be represented in
terms of the complex scalar field P (spinor field g), since
the kinetic term of the neutral scalar (spinor) can be
neglected. For example, in the N =2 model, it becomes
possible to write

where N= ——e(i/i —v ), X= ——&2eg*g,
K K

(2.8)

(2.2)

&s = —,'F„„F"+ '~e"" F„Ai ——iD„Q~ —'—((j N)—
—

—,'(eight +xN ev ) e2N igi2— — and using these relations in Eqs. (2.2) and (2.3) yields the
Lagrangian
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E—"F,A, —lD yl' —'
lyl'(lyl' —u')' (D (+iD~ )P =0,

F, +e (I&I —v )=0 .
(2.15)

2

+iPr"D„g —(31((l'—")A . (2.9) On the other hand, in the case of x ~~, we have instead

The corresponding Lagrangian for the N=1 model is
easily obtained in a similar way:

A o ~ F12
(2.16)

X'cs= e"'—F,Az —lD Pl
—

lPl (lPl —u )
and the self-duality equations reduce to those of Ref. [6],
viz. ,

2

+ & 4r "D,.0+, (O'A" +0*'0'0)

2

+ (2.10)

(D, +iD2 )$=0,
(2.17)

These supersymmetric extensions of the minimal self-dual
Chem-Simons Higgs model were given already in Ref.
[12].

Now, let us briefly review the structure of self-dual vor-
tices in the Maxwell —Chem-Simons theory (i.e., the
theory defined by the bosonic Lagrangian Xz above). In
this theory, there are two degenerate ground states, i.e., a
symmetric one where /=0, N=eu /x and an asym-
metric one where lPl =v, N=O. It is known that topo-
logical solitons exist in the asymmetric phase with the
asymptotic behavior

To understand the quantum aspects, we have to con-
sider the fluctuations of fields around the background
vortex solutions. Among these, we have zero-mode Auc-

tuations. They play an important role in quantizing the
theory and correspond to the collective coordinates asso-
ciated with the vortices. The equations for the zero-mode
fluctuations may be obtained by considering the variation
of the self-duality equations (2.14) around the given clas-
sical vortex configuration. They read

(D, +iD2 )5$ iep(5 A—, +i 5 A2) =0,

N(r)~0, lP(r) l
~v as r ~ ao

8,5A —8 5A, +e(P'5/+$5/*)+a5A =0, (2.18)

and a quantized flux 4=+(2'/e )n (n a positive integer).
Nontopological solitons exist in the symmetric phase
with the asymptotic behavior

N(r)~ + z, lP(r)l —+ as r~ ~ (2.12)
K p.

and a nonquantized flux 4=+(2m/e)(n+a) (here
n=0, 1,2, . . . and a~n +2). All static solutions must
satisfy the Gauss-law constraint

( —q +/ +2e lyl~)5A

+e(a+2eA )(/*5/+$5/')=0,

a,5A, +a,5A, +a(5y) =0. (2.19)

where the last equation follows from the Gauss law
(2.13). Among the zero modes, those related to gauge
transformations are of no interest and can be eliminated

by imposing a gauge condition. One group of gauge
choices is given by

B,F' +zF)2+eJ =0, (2.13)
If Q(5$) =0, it is the Coulomb gauge studied in Ref. [16].
We will here choose the form

with I = i (P'D P DP—*P) I—ntegrating . over the
whole space then tells us that a configuration with the
magnetic flux 4 = f d x F,2 carries the electric charge

Q = fd x J = —(~/e )4. In this theory it has also been

shown [8] that the energy of the configuration is bounded
from below by the relation F. ~ eu l4l, and is saturated if
the configurations satisfy the "self-duality" equations

(D, +iD~)/=0,

F,2+(e pl +aN —ev )=0,
A'+N =0,

(2.14)

together with the Gauss law (2.13). The upper (lower)
sign corresponds to a positive (negative) value of the mag-
netic Aux N.

In the case of ~ =0, we may consistently set A =N =0
in Eq. (2.14) and thereby find the equations for self-dual
Landau-Ginzburg vortices [5]:

Q(5P ) =~P+ie (P'5$ P5P* ), — (2.20)

In the next section it will become clear that this particu-
lar gauge choice in fact stands out in the sense that the
fermion zero modes are then directly related to the bo-
sonic ones. If ~=0, this choice is not different from the
usual background gauge. In the case of ~~~, on the
other hand, this reduces to

3

55A, +i (2lyl' —")(y*5y—$5$")=o
K

(2.22)

Except for some scale difference for the scalar-field Auc-

tuation term, this is the background-gauge choice adopt-
ed in Ref. [7].

The index theorem or its variants [20—24] can be used

with 2 determined implicitly by the equation

( d +s +2e —lPl )V+ie(lr+2eA )(P'5$ $5/*)=0 . —

(2.21)
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to count the number of bosonic zero modes satisfying Eq.
(2.18) and the gauge-fixing condition (2.19). The bosonic
zero modes for the re=0 case were studied some time ago
by Weinberg in the background gauge [23], and those for
the tc=~ case in Ref. [7]. Recently the bosonic zero
modes for a general value of ~ were also studied in Ref.
[16], with the Coulomb gauge condition adopted. Natu-
rally the number of these bosonic zero modes is expected
to be independent of the specific gauge conditions chosen.
Accepting this, the results are as follows. In the back-
ground of a topological vortex configuration with vortici-
ty n, there exist 2n bosonic zero modes. This is con-
sistent with the interpretation of these zero modes as be-
ing related to translation of individual vortices. On the
other hand, in the background of a nontopological soliton
with vorticity n and asymptotic behavior (2.12) (which
exists only when ttAO), there are 2n+2a zero modes, a
being the greatest integer less than a. A physical inter-
pretation of this number was offered in Ref. [7], but it is
not completely understood yet.

