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The SU(2)k Wess-Zumino-Witten model with the improved energy-momentum tensor is studied in

terms of parafermion fields. It is shown that the parafermion fields are variables which are quite con-
venient to describe this mode1. Using the Coulomb gas formalism we show that some correlation func-

tions are easily calculated. A possible application to the selection rules for nonvanishing correlation
functions in N=2 minimal models is also discussed; These are quite useful in studying couplings of
massless fields in models compactified by N =2 minimal models.

PACS number(s): 11.17.+y

I. INTRODUCTION

Among the recent developments in conformal field
theories (CFT's), one of the quite important subjects is
the free-field realization of the affine Kac-Moody current
algebra Th.e currents for SU(2)k algebra were first con-
structed by Wakimoto [1], and then such a construction
was generalized to SU(3)„, SU(n)t„and some other
groups [2—5].

Apparently, there are a number of advantages of ex-
pressing currents in terms of free fields. It is already
known that many of the existing conformal models can
be constructed as coset models. The energy-momentum
tensors are obtained by the Sugawara method from the
currents, and the free-field representation makes such
construction much easier. For example, given an SU(2)k
current algebra, the minimal model can be obtained as
the coset SU(2)k X SU(2), /SU(2)k+

&
[6]. This can be easi-

ly generalized to the coset of SU(n)„, and the energy-
momentum tensor of W„algebra is constructed [7].
Another useful application of free-field realization of
currents is the building of generalized parafermion
theories based on G„[8],which may be regarded as a
more fundamental building block. This related to the
fact that the currents for Cartan subalgebra take a very
simple form in this free-field construction, and therefore
removing the U(l) fields associated with the Cartan
subalgebra is rather straightforward in this approach.
The simplest is the well-known Zk parafermions, ob-
tained as SU(2)k/U(1), which is familiar in the applica-
tion to the representations of N=2 minimal super CFT.
It has already been discussed in detail how the N=2
minimal series are very effective in achieving string
compactifications providing massless spectra with the
spacetime supersymmetry, the so-called (2,2)
compactifications [9]. Through the use of the Zk parafer-
mion fields, it was possible in such a compactification

'On leave from Division of Physics, Faculty of Education,
Wakayama University, Wakayama 640, Japan.

1
c =n 1 n—(n —1)—+k+nk+n (1.2)

and apparently we are dealing with a fractional level
WZW model [11]as can be seen by putting p'/p =k +n,
with p and p' being comprime to each other. A coset
construction of the unitary and nonunitary minimal mod-
els of the (super) conformal models is studied using such
fractional level representations [12]. The fractional level
representations of algebras are also getting some atten-
tion from the point of view of constructing new N=2 su-
perconformal models.

The purpose of this paper is to consider an improved
SU(2)k WZW model which may be regarded as a building
block for further applications. In the following section,
we show that expressing SU(2)k free fields in terms of Z„
parafermion fields and a U(1) field is quite convenient in
the present case. We also discuss the conjugate primary
states in the vertex operator representation so that the
Coulomb gas formalism can be applicable for the compu-
tation of correlation functions. The charge-neutrality
conditions are derived. In Sec. III we consider the three-
point function and some four-point functions as an appli-
cation. From the fact that this model is formulated in
terms of Zk parafermions, there exists a direct applica-
tion to N=2 minimal super CFT. We derive the condi-
tions for having nonvanishing correlation functions in
N=2 models in Sec. IV. Section V is devoted to a discus-
sion.

scheme to calculate three-point functions and even to
derive some conditions for the nonvanishing correlation
functions [10].

One of the related topics is the Wess-Zumino-Witten
(WZW) model based on the group Gk obtained by im-

proving (or deforming) the energy-momentum tensor
T(z) as [2]

1'(z)= T (z) pBH(z—),
where p is called the deformation parameter and is half
the sum of the positive roots of the group G and H (z) is
the current for Cartan subalgebra (see below). If one con-
siders 6k=SU(n)k, for example, the central charge c is
given by
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II. IMPROVED SU(2)2 WZW MODEL
AND PARAFKRMIONS

The affine SU(2)k currents for an arbitrary level k can
be expressed in terms of the following free fields: y(z)
and a pair of the ghosts p(z) and y(z). They are given by

J =P(z},

J+ = —y (z)P(z)+k By(z)+i a+a B((()(z),

H =aP(z)y(z) ia—+By(z),

(2.1a)

(2.1b)

(2.1c)

((()(z )p( w ) ——ln(z —w),

p(z)y(w) — y(z)p(w—)- 1

Z W

(2.2a)

(2.2b}

With these one can easily show that the currents satisfy
the operator-product expansions (OPE's) as required:

( )J ( )
k + aH( w )

(z —w)2 z —w

+aJ+(w)
H(z)J+(w)-

Z N

(2.3a)

(2.3b)

The ghost fields can be bosonized by the scalar fields P(z)
and y(z) as

P(z) i B+(z)e
—P(z) —iz(z)

y ( )
p(z) + iz(z)

where P(z} and y(z) satisfy

(2.4a)

(2.4b)

where a+ =&k+2 with k being a positive integer and
a=&2 the simple root of SU(2). J (z) and J+(z) are the
currents associated with the negative and positive roots,
respectively, and H (z) is the one associated with the Car-
tan subalgebra. The field ((()(z) and commuting ghosts
P(z) and y(z) have the correlations

used just for the simplicity of the notations with the un-
derstanding of the bosonization [Eqs. (2.4a) and (2.4b)]):

S (z) =Pe
(k +2)p(z) +(k +1 )i r(z) +i a+ay(z)

S+ z =e

ri(z) =e'r"

(2.7a)

(2.7b)

(2.7c)

Let us introduce a primary state. A primary state for
SU(2)k is given by the vertex operator

i Ay /a+
(2.8)

where A is a weight vector and the conformal dimension
of V„ is given by

A(A+2p)
2(k +2)

(2.9)

i&k BC(z) . (2.10)

This vertex operator has a regular OPE with the raising
operator J (z), and the OPE with a lowering operator
J+(z) has a 1/z singularity and produces another state.
One can show that generally such descendent states are
given by multiplying some power of y(z) to the primary
vertex operator as [y(z)]"V~(z) (the integer n being
determined by the integrability condition).

