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Baryogenesis via leptogenesis
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If right-handed Majorana neutrinos are added to the standard model, then lepton-number-violating
out-of-equilibrium decays of right-handed neutrinos combined with anomalous electroweak processes
can generate the baryon number of the Universe. We analyze this mechanism in detail, and determine
the ranges of parameters for which the correct baryon number is generated. We find that the scenario
works for a wide range of parameters in the neutrino sector, including right-handed neutrino masses
ranging from -1 TeV to -10' GeV, depending on the assumptions made about the structure of the
neutrino mass matrices.

PACS number(s): 98.80.Cq

I. Ibf iRODUCTION II. THE MODEL

The basic ingredients necessary for generating a
nonzero baryon number B in the Universe from initial
conditions in which 8=0 were discovered long ago [1].
Since then, many specific baryogenesis scenarios have
been proposed [2]. All of these models seek to explain
the small ratio

n& =(4-7)X 10
n&

required by the standard model of big-bang nucleosyn-
thesis [3].

In this paper, we examine in detail a scenario in which
out-of-equilibrium lepton-number-violating decays can
generate a nonzero lepton number L. This lepton num-
ber is then partially converted into a baryon number by
electroweak processes which anomalously violate B+L,
thus generating the observed baryon number of the
Universe. These ideas have been discussed in Refs. [4]
and [5], but a detailed quantitative analysis was not per-
formed.

There are several motivations for studying this
scenario in detail. First, in contrast with many other
baryogenesis scenarios, it requires only a rather modest
extension of the standard model, namely, the addition of
right-handed neutrinos with large Majorana masses.
Such models are very natural and interesting in their own
right, and have been studied by many authors. Models of
this kind incorporate the seesaw mechanism [6] which
naturally exp%sins why the observed left-handed neutri-
nos are light, and a1lows the standard model to be embed-
ded in theories with higher gauge symmetries, such as
left-right-symmetric models and SO(10) grand unified
models. On the phenomenological side, small neutrino
masses are interesting for neutrino mixing experiments
and may explain the apparent deficit of neutrinos from
the Sun. It is an interesting question to ask what range of
parameters (if any) in this extended neutrino sector can
also explain the observed baryon number of the Universe,
and compare this range to theoretical prejudice and ex-
perimental observation.

We consider the standard model with the addition of
three generations of right-handed neutrinos which are
singlets under SU(2)z XU(1)„. They are assumed to
have Majorana masses of order Ma ))100 GeV. (We will
see that we can actually generate sufficient baryon num-
ber for Mti ~1 TeV.) The right-handed neutrinos in-
teract with ordinary leptons through the Higgs Yukawa
coupling

2;„,=hjk(LLJH)Nqk+H. c. , (2.1)

This rate is larger than the universal expansion rate up to

where LL is the usual lepton doublet and H is the Higgs
doublet. Unless we specify otherwise, we will work in a
basis where both the v and 1V Majorana mass matrices are
diagonal. The Dirac mass matrix is then
mDJk=hjkv/~2, and is not diagonal in this basis. The
interaction (2.1) is the only renormalizable coupling
which connects the Ãs with the known particles of the
standard model. In most models incorporating N's, there
will be additional interactions involving the N's, such as
exchange of heavy 8'z bosons. We will see that these in-
teractions are constrained by the requirement that the
N's be out of equilibrium when they decay, but that real-
istic models are possible.

We begin by explaining how the three basic ingredients
needed for baryogenesis [1] arise naturally in this model.
The first necessary ingredient is clearly baryon-number
violation. In our model, this comes about through the
combination of L violation due to the N Majorana mass
terms and the anomalous B +L violation in the standard
model. The idea that B+L could be violated rapidly at
high temperatures was proposed in Ref. [4]. At tempera-
tures T satisfying Mn,(T) «T«Ma(T)laa, the rate
can be calculated reliably using semiclassical methods,
and it is found that the rate exceeds the expansion rate of
the Universe for T 20~0 GeV [7], [8]. At temperatures
much larger than M~, qualitative arguments suggest that
the rate of 8 +L violation is given by [7], [9]

(2.2)
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temperatures T-10' GeV. Further, the hypothesis that
the rate of B +L violation is suppressed at high tempera-
tures has received further support from analytic compu-
tations in (1+1)-dimensional models [10] and numerical
simulations [11]. We conclude that there is no strong
reason to doubt that (B+L)-violating processes are
effectively in equilibrium for temperatures 200
GeV~ T~10' GeV.

The second necessary ingredient for baryogenesis is C
and CP violation. The reason is simply that baryon num-
ber is odd under both C and CP, and so if either C or CP
were conserved, there would be as many baryons as anti-
baryons produced on average. In our model, C is violat-
ed by chiral couplings and CP is violated by phases in the
Yukawa couplings of Eq. (2.1).

The final necessary ingredient is that B-violating pro-
cesses be out of equilibrium. (In the presence of 8+L
violation, this will be true if L-violating processes are out
of equilibrium. ) The reason that out-of-equilibrium pro-
cesses are necessary is that the phase-space distribution
of particles in equilibrium is given by either a Fermi-
Dirac or Bose-Einstein distribution, possibly with a
chemical potential. [This still holds in the presence of CP
(or T) violation, as discussed for example in [12].] If all
allowed reactions are in equilibrium, processes such as
vv~e e impose p +v =0, while L-violating process-
es such as vv~e e impose p =0. Thus, in equilibri-
um there can be no net L, and hence no baryogenesis via
the mechanism we are discussing.