III. ANALYSIS OF FERMION ZERO MODES

A. The %=2 model

To evaluate this index, it is convenient to consider the
quantity [22,23]

I(M )= Tr2 M
TrStS+M

M
SS +M

(3.6)

where M is an arbitrary parameter. The index is
recovered in the M ~0 limit. In most cases, I(M ) is in-
dependent of M, and then one finds the index by evaluat-
ing this expression for M ~~, say, with the help of a
large-mass expansion. (In the presence of a continuum
spectrum extending to zero [24], or if there exist certain
long-range fields [22,23], further correction terms can
enter the index calculation. ) Now what happens is that if
one calculates the index for the Dirac-like operator
directly associated with the set of equations (3.4a) —(3.4d),
the index vanishes identically. Hence we do not get any
information about the number of zero modes. This is be-
cause the adjoint operator 2) has the same number of
zero modes as 2).

Clearly, to get any useful information, some
modification of strategy is needed. We shall discuss
below the appropriate methods, first for the limiting cases
of ~=0 and ~—+ ~, and then for the case of general ~.

We here consider the fermion sector around the self-
dual soliton background in the %=2 supersymmetric
model with the Lagrangian X' '. Among all the fluctua-
tion modes, we consider only the zero modes that satisfy
the time-independent Dirac equations [see the fermion
Lagrangian in Eq. (2.2)]

y'D; P+ie(y A N)f &—2egy=—o,
y'8;g i~g+&2—eg'/=0 .

Here the background fields ( A „,P, N ) may represent any
particular solution to the self-duality equations (2.14).
We will choose the y-matrix basis where y is diagonal,
specifically

(3.2)

Then, setting

1. The Landau Ginzburg -model (the a =0 case)

and

(D, +iD, )P& V2egy—
&
=0,

(8,—i B~)yt &2eg"gt =—0

(D, iD~ )Pt +—&2egyi =0,

(a, +ia )q&+VZey"y, =O.

(3.7a)

(3.7b)

(3.8a}

(3.8b)

Then we observe that Eqs. (3.8a) and (3.8b) allow no non-
trivial solutions. To see this, apply (9,—Q&) to Eq. (3.8b)
from the left and use Eq. (3.8a) and the self-duality equa-
tions. This yields

With tt set to zero, the set of equations in (3.4) can be
decoupled into two pieces, viz. ,

( —V'+2e'~y~')q, =O, (3.9)
(3.3)

(D, +iD~)gi —&2egyt=o,

((j,—i 8~)yt+iayi /2eg*g—i=o,

(D& —iD~)ft+2ieA gi+&2eggi=o,

(8, +iB~}yi iayt+&2eg'—fi =0 .

(3.4a)

(3.4b)

(3.4c)

(3.4d)

One may apply the index theorem to learn about the
fermion zero modes in the above model. The index of a
Dirac-like operator 2) is defined by

Index(2))=dim (kernelS) —dim (kernelS ) . (3.5)

we have the above equations rewritten as (here we assume
4= fd rF,~)0}

which has no nontrivial normalizable solution. Hence, it
is enough to investigate the zero modes of Eqs. (3.7a) and
(3.7b), and for this reduced system the index theorem be-
comes useful. A short calculation establishes that the in-
dex of the corresponding Dirac operator in a vortex
background with vorticity n is equal to 2n [Here an. d
henceforth, for an easy comparison with bosonic zero
modes, the index (and the number of zero modes) in the
case of Dirac equations will also be given for the corre-
sponding real equations. This means that, when viewed
as complex functions, the number is really half of the
given value. ] It is also a simple matter to show that the
kernel of the adjoint operator is null. Actually the ad-
joint operator is nothing but the Dirac operator corre-
sponding to Eqs. (3.8a) and (3.8b), which has no nontrivi-
al solution. So we conclude that the number of fermion
zero modes is equal to 2n.
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Note that the number of fermionic zero modes is equal
to the number of bosonic ones. This is not an accident.
Adopting the background-gauge condition in Eq. (2.20)
with x =0, the bosonic-zero-mode equations (2. 18) reduce
in the present case to (here note that A =)V=0)

(D, +iD2)5$ —iep(5A &+i5A2) =0,
(8, i—B,)(5A, +i 5 A )+2ieg'5/ =0 .