Let us now introduce the Zz parafermion fields and
discuss rewriting the affine currents. First, we define the
U(l) fiields 4(z) from the current of Cartan subalgebra
H(z):

H (z) = —a BP(z)—ia B((()(z)

P(z)P(w)-y(z)y(w) ——ln(z —w) . (2.5)
Then define (((), (}},and y in terms of the new fields in the
following way' [15]:

This bosonization procedure is necessary before introduc-
ing the parafermion fields. The energy-momentum tensor
is obtained through Sugawara method as

T(z)= ——(Bp) —i ~ B'+ PBy-l

2 cx+

1= ——(Bp) —i B ((()
2

~( )
iaC) k+g a4 . a+
&k g &k g

&k — . a+
i''(z}= — a@+i a%,

g

(2.1 la)

(2. 11b)

(2.11c)

——'[(By)'+(By)'+ B'(()+i B'q],
2

(2.6)
where g=2 is the dual Coxeter number of SU(2). These
new fields are orthonormal to each other, namely,

%(z)%(w)-4(z)4(w)-(I)(z)N(w)- —ln(z —w), (2.12)

where p= —,'g &oa and is 1/&2 for SU(2). The field P(z)
has the imaginary background charge, as can be expected
from the bosonization formulas.

Furthermore, the screening currents are also known
for the affine SU(2)k currents. Screening currents are the
operators of conformal dimension 1, and all the OPE's
with the affine currents are either regular or a total
derivative (for simplicity called "commute" hereafter).
The following three such currents are known for SU(2)k
[5,13,14] (sometimes the ghosts fields p(z) and y(z) are

and all the other correlations are regular. By this set of
fields, the energy-momentum tensor in Eq. (2.6) is given
as

~Another approach to define generalized parafermions is dis-

cussed in [16]; however, the equiva1ence of it to the one em-

ployed here is proved in [15].
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' 1/2

1(z)=7' (z) ——(ae) —i — a e.1 2 . k
PF 2

(2.14)

Again, the point is that although the representations of
SU(2)t, can be given by either set of fields, the net effect of
the deformation can be very simply described by the U(l)
field 4, as can be seen from Eq. (2.14). When the original
variables P and p are used, the background charges of
both of these fields are changed and the vertex operator
representations for such a choice would be more compli-
cated, while the representation of the parafermions is
well understood [14] and is fully utilized in the following
disc us sion.

Let us make some additional remarks about parafer-
mions. The currents J+(z) can be easily expressed in
terms of these new fields, and one finds that the U(1) field
4(z) appears just as the exponential factor. Therefore
the procedure of removing U(1) from SU(2)& can be
achieved by simply dropping this exponential factor of
the U(1) field.

Second, the primary field of this parafermion model is
given by

1 m

V 2(k +2) &2k
(2.15)

where 1 and m are the integers such that 0+1 k and—l &m ~l for a given integer level k. The conforrnal
weight of this operator is given by

1(1+2)
4(k +2) 4k

(2.16)

Finally, we mention the screening currents for the
paraferrnion currents. One can show that when the
screening currents in Eq. (2.7) are rewritten by the new
fields, they do not depend on the U(1) field 4(z). Hence
there are no changes of the conformal dimensions and the
screening currents of SU(2)i, current algebra are indeed
the screening currents of Zz parafermion currents. They
are given as

() . k+2
2

I /2 ' 1/2

&+(z)— — M(z)k
2

2Xexp i—%(z)
2(k +2)

(2.17a)

T(z) = TpF(z)+ TU(i) (z)

a e ——(ae) ——(ae) .1 2 tP 2 1 —2 1 2

2 cx+ 2 2
(2.13)

So, compared with the expression in Eq. (2.6), one can see
that the transformations introduced above are the rota-
tion which leaves the background charge for %(z) the
same as y(z) and makes 4(z) and 4(z) be zero.

From this discussion it is rather clear that the improve-
ment of the energy-momentum tensor in Eq. (1.1) is noth-
ing but changing the background charge of the U(1) field
from zero to some value fixed by the deformation param-
eter

r

ri(z) =exp ( k +2)%(z)— 4(z)
l k
2 2

(2.17b)

S+ (z) =exp —(k +2)%(z)+ —4(z) . (2.17c)
l k
2 2

It should be noticed that the first one does not have the
4-field dependence in the exponential and is actually very
useful in the subsequent discussion of correlation func-
tions. This is deeply related to the fact that the two fields
4 and 4 have the same quantum number m in the vertex
operators of primary states [see Eq. (2.19) below]. The
screening charges are defined as the integrals of those
currents around some closed contours:

Q =f dt M (t)exp i — 0 (t)
C 2(k +2)

(2.18a)

Qo= f dt exp —(k+2)%'(t) — 4(t)
C 2 2

(2.18b)

Q+= f dtexp (k+2)+(t)+ e(t)
C 2 2

(2.18c)

where in defining Q the total derivative part has been
dropped and the overall factor has been changed.