(3.10)

These become identical to Eqs. (3.7a) and (3.7b) with the
identifications

g)=5/, yt= —(5A, +i5A2) .
2

(3.11)

2. The minimal Chertt Simo-ns Higgs model (the tt +a& case)—

We now consider the ~~ ac case of our model or, more
precisely, the theory defined by the Lagrangian (2.9). The
equation for the fermion zero modes is easily obtained ei-
ther from the Lagrangian (2.9) or from Eq. (3.4) with the
relationships (2.8) assumed. It reads

r

y'D;Q+ie y A +—(3~/~ —u ) /=0,
K

(3.12)

with the background fields (A„,P) now satisfying the
self-duality equations (2.17) and (2.16). Again, in the y-
matrix basis given in Eq. (3.2), this can be written as

(D, +iD2)gt+ie A +—(3~)~ —v ) gt=0, (3.13a)

(D& iD~)gt+i—e A ——(3~/~ —u ) f&=0 . (3.13b)

Then, considering {t}'gt instead of g& and using the
self-duality equations [and A =(e/~)(u —

~P~ )], we can
recast these equations into the form

This shows that each bosonic-zero-mode solution gives a
fermionic zero mode and vice versa. This coincidence of
bosonic-zero-mode equations and fermionic ones can be
attributed to the underlying E=2 supersymmetry, as we
shall show in Sec. IV. (D, +iD2 )5$ iep—(5 A, + i 5 A 2 )=0,

(3.16)

23
c),5A —8 5A, +i (2~/~ u)(P" 5—$ $5/*) =—0 .

K

With the gauge-fixing equation (2.22) for the bosonic zero
modes, these equations are in fact equivalent to the above
Dirac equation with the identifications

K
1(|(=5/, p'pt= — (5A)+i5A2) .

2e
(3.17)

Indeed, the number of fermion zero modes is identical to
the number of bosonic zero modes (as determined in Ref.
[7]). Moreover, using our connection formulas (3.17), all
fermion zero modes may be obtained immediately from
corresponding bosonic zero modes and vice versa. But
there is one tricky point, which we address below.

Note that the fermion zero modes we got are, strictly
speaking, those of 1i t and /*at (rather than g&). Hence
we must make sure that the number of zero modes is un-

changed by having the multiplicative factor P . This is

not a trivial matter due to the zeros in the function {t}*.
For this consideration it is convenient to reorganize Eqs.
(3.13a) and (3.13b) into the equivalent set of equations

(3.18a)

background, however, we have a continuous spectrum ex-
tending to zero, and this can give rise to a nonzero con-
tribution to lim 2 I(M ). Therefore the correct num-

ber of normalizable zero modes is obtained only after we
subtract this continuum contribution from the value
(e/n )@=2(n+a) [see Eq. (2.12)]. Note that the contin-
uum contribution is sensitive only to the asymptotic be-
havior of Xl. This implies that our system has the same
continuum correction as the one defined solely by
(D&+iD2)/~=0. Now, using the well-known result [24]
for the latter, we may conclude that the continuum con-
tribution in our case is equal to 2(u —a). Thus the num-
ber of normalizable fermion zero modes in a nontopologi-
cal soliton background is 2( n +a ).

We can again relate the fermion-zero-mode equations
to those for bosonic ones. The zero-mode Auctuations of
Bose fields should satisfy the equations

2N' =0,

with

(3.14)

(3.18b)

D&+iD2 2i(e /a)P

2i(e /tt)(v 2~/~ )P—* 8, —iB~
(3.15)

For the above Dirac operator the M ~ ~ limit of the
quantity I(M ) defined in Eq. (3.6) can easily be calculat-
ed, and it is equal to (e/m. )4. It is also not difficult to
show that the corresponding adjoint operator has zero
kernel. In a topological soliton background with vortici-
ty n, we are then led to conclude [on the basis of the M
independence of I(M )] that dim(kernel)) =2n, i.e.,
there exist 2n normalizable fermion zero modes (viewed
as real functions). In the case of a nontopological soliton P(r) =f(r )e'" (3.19)

Equation (3.18a) does not admit any normalizable solu-

tion for ( I /P)g~ (as asserted in Ref. [7]). But, in spite of
this, it will be argued below that we can have normaliz-

able zero modes for f~. This is possible because some

non-normalizable solutions for ( I/P)g& can transform

into normalizable ones for g~ once the prefactor I/P is

removed.
For a better understanding of the situation, consider

Eq. (3.18a) for a rotationally symmetric topological vor-

tex background with vorticity n. We then have
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with the function f(r) being O(r") as r~0 and ap-
proaching u for large r. In this background, the general
solution to Eq. (3.18a) can be written as

where, to obtain the last expression, we have used the
fact that (D, +iDz)/=0. This provides us with the c-
number zero-energy solutions

1 g—~(r, 8)=h'+'(r)+ g [h,'+'(r)e' +h,' '(r)e "e],
1=1

2

(3.25)

where the radial functions hi' —'(r ) satisfy

(3 20) and correspondingly

—Pg= —(D, iD—~)/=i(r}, —iB~) 1nlgl
1 i

(3.26)

1 d d
r 1

— —— ' (v' —2lyl')lyl' h,'+-'(. )=0.
7.2 K2

(3.21)

It is evident that P& and g& given in Eq. (3.25) are regu-
lar everywhere. Moreover, for the rotationally sym-
metric self-dual vortex of vorticity n, it is easily shown
that

We here want both P& and P& [determined through Eq.
(3.18b)] to be regular at the origin. This implies that
(1/P)g& can be singular at r =0 if (i) the singularity is not
worse than (1/r")e '", and (ii) one has
(r},+id2)[(1/P)P~]-O(r") as r tends to zero. Since
( r}, +i r}2)(r'e" )=0 for any integer 1, the appropriate
boundary condition for (1/P)g& may thus read, in addi-
tion to asymptotic square normalizability, there should
exist some constants (C „,C „+&, . . . , C„) so that one
has

n

r 0: P~(r, 8}——g C, r e' -O(r"+') .
1=—n

(3.22)

From this boundary condition and the very fact that Eq.
(3.18a) admits no everywhere-regular normalizable solu-
tion for (1/P)g~, a strong restriction follows as regards
what terms on the right-hand side of Eq. (3.20) might be
kept for acceptable solutions. One finds only

1
P)(r, 8)= g hI —'(r)e

I=I
(3.23)

with the functions hI '(r ) satisfying the following prop-
erties: hI' '(r ) =(const/r')+O(r"+') as r ~0, and
hI' '(r) vanishes (exponentially) for r~ao. It is a non-
trivial mathematical problem to prove the existence of
solutions involving the functions hI '(r) (1=1,2, . . . , n)
with these properties. Such a solution is not to be expect-
ed generically. But we conjecture that, for the very equa-
tion being considered, such a solution does exist for each
value of l=. 1,2, . . . , n; these would then account for n

acceptable complex solutions (i.e., 2n real solutions) for
( I /P)g~. We here remark that the analysis of Ref. [19] is
for the generic case, and hence, not particularly useful for
our problem.

To support our conjecture, we consider specifically the
fermion zero modes directly related to the supersym-
metry transformations of the given soliton background.
Those modes have the form

2
&2 ~ (D„P)y"q— '

r~O: I/I-r"[1+O(r "+ )] . (3.27)

Based on this, we can identify the solution (3.26) with the
1=1 mode on the right-hand side of Eq. (3.23), and then
we have

. d 2 . 2nhI, (r)=i lnlgl —i +O(r "+'),
d7 r~0 7'

(3.28)

1— [ivy t
—(~i+ i~2)y(]

2e

and rewrite Eq. (3.4c}as

(3.29)

(8& —iBz)g*g&+2ieA P*g~+&2elgl g~=O . (3.30)

These two, together with Eqs. (3.4a) and (3.4b), can then
be put into the single matrix equation

which is fully consistent with our boundary condition.
For l =1, we have now verified our conjecture. Similarly
we expect appropriate modes with 1=2, . . . , n to exist
also, although we have not been able to verify this yet.

We believe that, in a general topological or nontopo-
logical self-dual vortex background, the space of fermion
zero modes has the same dimension as that of bosonic
zero modes (after eliminating pure gauge modes), and our
formula (3.17) gives a simple explicit map between the
two. For this to be true, the multiplicative factor P' in
the second relation of Eq. (3.17) should not lead to a
singular expression for P&, i.e., 5A, and 522 should van-
ish where P' vanishes. (If this happens not to be the case
by any chance, there would be fewer fermion zero modes
than corresponding bosonic zero modes, and quite likely
this would result in some sort of supersymmetry breaking
in the quantum theory. )

3. The Maxwell —Chem-Simons Higgs model

Let us now discuss the coupled Dirac equations (3.1)
[or equivalently Eqs. (3.4a) —(3.4d)] for an arbitrary finite
value of ~. Equations (3.42a)—(3.4d) cannot be separated
into two decoupled ones. Here we may regard Eq. (3.4d)
as the equation determining P'g& in terms of g's, viz. ,

2&2(e /a. )(v —I/I )grit

i V'2(D, iD2 )pr)t— (3.24)

2)'Il =0, (3.31)
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with

D)+iD2
—&2eg*

2ieA P"

—VZeg

l (3

lK

IK

&2e a, +ia,

(3.32)

The index for this operator can be determined by the
same procedure as used for the operator (3.15), and we
again find the value 2n (or 2n +2a) in the topological sol-
iton (nontopological soliton) background of vorticity n.
Also, it is not diScult to show that the adjoint operator
D has no normalizable zero mode: this means 2n (or
2n+2a) independent zero modes for %. This is equal to
the number of corresponding bosonic zero modes [16],
and as we shall demonstrate below, there again exist sim-
ple connection formulas relating these two sets of zero
modes.

The bosonic zero modes in this model should satisfy
the three equations in (2. 18), and additionally, we will
subject them to the (nonlocal) gauge condition which is
specified by Eqs. (2.19)—(2.21). For the sake of compar-
ison, it will also be convenient to have the quantity P*g&
eliminated from Eq. (3.30) by using Eq. (3.29). We then
find

(
—V' +ir +2e ~i'~ )y&++2ie(s+2eA )P*g&=0,

(3.33)

which may well be separated into two equations, one for
ReX& and the other for ImX&. Now we notice that Eqs.
(3.4a), (3.4b), and (3.33) for (g&,yt, Rey&, Imp&) are com-
pletely equivalent to Eqs. (2.18) and (2.19) for
(5$, 5 A „5A 2, 5A ) once we make the identifications

q, =5y, Imp„= 5A',1

v'2
(3.34)

l
gt = Rept+i Imp& = (5A, +i5A2) .

[Here note that no separate formula has been given for g&
because of Eq. (3.29), and &2 Rey& goes to the quantity 9'

appearing in our background-gauge condition. ] In the
appropriate limits, this connection formula correctly
reproduces the earlier ones given in Eqs. (3.11) and (3.17).
As we will show in Sec. IV, the N=2 supersymmetry is
responsible for this formula.