The representation of vertex operator VI in this im-
proved SU(2)i, WZW model can be obtained by multiply-
ing the vertex operators for the U(l) field 4(z) and the
parafermion model:

=exp %(z)+ [ —4(z)+i@(z)]2(k+2) 2k

(2.19)

In this way one can think of the representations of (im-
proved) SU(2)z as the combination of parafermions and
the U(1) field. Hence the conformal dimension 6 of the
vertex operator V& (z) is given as the sum of h for the
parafermion part and that of 4. The latter (fore' " '

) is calculated as

m (m +2k)
4k (2.20)

1(1+2) m

4(k +2) 2
(2.21)

In applying the Coulomb gas formalism to this model,
we first have to construct the primary state which is con-
jugate to V&, namely, the state having the same confor-
mal dimension. Actually, such a conjugate state can be
obtained without difficulty as in the case of the minimal
model [17]. Let us remember very briefly that in the
background charge approach to the minimal model, the

and one can easily see that this h ' partly cancels with the
contribution of 4 to h, when they are added together,
leaving the contribution from the background charge of
4, and 5 becomes
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energy-momentum tensor is modified by adding the back-
ground charge ao,

T (z)= —
—,'(B(p) —ia 8 ip, (2.22)

1+2
i))&(z) =exp i- q'(z)

&2(k+2)
(2.23)

has the same conformal weight as P&. And similarly, for
the i' field (which also has nonzero background charge),
we get

and the correct central charge for the model is repro-
duced by choosing o.'o appropriately. When a primary
state V&=e'~+ is considered, its conformal weight is
given by h =

—,'p —a0p. The state conjugate to this has

the same conformal weight and is obtained as V2
0

Note that in this conjugate operator, V2 is nothing but
0

the conjugate identity operator which has the conformal
dimension zero. In the improved SU(2)k WZW model,
the fields %(z) and 4(z) have nonzero background
charges and a similar construction of conjugate vertex
operators can be done.

Let us consider the original vertex operator P& for
the parafermion model as the product of the two pieces
for %' and i', respectively (these are indicated by the in-
dices i and m, respectively, as shown below); then one can
easily check that the vertex operator

has been chosen as the minus of that of the conjugate
2i a0g(z)

identity operator I(z)= V2 (z) =e ' . So, before dis-

cussing the neutrality conditions, let us briefly mention
about the conjugate identity operators of the relevant
fields. Since the identity operators are the ones which
have the vanishing conformal dimension, such objects are
easily constructed by requiring h =

—,'p(p —2a0)=0 for
the vertex operator e'~~ in the minimal model. Namely,
P=O gives the identity 1, while the other choice P=2a0
leads to the conjugate identity (as is now apparent, a con-
jugate identity operator is implicitly obtained in the
course of constructing conjugate primary operator). In
our model the relevant conjugate identity operators can
be constructed in the same way and are obtained as

[&/ ( k +2) ]+(z) and e i 2k +(z) respectively
We are now in a position to derive the charge-

neutrality conditions for the improved WZW model. Ap-
parently, it is the condition that the total charge of the
vertex operators in the expectation value of the right-
hand side (RHS) of Eq. (2.25) is zero. The siinilar opera-
tors to V 2 to be inserted to define a new ensemble can

0
be read off from the conjugate identity operators, which
were just discussed. Therefore, taking this point into
consideration, for the string of n vertex operators VI

and N screening charges Q in Eq. (2.25), the condition
for the 4 field that the sum of the charges be zero be-
comes

V (z)=exp i — 4(z). m+2k
2k

(2.24)
n —1

i; —(I„+2)—2N = —2
i=1

(2.26)

for V =e',' namely, these are the conjugate opera-im /+2k.

tors. For the 4 field which has a vanishing background
charge, the conformal weight of the vertex operator

P~ =e ' " ' is given by h =m /4k, which is invari-
ant under the change m ~—m. It is then convenient to
define the "conjugate" as item =e' "'4 by fiipping the
sign of m in accordance with the sign change of m in the
definition of the conjugate vertex operator for the U(l)
Geld 4. Hence the product of these three operators,
namely,

n —1

l, —l„=2N,
i=1

(2.27)

n —1 n —1

where the conjugate operator VI is introduced for nth
state and the charge —2 in the RHS is the contribution
from the analogue of V 2 inserted in the new ensemble.

0

Similarly, from the part of the n vertex operator of the
U(1) field 4, we have

g m; —(m„—2k)=2k or g m; —m„=O. (2.28)

I+2 m — . m+2k
Vi =exp i-qi+ 4 i—

2(k +2) 2k &2k

= lim
z~ oo

(e " V.
,
(z, ) . . V. (z„))

2iaoq(z) 2i aors—(0)
)(e e

(2.25)

where the charge of the additionally inserted operator

is the conjugate operator to VI in the improved %'ZW
model.

With this preparation let us now turn to the charge
neutrality conditions. As was discussed in the original
paper by Dotsenko and Fateev [17],the charge-neutrality
conditions are derived by considering a new ensemble
defined by (consider the minimal model again)

( V (z, ) V (z„)),

1
(Pi (z)it~& .(w) ), =5

(z —w)'"
(2.29)

where the meaning of the conjugate operator P& would
be obvious from the above and h is given in Eq. (2.16).

III. THREE- AND FOUR-POINT FUNCTIONS

In this section we apply the formalism developed above
to study correlation functions. Let us start with the

As is obvious, this condition also neutralizes the total
charges of the 4 Geld. Therefore these two are the condi-
tions which have to be satisfied for any nonvanishing
correlation functions.

From this discussion, for example, we see that the
two-point function in parafermion model can be repro-
duced immediately [18]using Eq. (2.12):
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three-point function

1xz2) 3 } ( (,m (Z1 }Vl,m (Z2 }Vl,m (Z3 ) ~c (3.1)

where the conjugate state is introduced for the last opera-
tor. Since each of the vertex operators consists of three
fields, the charge-neutrality conditions have to be
satisfied separately for each sector. However, as men-
tioned before, there are actually two such conditions
from the fact that the primary state is specified by the
two quantum numbers. The charge-neutrality conditions
to be satisfied by the vertex operators in Eq. (3.1} are
given by

m&+mz —m3=0 . (3.3)

JPF(Z1 Z2 Z3 ) =
(z, —z2) "(z2 —z3) "(z,—z3) "

(3.4)

where, with the use of Eq. (3.2},

(3.5)

We now start with the evaluation of the parafermion
part of G(z, ,z2, z3) denoted by Jp„(z, ,z2, z3), which is
calculated to be

l] +lp l3 0 (3.2)
with h; being given in Eq. (2.16). Next, the contribution
of the 4 field J in Eq. (3.1) is

m) mp m3+2k
J(z„zz,z, )=(exp i 4(z, ) exp i 4(zx) exp —i e(z, ) ),2k 2k 2k

I I I

=(zi —z2) "(z2—z3) "(zi —z3) ", (3.6)

where, with the help of Eq. (3.3), we get

(3.7)

G (zi, z2, z3) =

where

C&z

(zi —z2) "(z2 —z3) "(zi —z3) " (3.8)

(3.9)

with b, , in Eq. (2.21). C,23 is an operator-product
coefficient and is not determined by the discussion of the
three-point function, and one needs to consider four-
point functions to calculate it [19].

A general form of four-point functions with the inser-
tion of N screening charges Q is given as

with h being defined in Eq. (2.20). Hence, by taking the
product of these parts, the three-point function
6 (zi z2 z3 ) is obtained as

and

11+12+13 14 2 (3.12)

where Q is given in Eq. (2.18a). However, from the fact
that the field 4 does not have the exponential dependence
in this screening charge, the evaluation of the expectation
value of the relevant operators with an arbitrary number
of Q becomes rather cumbersome. Therefore, in this
paper, we consider some cases where a lower number of
Q is used to neutralize the charges of the vertex opera-
tors. Below we study the cases with N=O, 1, and 2.

When N=O it is rather straightforward, and after
fixing the SL(2, C) gauge in the standard way to be
zi = ()0, z2 = 1, z3 =z, and z4 =0, we get, from Eq. (3.10),

l 2 l 3 /2( k +2 ) —l 3 ( l4 +2 ) /2( k +2 )
(3.11)

where, from the neutrality conditions, the quantum num-
bers have to satisfy

m&+mz+m3 —m4=0 . (3.13)

G (Z), Z2, Z3 Z4) ( Vl (Zi }Vl (Z2 }V( (Z3 }

X V, .(z, )Q . Q &, , (3.10)

Next, consider the case when only one screening
charge is being inserted: N=1. It is convenient to ex-
press the correlator as the product of each sector:

G, (z)= f dt(Vl (0O)Vl (1)Vl (z)V) (0)& (t)),

dt J~(z, t)J(z, t)J(z, t),
C

(3.14)

where
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i, 12 13
J%/(z, t) = (exp i %(oo) exp i %(1) exp i )ll(z)

&2(k +2) 2(k +2) &2(k +2)
14+2 2

X exp —i %(0) exp i- q(i) ),2(k +2) 2(k +2)

and

((4+2)/V2(k+2) (14+2)/2(k+2) —(2/2(k+2) —13/2(k+2)
G() zt 1 r—' z t— (3.15)

( 1 )
2 3

m& m2 m3 2k +m4
J(z, t)= exp i 4(oo) exp i 4(1) exp i (P(z) exp i — 4(0)

2k 2k 2k 2k

Pl3(2k+m4)
2k (3.16)

namely, J(z, t) is the same as in the previous case N=O. The remaining part, the 4 contribution, is calculated as fol-
lows. Note that in this case the evaluation of the expectation value is easy, but in general when N screening charges are
inserted, since we have to take all possible contractions of the fields, the result contains a large number of terms. One
way to evaluate in a systematic manner is to use the following trick:

B4= lim —(Be~ ),
g~O P

(3.17)

where the limit P—+0 should be taken after the differentiation is performed. Then the expectation value of the exponen-
tial operators can be computed as in the previous case, and the final answer is obtained by taking the derivatives and
limiting procedure P~O. Thus J(z, t) is computed as

m) m2 m3 m4
J(z, t) = exp — C)( oo ) exp — C)(1) exp — 4(z) exp 4(0) B4(t),

2k 2k 2k 2k

1 m2 m3 m4 —m2m&/2k m&m&/2k

v'2k 1 —r z —t
(3.18)

Putting it all together, G, (z) is expressed as Go(z) multiplied by the integral, which can be written as the hyper-
geometric functions

( l4 +2 ) /2( k +2) m 2 m 3 m 4 ( (4 +2 ) /2( k +2 ) —l /2( k +2) —l /2( k +2 )z G z dh + + (1 r) ' (z r—)—
&2k c 1 —t z —t t

(14+2)/2(k +2)
(
—1) ' G()(z) g m JI, (z, t)

2k J =2, 3,4
(3.19)

Depending on the choice of contours (indicated by the index i), I, (z) is defined as follows and is expressed in terms of
the hypergeometric function F(a, b, c;z):

I)(z)= J "dr r"(r —1) '(z —r)"

1 ( —a~ bJ —cJ —1)I—(bJ+ 1)
F( —cz, —az bJ —cJ—1, —aJ ——cz,z)I ( aJ cJ)

(3.20)

and

I (z)= f dr r (1 t) (z r)— —
0
1+aj+CJ 1 aJ C. bJ=z I dt t (1—t) '(1 —zt)

I (aJ+1)I (cJ+1)=z F( bj, aJ+ l, ai+cJ+2—,z),I (a/+cJ+2) (3.21)
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where, for simplicity, by defining a =12+2/2(k+2),
b = —12/2(k+2), and c = —13/2(k+2), az, bj, and cz
are given by

a2=a3=a, a4=a —1,

I; (z)= pa, I (1—z) .
J

(3.25)

The a; matrix can be calculated by changing the con-
tours as was discussed in detail in [17]:

b2=b —1, b3=b4=b,

C2 =C4=C, C3 =C 1

(3.22)
s(az) J s(cz)

~12=
s (by+ cJ ) $ (bg+cJ )

(3.26)
These two solutions (specified by the contours) corre-
spond to two solutions of second-order differential equa-
tions [17].