For every known fermion zero mode, Eq. (3.34) tells us
that there is a corresponding bosonic zero mode. But its
converse does not follow necessarily. The point is that
for every known bosonic zero mode, Eq. (3.34) provides
us with a zero mode for 4', but this zero mode for 4 can
correspond to a singular fermion mode (because ql in-
volves /*it

&
rather than g& itself). A complete matching

between bosonic and fermionic zero modes is secured
only when there is no wrongdoing due to the multiplica-
tive function p* (in p*p& of qi) in getting the fermion

I

zero modes. This is the same problem which we encoun-
tered already in the minimal Chem-Simons Higgs model.
Here we conjecture again that all 2n (or 2n+2a) zero
modes for 4 lead to nonsingular fermion zero modes.
This has the implication that if Pt is found using Eq.
(3.29), it should come out to be regular at zero of P*. As
one can check readily, this is certainly the case for the
fermion zero modes directly related to the supersym-
metry transformation of the given soliton background.

B. The N=1 model

The fermionic part of the X= 1 supersymmetric La-
grangian is given in Eq. (2.6). In the background of the
self-dual vortex solutions satisfying Eq. (2.14), the equa-
tions for the fermionic zero modes now read

iy'D, f e(y —A +N)f +2i—egg'=0,

i y'B, y+xy' &2—ieger'=0 .
(3.35)

In the y-matrix basis given in Eq. (3.2), Eq. (3.35) gives
rise to the component equations

(D, +iDz)g&+2ieA P&+&2Py& =0,
(D, —iD2)g& —+2epy& =0,
(i3, +i B2)y (+isa'(+ &2egg) =0,
(8—ii) )g&

—ivy& —V2egg& =0 .

Note that we here have

(3.36a)

(3.36b)

(3.36c)

(3.36d)

for

X$
X ij X

.Xt .

(V 2e ~y~ )—~t+i~(a, ia )q, =—o, (3.37)

which has a trivial solution only. Thus the nontrivial
part of the fermion-zero-mode equations becomes just

(D&+iD&)g~+&2egy& =0,
(a, + i a, )y„+i~q', +&2egg& =0 .

(3.38)

Zero-mode equations analogous to Eq. (3.38) were
studied previously in Ref. [25], and one can calculate the
index for the system (3.38) by a parallel procedure.
Indeed, employing the real-field basis, we have the Dirac
operator relevant to the system (3.38) in the form

Xt

XJ,

We then note that Eqs. (3.36b) and (3.36d) have a trivial
solution only, i.e., y&=gt=0. This follows since, as we
eliminate g& from the two equations and use the self-
duality equations for the background fields, we end up
with

I(B,+eA2) i o 2(d2 eA,—)
—&2—ep, I+i v 2ep2o 2

&2eP,I i (a+ &2e—gz)o z
— IB,+ io &BED

(3.39)
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where I denotes the 2 X 2 unit matrix. For this operator
form the index calculation is not much different from the
cases already considered by us, and so we state the results
only. The number of fermion zero modes is again given
by the value 2n in a topological soliton background, and
by 2(n+a) in a nontopological soliton background. In
either case, we thus see that the number of fermion zero
modes matches precisely the number of bosonic ones.
But no simple relationship connecting these two sets of
zero modes seems to exist, in contrast to the case of the
N =2 model. In the next section we shall see that there is
a simple reason for this.

In the large-~ limit, the theory is described by the La-
grangian (2.10). Here, for fermion zero modes around a
self-dual vortex background, we have just one Dirac
equation

vortex background from the corresponding bosonic ones.
The observation was based on the direct comparison of
the equations of motion for the respective zero modes.
One may naturally suspect whether a certain syrnrnetry is
responsible for this. The answer is in the aSrmative, and
as we will see below, it is the extended supersymmetry
which plays an important role.

We start from the static version of the field equations
for the N=2 supersymmetric Maxwell —Chem-Simons
system. They are easily found from the Lagrangian in
Eqs. (2.1)—(2.3). The static field equations for Bose fields
read

d, F' +me'8, A ie[P—DJP (DJP—)"P]= egyj—g,
(4. la)

2

iy'D;g ey'A—' '—(lg—l' u'—) &+2' P'1('=0,
K K

(3.40)

or in our y-matrix basis, the component equations

V A + e'JF,—, —2e A ~P~
= —

eely P,

D P eP(—e~P~ +iiN eu )—+e [(A ) N)P—
&2ie—gq,

V N ic(e ~P
—

~
+~N eu )—2e

~ P~ N—= ePf,—

(4.1b)

(4.1c)

(4.1d)
2 2

(Di+iD2)gi 2i (
—
~P~

—u )Pt+2i Pi =0, (3.41a)
K K

2

(D, iD2)i)'j&—2i —p pt =0 . (3.41b)

Then observe that, thanks to the self-duality equations
(2.14), Eq. (3.41b) can be recast as

(8, iB )P—'P 2i —
~P~ (P"@ )'=0. (3.42)

This immediately leads to the conclusion

=0, (3.43)

assuming that P'gt vanishes sufficiently fast at spatial
infinity. Hence, we are allowed to set gt =—0, and the
remaining equation (3.41a) is now simplified to

2

(Di+iD2)fi+2i p gi =0 .
K

(3.44)

IV. ZERO MODES AND N =2 SUPERSYMMETRY

We have seen in Sec. III that, in the N=2 models,
there exist simple transformation formulas which pro-
duce all fermionic zero modes around the given self-dual

It is straightforward to determine the number of indepen-
dent normalizable solutions to Eq. (3.44) with the help of
the index theorem or by explicit mode analysis (in a rota-
tionally symmetric background) [25,19]. For the case of
either the topological or nontopological self-dual vortex
background, the answer agrees with the result we found
for the more complicated Dirac equations in Eq. (3.35).
Again, in this N = 1 model, we have not found any simple
formula connecting the fermion zero modes to the boson-
ic ones.

%0(x ) =( A„(x ),P(x ),N(x ),
g(x ) =ego(x ),y(x ) =ego(x ) ), (4.2)

where e is a constant real Grassmann number by which
all individual components of spinor zero-mode functions
get multiplied. Since the square of a real Grassmann
number is identically zero, all bilinear fermion source
terms in Eq. (4.1) in fact vanish for our configuration
(4.2), and therefore that 40(x ) solves the full field equa-
tions is guaranteed. (We here remark that bilinear fer-
mion source terms do not vanish if one inserts c-number
solutions for P and y. In such a situation, our simple
trick of attaching a real Grassmann number does not ap-
pear to have been utilized before in the literature. ) Now,
remembering that there are 2n (or 2n +2a) independent
fermion-zero-mode functions in a given topological (non-

while those for fermion fields are in fact just the fermion-
zero-mode equations in Eq. (3.1). Self-dual vortex
configurations or solutions of Eq. (2.14) satisfy the static
field equations of pure bosonic theory, which coincide
with Eq. (4.1) but for the bilinear fermion source terms
on the right-hand sides. Also note that, to be able to dis-
cuss supersymmetry of the classical field equations in a
consistent way, one must now view the fermion fields g, y
appearing above as Grassmannian objects.

Our next observation is that static classical solutions to
the full field equations —Eq. (4.1) together with Eq.
(3.1)—can be constructed with the help of static bosonic
configurations satisfying the self-duality equations (2.14)
and fermion zero-mode functions [or "c-number solu-
tions" to the Dirac equations (3.1)] in a given self-dual
background. Let the (in general complex-valued) spinor
functions (go, yo) represent any particular c-number solu-
tion to Eq. (3.1) in some given self-dual background
( A „,P, N ). Then we have the solution to our full field
equations in
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topological) self-dual vortex background, we see that the
construction in Eq. (4.2) allows us to obtain 2n (2n +2a)
independent solutions to the full field equations of the su-
persymmetric theory from any given purely bosonic solu-
tion 4(') '(x ) =( A„(x),$(x ),N(x), it =0,y=0).

A supersymmetry transformation of any given solution
of the forin (4.2) should also be a solution to the full field
equations. This has the implication that the
supersymmetry-related infinitesimal change 5„4(x )

=(5„A„(x),5„$(x),5+(x ), 5„$(x),5„y(x )) should
satisfy the appropriate small-fluctuation equations which
are readily derived from the field equations. We shall
now make use of this fact in deriving the interrelation-
ship between the bosonic and fermionic zero modes
around the purely bosonic solution 4'o '. For that, we
again go to the ) -matrix basis given in Eq. (3.2) and write
the supersymmetry transformation parameter g as

5L~L 5l+t (4.5)

Now, considering the above transformation with the
form (4.2) as the original configuration, we are able to as-
sert that the bosonic mode determined by

5A, (x )+i 5A2(x ) = 2i(—ri&e)yo&(x ),
5$(x ) =&2(i) &e)g~&(x ),
5A (x)=5N(x)

(4.7)

thanks to the self-duality equations (2.4); consequently,
all bilinear fermion sources appearing in Eq. (4.1) give
rise to vanishing fluctuations, i.e.,

(4.6)

(4.3)

the supersymmetry transformation (2.4) can be expressed
as

5(3, +i6) 3 ~
=—2ig)y),

5ig=+&2i)ii)'ji,

5 i A =5 iN = i ( riiy i
—y—

i ii i ),
5(it t

= &2i rii(D, +iD—~ )P,

5(it i
= —&2eg( A N)ii), —

5 y i(iB, +iB )(N A)i)i, —

5yi=i(F, ~+e~P~ +aN eu )qi . —

(4.4)

We then immediately notice that, in the self-dual vortex
background,

Here, g& and g& are mutually independent complex
Grassmann numbers which together generate N =2 su-

persymmetry. Notice that the mode functions of 5„%(x),
obtained through supersymmetry transformations of the
configuration (4.2), will not necessarily satisfy the
bosonic- and fermionic-zero-mode equations in the purely
bosonic background %'o"'. Let us assume that %0"' de-
scribes the self-dual vortex background with
4= Jd rF,2)0. Now, if one considers a supersym-

metry transformation involving il &
only (in short,

5„=5t), it is not difficult to show that 5&% gives zero

modes in the bosonic background %0 ' only when 5&% is a
supersymmetry transformation of 4'o ' [i.e., the
configuration (4.2) with P=y=0]. For the latter, we find

5(A&=5t$=5tN:—0 and (5(g, 5g) gives familiar
supersymmetry-related fermion zero modes. The situa-
tion for the g& transformation is more interesting, and is

discussed below.
With the restriction

should solve the second-order bosonic fluctuation equa-
tions that are derived from the field equations (4.1), but
without the fermion source terms. The relation (4.7) is in
fact completely equivalent to our connection formula
(3.34), since every fermion zero mode ($0(x),go(x)) is
defined only up to an arbitrary complex constant (which
multiplies iijo and yo simultaneously). As for the contents
of the formulas (4.7) and (3.34), there is one apparent
difference: the bosonic modes entering Eq. (4.7) are sup-
posed to solve the second-order bosonic fluctuation equa-
tions, while those entering Eq. (3.34) satisfy the bosonic-
zero-mode equations (2.18). But the two sets of equations
are really equivalent (see Appendix B), and so we are now
entitled to say that the origin of our connection formula
(3.34) lies in supersymmetry. [The supersymmetry argu-
ment does not tell us what sort of gauge condition the bo-
sonic zero modes given by Eq. (4.7) are going to satisfy,
although our equation-by-equation comparison in Sec. III
provides this information also. ]