In order to study the structure of the conformal blocks,
we have to examine the monodrony property of this am-
plitude. Fortunately, for each F(az, bj, cz', z) of the con-
stituents of G, (z), the monodromy has been studied in
the case of the minimal model. In our case the monodro-
my of

s(a~+bj+CJ) s(b~)
a

s(bq+J}
'

s(bq+CJ)

where s(a}=sin(1ra). And from the condition

XX tz ktz1=0, kAl,
k, 1

we get

(3.27)

4

I;(z)= Q mqI;(z)
J=2

(3.23)
xJ,

XJ2

CK21&22 $ (aJ+bq+CJ )s (b j)
+11+22

(3.28)

can be obtained as the sum of I; (z} over J; therefore, it is
enough to know the monodromy of I; (z) for each J.
Denoting the contribution of the antiholomorphic sector
by an overbar, we get [17]

4
I=I(z)I(z)= g g X;I;(z)I;(z); (3.24)

J=2 i=1,2

namely, the monodromy can be found for each J through
the relation

The invariant function G(z, z) is found by multiplying
the extra z-dependent part (and z ) from Eq. (3.19).

For the special case where the quantum numbers mJ
are m, =m4 and m2=m3=0 such that they are con-
sistent with the condition Eq. (3.13), the correlation func-
tion G1(z) has a simple structure analogous to an exam-
ple in the minimal model.

Let us now consider the example with two screening
charges, N=2, in Eq. (3.10):

G2(z)= f dt1f dt2(V1 (()0)V1 (1)V1 (z)V1 (0)S (t1)S (t2)), ,

with the restrictions on the quantum number 1 from Eqs. (2.26),

l1+l2+ l3 —l4 =4,
and Eq. (3.13) for mj. Just as in the previous case, G2(z) is expressed as the product of the following pieces:

l, l2 13JP'(z, t)= exp i %(ao) exp i %1) exp i q'(z)
2(k +2) 2(k +2) 2(k +2)

14+2 2 2Xexp i—
2(k +2)

0'(0) exp i—
2(k +2) 2(k +2)

'l(t, ) exp i- )Il(t2)

= t', ( 1 t, }'(z t, )'t,'( 1 ——t, )'—(z —t, )'(t, t, )s, —

(3.29)

(3.30)

(3.31)

where g =1/2(k +2}and a, b, c are as defined before, J' '(z, t), which is the same as given in Eq. (3.16) for any number
of insertion of the screening charges, and

e

m& m2 m3 m4+2kJ '(z, t)= exp — 4( ) exp — tp()) exp — tp(z) exp tp(0) Btp(tt)ptp(tz))&2k &2k &2k &2k

1 1 + J L —tn&m3I2k m3m&I2kMM
(t, —t, )' 2k ~~ 2 (z~ )(tzLt,)— (3.32)

where we defined MJ=mz for J=2,3 and M4= —m4. Equation (3.32) implies that each conformal block contains ten
terms which are specified by the products of the quantum number m J.

Again, by combining these expressions, the amplitude is obtained as
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G2(z)=( —1) ' Go(z) f dt, f dtzt', ( I t—, )"(z —t, )'tz(1 t2—)"(z —t2)'(t, —t3)$
C C

1
4 MMML+

(t, —t3)3 2k j~ 3 (zj t,—)(zL—t2)
(3.33)

We consider a particular case as mentioned before where the m quantum numbers are m, =m4 and m2 =m3 =O.
Then the expression in square brackets in the above equation simplifies to

2
1 + m4

(t, —t )3 2k t&t&
(3.34)

In this situation the integrand is symmetric in t, and t2 (apart from a phase factor) and the analysis of the monodromy
becomes simpler.

As the N= 1 case, let us define

J, (a, b, c,g:z) =2c( ,'g)I, (—a,b, c,g:z)

=2c( —,'g) f dt, f dt2t', (t, —l)b(t, —z)'tz(tz —1)b(tz —z)'(t, t3)$, —

Jz(a, b, c,g:z)=I2(a, b, c,g:z)
=z'+'+' f dt& f dt2t&(t&

—1) (t& —z)'t3(1 —t2) (1 zt2)'(ti ——t2)

J3(a, b, c,g:z) =2c( ,'g)I3(a, b—,c,g:z)
1 1=z '+'+"+g dt, dt2t', (1 t, )"(1 —zt, )'t2—(1 t2)"(1 —zt2)'(t, —t2)$, —

(3.35)

(3.36)

(3.37)

where c ( a ) =cos( n.a ).
Now, corresponding to the two terms in Eq. (3.34), we again use the index J to distinguish them. By repeating a simi-

lar procedure to the previous case, the invariant amplitude can be found. The a; matrix is defined as Eq. (3.25) (now it
is 3 X 3) and is obtained as (only the matrix elements which are needed to determine the ratio X; /Xj are given below)
[17j

S (Cj )S (Cj +—,'gj )

S (bj+Cj+ ~gj )S (bj+CJ+gj )

a'—
32

a', =
33

s(aj+bj+cj+ —,'gj)s(aj+bj+cj+gj)
s (bj+cj )$ (bj+cj+ T~gj )

s (QJ +bJ +cJ +gj )s (bJ )

S (bj+Cj)S(bj+Cj+gj )

s (bj )s (bj+—,'g j )

s (bj+cj+—'gj)s (bj+cj+gj )

(3.38)

And the ratios are calculated as

X, s(aj+bj+cj+gj)s(aj+bj+cj+ —,'gj)s(bj)s(bj+ —,'gj)s(aj+cj+gj)
x', S (Qj)$ (a + gJ )S (CJ )$ (CJ+ 2gJ)S (QJ+CJ)

s(aj+bj+cj+gj)s(aj+cj+ —,'gj)s(bj)
s (cj+—,'gj )s (aj+ —,'gj )s (aj+cj)2c ( —,'gj )

(3.39)

The invariant function is expressed as

G2(z, z)- g CJ(X&I,I&+X2I&I&+X3I3I3),
I=1,2

(3.40)

where CJ are the coefficients which give the relative
weight of two terms in Eq. (3.34) and are defined as
C, =1 and C2=m4/2k.

When one considers a general case without any restric-

tion on mJ, there is no longer the symmetry between the
integration variables t, and t2. Such a situation did not
occur in the minimal model, but one can see that it al-
ways occurs, for example, in the study of correlation
functions in the SU(n)k WZW model. A detailed exam-
ination will be given separately.

As one can see from these examples, one complication
in evaluating the correlation functions with an arbitrary



45 IMPROVED SU(2)k WESS-ZUMINO-WITTEN MODEL 4577

number of screening charges Q being inserted is that
conformal blocks contain a large number of terms com-
ing from the 4 field. An effective way will be needed to
compute systematically with any number of Q . On the
contrary, it may not be so difficult to compute five- or
even higher-point functions with a small number of Q

IV. SELECTION RULES IN N=2 MINIMAL MODELS

ia (p'(z)+ia y'(z)
(z,z)=$"' . (z,z)e

q, s;qs '
q

—s;q —s (4.1)

where the holomorphic part rI}',(z} is defined in Eq.
(2.1S) and qr'(z) is another boson, with the charge a, be-
ing given by

In the improved SU(2)k WZW model [also our discus-
sion obviously applies to the SU(2)„WZW model], the
conditions by which any nonzero correlation functions
exist are the ones of charge neutrality in Eqs. (2.23) and
(2.28). It turns out that from these conditions, which
may be called "selection rules, " one is able to get some
more useful information when they are applied to N=2
minimal models.

N= 2 minimal models with a central charge
e =3k /(k +2) are known to be quite useful for achieving
string compactification. By taking the tensor product of
minimal models such that c„,=9, one can construct
four-dimensional string models with massless spectra
having N=1 spacetime supersymmetry. One advantage
of this compactification scheme is that one can also study
three- and even higher-point correlation functions among
those massless states. In the three-generation model, the
so-called 1X16 model, all the three-point functions of
massless states have been calculated, and in order to
study possible higher point functions, the selection rules
were derived [10].

In the previous study of 1 X 16 model, the calculability
of correlation functions is due to the fact that the pri-
mary fields of the N=2 minimal model are related
through the Zk parafermion to those of the SU(2}k WZW
model where it is known how correlation functions can
be calculated [18]. However, although correlation func-
tions are obtainable in general, one has to solve
differential equations, which is usually not easy. On the
other hand, it is easy to derive a set of conditions which
have to be satisfied by any correlation functions having
nonvanishing behavior. However, the criteria derived
there are only the necessary conditions and not the
sufficient conditions. Now, with this Coulomb gas for-
malism for Zk parafermions, we can derive the exact con-
ditions for nontrivial correlation functions.

Let us remember that a primary field of N=2 minimal
models is written as

where V 1 is a vertex operator for a spacetime boson in
the —1 picture and Vo is the picture-changed version of
the operator V, , while V, &2 is a spacetime fermion
vertex operator. For example,

V (Z, Z ) =e (eik.X(zz)0(Z, Z )
a (4.4)

where 0 (z,z ) is the internal part which is built by a ten-
sor product of the N= 2 minimal model

I;I.
0(z,z)=, " i4",'. , (z,z), (4.5)

g is a ghost field [20], and r' is the generator of SO(10)
representation. Vo and V 1&& are obtained from V 1 by
the picture-changing and supersymmetry operators, re-
spectively.

In this string compactification, the holomorphic
(right-moving) sector gives the spacetime property of
spectra, while the antiholomorphic (left-moving) sector is
responsible for the structure of gauge groups of string
models. The internal part of the massless spectra is
represented by a set of integers (I;,q;,s;:/;, qi, s;),
i =1, . . . , r, with r being the number of N=2 minimal
models in the tensor product.

In studying spectra in four-dimensional string models
in this compactification scheme, the massless states in the
representation of the gauge group E6 are our main in-
terest. It turns out that the representations of E6 can be
given by those of SO(10)XU(1}, and it is convenient to
specify the quantum numbers (I, , q, ,s, :I;,q;,s;) for scalars
of SO(10). Then (I;q, ,s, : I, , q, ,s, ) for other states can be
obtained by using the supersymmetry and gauge repre-
sentation operators. Let us first discuss the holomorphic
sector. For a given (/;, q, ,s;:I;,q;,s;) of V &, the quantum
numbers of the internal part of V 1&2 and Vo are ob-
tained as (for example, see [10,21] for details)

V &&3
— (I;,q;+l, s;+1:L,,q, ,s, ),i=1
r j—1

Vo —g [ (l;,q;, s;:l;,q;,s;)i=1

(4.6)

(2.19). Hence the vertex operators for these two models
are related through the Zk parafermion field. Therefore,
by translating Eqs. (2.26) and (2.28), we get the selection
rules for correlation functions in the N=2 minimal mod-
el.