A parallel analysis can be given for the N=2 super-
symmetric minimal Chem-Simon Higgs theory, and it
should suffice to say that the connection formula (3.17) is
a consequence of supersymmetry involving the parameter

In the 4D Yang-Mills instanton problem we also
have this mode-by-mode matching between bosonic and
fermionic zero modes [17], and the N =2 super-
symmetry-based explanation for it was given by Zumino
[18]. It would be also interesting to look at the case of
our N= 1 supersymmetry model. Using the fermion zero
modes, it will be possible to construct the solutions of the
form (4.2) to the full field equations even in this case.
But, here, the supersymmetry transformation parameter
g is a Majorana spinor, and so g& is actually identical to

Hence, it becomes impossible to consider the re-
stricted symmetry transformations involving iii only [as
in Eq. (4.4)]. This in turn implies that, in the N= 1 mod-
el, the supersymmetry transformations of the fermion bi-
linear source terms never vanish, and so we do not obtain
bosonic modes satisfying the purely bosonic-fluctuation
equations by considering the supersymmetry transforma-
tions with a configuration like the one in Eq. (4.2). This
explains the lack of a simple formula connecting bosonic
and fermionic zero modes in the N = 1 model.
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V. SUMMARY AND DISCUSSION

Self-dual structures appearing in field theory have a
deep connection with extended supersymmetry, and
probably the quantum self-dual system makes sense only
in the context of a suitably supersymmetrized theory [9].
In this paper, we have given the full contents of the N =2
(and N = 1 ) supersymmetric Maxwell —Chem-Simons
theory, which reduces in an appropriate limit to the
N=2 supersymmetric Abelian Higgs model [10] or to the
N=2 (and N= 1}supersymmetric Chem-Simons Higgs
model of Ref. [12]. Within this theory we have investi-
gated the fermion zero modes around the topological or
nontopological self-dual vortex background by making
effective use of the index theorem and also by discovering
a suitable formula (for the N=2 model) that converts
every fermion zero mode into a corresponding bosonic
zero mode. The simple relationship existing between the
bosonic and fermionic zero modes is shown to be a conse-
quence of extended supersymmetry.

The natural direction to go from here will be to study
how the fermion zero modes we found become responsi-
ble for the vortex supermultiplet structures. Also it
should be interesting to see whether one can develop the
supercollective-coordinate formalism in which bosonic
and fermionic zero modes are treated on an equal footing.
(Note that our findings in the N=2 model strongly sug-
gest this possibility. ) It is not inconceivable that slow dy-
namics concerning vortex supermultiplets may find a sim-
ple description using such supercollective coordinates,
say within the theoretical framework given in Ref. [26].
Quantum aspects of solitons can also be studied, but this
requires a knowledge of not only zero modes but also
nonzero modes (or, if you wish, propagators defined in
the soliton background). An interesting issue here, in the
N=2 supersymmetric models, is whether or not the
Bogomol'nyi bound remains saturated when loop correc-
tions are included. Another curious possibility in our
N=2 models is that there might exist a very simple for-
rnula which relates the fermion propagator in the soliton
background to the corresponding boson propagator, just
as in the case of Yang-Mills instanton background [27].
These issues are under investigation.

Very recently, one-loop quantum and thermal correc-
tions to the erat'ective potential in the N=2 supersym-
metric (Maxwell —)Chem-Simons theory (in the trivial
vacuum sector) have been calculated by Ipekoglu,
Leblanc and Thomaz [28]. They find some interesting re-
sults, and interested readers should consult their paper.
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APPENDIX A

Here we shall introduce the N=1 and N=2 supersym-
metric Maxwell —Chem-Simons Lagrangians using the
superfield language. We use the N=1 superfield nota-
tions following Ref. [29] closely. (Recently, Ivanov [30]
has given an N=2 superfield formulation for the super-
symmetric Chem-Simons Higgs model of Ref. [12].} A
real scalar superfield S(x,8) consists of a real scalar
N(x },a Majorana fermion g(x ), and a real auxiliary field
G(x}:

S(x,8) =N(x )+g(x ) 8 —G(x )8 (A 1)

Here, 8 = —,'8 8 (8 is real Grassmannian) and a (=1,2)
is an SL(2,R ) spinor index. Charged-matter fields are de-
scribed by two real scalar superfields or, equivalently one
complex superfield

4(x, 8)=P(x)+g (x )8 F(x )8— (A2)

where V =—D —ieI is the supercovariant derivative,
and the superpotential f(S,@',4) can be arbitrary. (The
real scalar superfield S needs to be introduced for N=2
supersymmetry. See below. ) This action is invariant un-
der the N = 1 supersymmetry transformation

where vP& are (Grassmannian) Majorana spinor parame-
ters and Q =d/d8 i 8~d—

& The—form o.f the superpo-
tential f(S,4'4) becomes severely restricted if the
theory is required to have N=2 supersymmetry. Let us
impose this requirement also. For N=2 supersymmetry,
the theory must be invariant under another supersym-
metry transformation which reads