In four-dimensional string models compactified by ten-
sor products of N=2 minimal models, the L-point func-
tion which we want to study takes the form

( V &(Z&rz& ) V igz(Z3 Z3) V i/2(Z3rz3)

X Vo(24 z4 ) Vp(zs, z5 ) Vo(zl, zL ) ), (4.3)

1

&k(k+2)
—q+ —(k +2)s1

2
(4.2)

i3(lj, qj, sj. +2:l~,qj, s).
8 (lkrqkrsk. lkrqkrsk )]k=j+1 (4.7)

and similarly for the antiholomorphic sector. For a given
level, k, l, q, and s are integers such that O~l~k,
s =0,+1,2 (defined mod4), and ~q

—
s~ ~1, while the pri-

mary field for the SU(2)k WZW model is given in Eq.

respectively, as the consequences of the supersymmetry
and picture-changing operators.

We now turn to the antiholomorphic sector. As men-
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tioned, the representation 27 of E6 is decomposed under
SO(10)X U(1) as 10 2+ 16,&2+ 1 „where the subscripts
represent the U(1) charges of the SO(10) states, and these
different representations can be related by the gauge rep-
resentation transformation. Starting with 10 2, one can
get 16,&2 and 12 by successively performing the shifts

q~q+1 and sos+1.
Now we are focusing on the correlation function of the

internal part of the vertex operators; hence, the relevant
part of Eq. (4.3) is given by (here only one of the sectors
in the tensor product of the N=2 minimal model is con-
sidered for simplicity)

(@ ', (z, )C ', (zz) ) =(p ', (z~)exp[ia, g'(z&)]P~', (zz)exp[iaq +&, +&0'(z2)]P~', (z3)

Xexp[iaq +„+&qr'(z3)]. P», (zL )exp[ia~, y'(zL )]) . (4.8)

In our Coulomb gas formulation, this correlation function is understood as

(Pq' ., (z, )exp[iaq, cp'(zi)]P~', (z2)exp[ia~ +» +i q'(zz)]P ~, (z3)

X exP [ia~ +„+i0"(z3 ) ] p~, (zL )exP [a~, P'(zL ) ]QQ Q ), , (4.9)

where the conjugate is introduced for the Lth vertex operator and N screening charges are inserted. It is also under-
stood that, according to Eq. (4.7), the picture-changing operation has been done for the last L —3 vertex operators.

With this form it is rather clear that, from the charge neutrality Eqs. (2.27) and (2.28), the following conditions have
to be satisfied for the parafermion part P~

and

L —1

1 —
IL =2N

J=1
(4.10)

L —1 L —1

g (qJ —sJ) —2 g d~ —
dL

J=1 J=4
—(q —

sL )=0, (4. 1 1)

where dz =0 or 1 represents the effect of the picture-changing operation. Obviously, Eq. (4.10) is the condition to deter-
mine the number of screening charges for the given lJ s. Now, as for the restriction on the charge a~, of the U(1) field
y', from the previous discussion of defining a conjugate operator, we need to flip the sign as a, ~—a, =a „which is
simply achieved by (q, s)~( —q, —s) in Eq. (4.2). Thus we get

q&s&
+

q +1s2+1+q3+1s3+1+ q
+

q &sI ql s&

L —1=&a —a
qJSJ qL SLJ=1

=0.

1/2
k+2 ' k

k
"'+ k+2

(4.12)

From Eqs. (4.11) and (4.12), one may derive a condition
involving only the quantum number qJ ..

L —1

q~
—ql +2=0 .

J=l
(4.13)

By comparison we see that this condition corresponds to
the one for qJ obtained in [10] and it is the advantage of
this Coulomb gas approach that we can derive an explicit
condition for the quantum number l. One may also
derive a condition for s as has been done in [10], but it
contains dJ and the condition in Eq. (4.13) is more useful.

Equations (4.10), (4.11), and (4.13) are the basic form of
the selection rules. The previous selection rules were de-
rived from the requirement that the operator product of
parafermion fields in correlators be proportional to unity;

2L —1

lJ —
l21 =2N,

i =J
(4.14)

hence, a stronger condition was not obtained for l.
Let us now discuss the antiholomorphic sector. As

higher-point functions, one may be interested in the
forms (27 ), (273), or (27X27) . However, as men-
tioned before, some representations of SO(10) are actually
chosen in these correlation functions. Since 10 of SO(10)
has been chosen as the canonical state in calculating
massless spectra in this compactification scheme, let us
first consider the simple case (10X10)L. The selection
rules for such cases can be derived similarly as in Eqs.
(4.11)—(4.13):
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2L —1

J=1
(4.15}

Generally speaking, a correlation function (27X27}
may contain some numbers of representations 10, 16, and
1 and the selection rules for such a case are easily ob-
tained from those derived above by performing the shifts
of q and s in an appropriate way.

In a practical application of these selection rules to
correlation functions in a three-generation string model,
obviously one is also interested in the couplings of the
moduli (and 27 singlets) to 27 and 27. Since quite a large
number of singlets are found in this model, a separate
study will be needed.

V. DISCUSSION

ash+
aP (z) ia+Bg—

i&T Be(z), (5.1)

where a pair of ghosts (p, y ) is introduced for each pos-
itive root a and the bosonization is carried out in terms

In this paper we showed how Zk parafermions and

U(1) fields can be used to describe the improved SU(2)k
WZW model. In terms of the free-field representation of
the parafermions, we also calculated some correlation
functions. For some values of l and m, four-point func-
tions are shown to be very similar to those in the minimal
model.