(A5)

Then the only allowed form for the superpotential is

f(S,@'@)= ,'aS e—@—'4S+—eu S, (A6)

with an arbitrary positive constant U . Inserting this su-
perpotential form into the expression (A3) gives the ac-

with all the component fields now taken to be complex.
In addition, we require a real spinor gauge superfield
I (x,8), which in the Wess-Zumino gauge contains a
real photon field A„(x) and a Majorana spinor "pho-
tino" field iP(x). The field-strength superfield W is then
givenby W = ,'D~D I &, w—here D =ald8 +i8iB&

A general N = 1 supersymmetric gauge theory with the
Chem-Simons term, which one can construct by using
these superfields, is described by the superspace action

S=Jd xd 8[ 'W'W ,'a—.I W —,'(—D S)(D—D—)

—
—,'(V 4)'(V 4)+f(S,4'4)], (A3)



4598 BUM-HOON LEE, CHOONKYU LEE, AND HYUNSOO MIN 45

tion for the N =2 supersymmetric Maxwell —Chern-
Simons theory. For a=0, this reduces to the theory dis-
cussed already in Ref. [10]. For very large a, on the other
hand, one may express the real superfield S (by using its
field equation) as

second supersymmetry but has the same bosonic sector.
If one expresses this theory in terms of component fields
(in the Wess-Zumino gauge), the fermion-number-
violating Lagrangian in Eq. (2.5) follows.

eS= ——(4*4—
U ),

K
(A7) APPENDIX B

and, using this with Eq. (A3), we obtain (after dropping
less dominant terms) the action for the N=2 supersyin-
metric minimal Chem-Simons Higgs model,

s,",'=1 a'x z'e ——'r w. —
—,(v c )*(v.e)

2

+ ((p4qi 2)2
2K

(A8)

With the above superspace action one can use the stan-
dard procedure [29] to obtain the component-field action
in the Wess-Zumino gauge. Auxiliary fields F and G are
eliminated by using their equations of motion, viz. ,

F=ePN, G=e~g~ +aN eu— (A9)

and we combine the Majorana field P with another Ma-
jorana (photino) field A,

' to form a Dirac field

—(A, +i() .
1

(A10)

The resulting component Lagrangian for the N =2 super-
symmetric Maxwell —Chem-Simons theory is then pre-
cisely the expression in Eqs. (2.1)—(2.3). The component
Lagrangian (2.9), which becomes relevant in the large-a
limit, is obtained as a result of the condition (A7) which
translates for the component fields into Eq. (2.8). The su-
persymmetry transformations in Eqs. (A4) and (A5) do
not preserve the Wess-Zumino gauge condition, and to fix
this problem one must supplement the transformations
by suitable supergauge transformations. Only after that,
one finds the N =2 component supersymmetry transfor-
mation rules in Eq. (2.4). The parameter 7) in Eq. (2.4) is
just the combination of the two real Grassmannian spi-
nors ri, and t)2, i.e., t) = (1/&2)(t), +it)2)

The bosonic sector of the Lagrangian is self-dual only
because of a very special potential form. In the above
analysis we have shown that requiring N=2 supersym-
metry automatically provides it. We then notice that,
keeping the bosonic sector of the theory unchanged, we
can construct another theory with only N = 1 supersym-
metry. Such a theory is obtained by choosing the super-
potential f(S,C&*4&) to have the same form as that in Eq.
(A6) but for the overall minus sign. This theory loses the

(t), +i B2)[ V+a.(5A 5N)]—2ep'—U=0,

(V —2e ~P( )5A +aV

(Bl)

(a. —+2eA )e(/*5/+$5/') —~ 5N=O, (B2)

(5, —t a, )y*U —e lyl'V+2" lyl'A'(5A —5N) =0,

(
—V'+ ~'+2"I&I')5N

(B3)

+e(a.+2e A )(P'5$+ $5$' ) =0, (B4)

where we have defined

U=(D, +iD2)5$ iep(5A—, +i5A2),

V=t), 5A —t) 5A, +e(P"5/+$5/')+a5N .

Eliminating P' U from Eqs. (B1)and (B3) gives

(
—V +2e ~P~ )[V+a(5A 5N)]—

(B5)

+2e (a.+2eA ) ~P~ (5N —5A ) =0, (B6)

while we also have from Eqs. (B2) and (B4)

( —V'+ 2e'~ & ~'+ &')(5N —5 A ')

+a[ V+a(5A —5N)] —0 . (B7)

The pair of equations is in fact identical to Eqs. (3.16b)
and (3.16e) of Ref. [16],and it was asserted there that no
nontrivial solution exists. Therefore we must set

5A =6N, V=O, (B8)

and then, because of Eq. (Bl), U=O also. These condi-
tions and Eq. (B4) obviously account for our zero-mode
equations in Eq. (2.18).

We will show that the second-order bosonic fluctuation
equations, which can be deduced from Eqs. (4.1a)—(4.1d)
with the fermion source terms dropped, are in fact
equivalent to our bosonic-zero-mode equations in Eq.
(2.18). The background fields we start with are assumed
to satisfy Eq. (2.14), say, with the upper sign chosen.
Then we observe that the second-order fluctuation equa-
tions derived from Eqs. (4.1a) and (4.1c) can be expressed
in the form
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