When improving the energy-momentum tensor of
SU(2)k, we have especially chosen the deformation pa-
rameter to be p in connection with a fractional level of an
algebra. It is obvious, however, that our approach can be
employed for any choice of the parameter. It is also pos-
sible to choose the deformation parameter such that the
energy-momentum tensor has a vanishing central charge.
Such a model is shown to be related to a topological con-
formal theory [22]. Generally, a different parameter sim-

ply corresponds to a different value of the background
charge of the U(1) field 4(z). Hence it is easy to see how
a change of parameter results, for example, in scaling be-
haviors of correlation functions.

For other groups it is also known how generalized
parafermions can be introduced. The improvement of
the energy-momentum tensor is still given by Eq. (1.1).
I.et us consider a group Gk where a set of positive roots o.

is denoted as b, +. In this case the U(1) field is still defined

from the Cartan subalgebra

H(z)= g aP By ia+By—

of the set of scalars (P,g ). 4 is now a vector whose
number of components is given by the rank of Gk. With
these fields the rotation to the generalized parafermion
fields is obtained by the following redefinition of the fields

[14] [corresponding to Eq. (5.1), 4 and 4 are also vectors
and these new fields are orthogonal as in Eq. (2.12)):

a+g=%'+ —( —4+i@),
&T

. a 4 k+g a4 .a+
&k g vk g

&k — .a+
a @+i a 4+ig

g

(5.2)

(5.3)

(5.4)

which are the extension of those for the SU(2)k case in

Eqs. (2.11). f and g are the fields with the constraints

f,=0, g g =0;
ash+ aEA+

(5.5)

a
ln(z —w) . (5.6)

Because f and g are constrained, one can show that
this set of fields can reproduce the same central charge as
the Gk WZW model. Needless to say, for SV(2)k there is

only one root and the constraints are satisfied only for
f =g =0, leading to Eq. (2.11}.

For the improved Gk WZW model with Eq. (1.1), it
may still be possible to use these two sets of constraint
fields with Eq. (5.6}. However, for lower-rank groups, for
example SU(3)k, it is easy to solve the constraints and
redefine independent orthonormal fields. Such a study
will be pursued in a future publication.

Another possible direction may be an explicit evalua-
tion of five- or even higher-functions in this formalism.

Finally, we comment on the connection to the work by
Distler and Qiu [23], who constructed the irreducible rep-
resentation of the SU(2)k WZW model from the corre-
sponding parafermions. Our improved model has been
constructed by changing only the Cartan current. There-
fore the parafermions can be derived from J+ in Eqs.
(2.1a) and (2.1b) in the same manner as Ref. [23]. This
means that the irreducible representation of the improved
SU(2)k model can be obtained along the line of Distler
and Qiu [23].

hence, not all of them are independent. Actually, one can
show that the correlations off and g are given by

f (z)f&(w)=g (z)g&(w)

[1]M. Wakimoto, Commun. Math. Phys. 104, 605 (1986).
[2] M. Bershadsky and H. Ooguri, Commun. Math. Phys.

126, 46 (1989).
[3]A. Gerasimov, A. Morozov, M. Olshanetsky, A.

Marshakov, and S. Shatashvili, Int. Mod. Phys. A 5, 2495

(1990).
[4] M. Kuwahara and H. Suzuki, Phys. Lett. B 235, 25 (1990).
[5] K. Ito and Y. Kazama, Mod. Phys. Lett. A 5, 215 (1990).
[6] P. Goddard, A. Kent, and D. Olive, Phys. Lett. 152B, 88

(1985); Commun. Math. Phys. 103, 105 (1986).



4580 YUKIO KIKUCHI AND %'ATARU ISHIZUKA 45

[7] M. Kuwahara and H. Suzuki, Phys. Lett. B 235, 52 (1990).
[8] D. Gepner, Nucl. Phys. B290, 10 (1987).
[9] D. Gepner, Nucl. Phys. B296, 757 (1988); B311, 191

(1988).
[10]S. F. Cordes and Y. Kikuchi, Report No. CTP-TAMU-

92/88 (unpublished); Mod. Phys. Lett. A 4, 1365 (1989);
Report No. NUB-2978 (unpublished); Int. J. Mod. Phys. A
(to be published).

[11]V. G. Kac and M. Wakimoto, Proc. Natl. Acad. Sci.
(U.S.A.) 85, 4956 (1988).

[12]S. Nam, Mod. Phys. Lett. A 5, 2071 (1990).
[13]A. H. Bougourzi, Q. Ho-Kim, Y. Kikuchi, and C. S. Lam,

Int. J. Mod. Phys. A 6, 4181 (1991).
[14]T. Jayaraman, K. S. Narain, and M. H. Sarmadi, Nucl.

Phys. B343, 418 (1990).
[15]A. H. Bougourzi, Q. Ho-Kim, Y. Kikuchi, and C. S. Lam,

Mod. Phys. Lett. A 6, 1077 (1991).
[16]A. Gerasimov, A. Marshakov, and A. Morozov, Nucl.

Phys. B238, 664 (1989).
[17]V. S. Dotsenko and V. A. Fateev, Nucl. Phys. B241, 312

(1984);B251, 691 (1985).
[18]A. B. Zamolodchikov and V. A. Fateev, Zh. Eksp. Teor.

Fiz. 89, 380 (1985) [Sov. Phys. JETP 62, 215 (1985)].
[19]A. A. Belavin, A. M. Polyakov, and A. B. Zamolodochi-

kov, Nucl. Phys. B241, 333 (1984).
[20] D. Friedan, E. Martinec, and S. Shenker, Nucl. Phys.

8271, 93 (1986).
[21]S. F. Cordes and Y. Kikuchi, Phys. Rev. D 42, 4087

(1990).
[22] Y. Kikuchi and W. Ishizuka (unpublished).

[23] J. Distler and Z. Qiu, Nucl. Phys. B336, 533 (1990).