In the context of our model, the lightest N (which we
will refer to as N, ) is naturally out of equilibrium when it

decays. If we assume that there are no nonstandard in-

teractions other than those of Eq. (2.1), then the rates for
processes which can deplete the number of N&'s is pro-
portional to the Yukawa couplings h. If we make the
reasonable assumption that the neutrino Dirac masses are
of the same order as the Dirac masses of their charged-
lepton partners, then hjk «1. Thus, the N&'s are natu-

rally overabundant when they decay. The decay rate at
temperatures T-M~ is roughly

mD M~2

16+v
(2.3)

mD
M~ ~ (10" GeV)

1 1 GeV
(2.4)

As we mill explain below, sufficient B can be generated
even if M& is significantly lower than suggested by this

I

estimate.
Of course, in order that N, be out of equilibrium, there

can be no other processes occurring rapidly which can
change the number of N, 's. For example, in a left-right-
sy~metric model, processes such as ¹~ used~ mediat-
ed by 8'~ exchange will deplete the N number density

Here, we assume that N& couples dominantly to the left-
handed neutrino v, with Dirac mass ma . Demanding

1

that the rate (2.3) be smaller than the expansion rate of
the Universe at temperatures T-Mz gives the con-

straint
2

unless the S'z is sufficiently heavy. The reaction rate for
such processes at temperatures T «M~ is roughly

g4 T5r-
16mMw

R

(2.5)

where gz is the right-handed gauge coupling. In order
for this rate to be smaller than the Ni decay rate for tem-
peratures T ~ MN, we require

M~ M~
+10

M~ 1 TeV

' —1/4

(2.6)

assuming g„-g2. Since the natural scale for M~ and
R

Mz is the same, this is not an overly restrictive bound.
1

Another popular model of right-handed neutrino
masses is the singlet Majoron model [13]. In this model,
the N's couple to a gauge-singlet scalar field 4 which car-
ries lepton number 2:

X=~jkN)4Nk+H. c . (2.7)

When 4 acquires a vacuum expectation value, the lepton
number is broken and the N's get Majorana masses.
Since the lepton number is a global symmetry in this
model, there will be a Nambu-Goldstone boson, the Ma-
joron. The Majoron couplings to ordinary matter are
very weak [13], and it will not mediate any interactions
strong enough to keep the N's in equilibrium as long as
(e»&U.

III. THE RATES

(hth)„
I D= M~

16m
(3.1)

When loop effects are taken into account, there will be a
CP asymmetry in this decay. We pararnetrize this asym-

In this section, we present the results for the various
reaction rates of interest. As already mentioned, we will

be interested in temperatures T &)v, so it is certainly a
good approximation to neglect all masses except those of
the N's. We can therefore compute amplitudes in the
symmetric phase, where the fermions are in states of
definite helicity, gauge bosons have two polarization
states, and all four components of the Higgs doublet are
considered physical. For the purposes of doing thermal
averages, it is then convenient to regard all of the parti-
cles in a SU(2)~ doublet as a single particle with twice
the number of internal degrees of freedom.

The v's have Majorana masses, so that strictly speak-
ing they cannot carry lepton number. However, at high
temperatures, the neutrinos are approximately in eigen-
states of definite helicity, so we can assign L =+1 to left-
and right-helicity neutrino states. For notational con-
venience, we will denote left-helicity neutrinos as v and
right-helicity neutrinos as v.

The lightest right-handed neutrino can decay via the
diagram shown in Fig. 1. The total decay rate at the tree
level is
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FIG. 1. The tree-level diagram responsible for X& decay.
Here and in the following figures, a, b, . . . are SU(2)~-doublet
indices.

metry by a small parameter e, defined by

la(N, v, h'*)I'= la(N, v,h') I'=elm I' . (3.2)

The leading contribution to e comes from interference be-
tween the tree-level amplitude with loop amplitudes
which contain on-shell intermediate states. At one 1oop,
the only CP-violating contribution comes from the dia-
gram shown in Fig. 2. We find

e= t Qlm[(h h),J(h h'), jf(M~ /MN, ),1

n(h th)»

where

{3.3)

1+xf (x)=&x 1 —(1+x)ln

for x))1 .1

2&x
(3.4)

m ~(h th)»
2 2

&~,(s)=
KU . S

(3.5)

where we have summed over flavors. (The dimensionless

(A difFerent result for e was obtained in Ref. [5]. Howev-
er, the discrepancy does not a8'ect our results because of
the large uncertainty in the neutrino mass matrix. ) To
reassure ourselves that eAO, we note that in the N mass
eigenbasis, the only freedom to change basis is to redefine
the left-handed neutrino fields, corresponding to
h ~UP. However, it is easy to see that e is independent
of U„, so that there is no way to rephase the fields to set
@=0.

The interaction (2.1) will also mediate L-violating
scattering processes via Higgs-boson exchange. The s-
channel processes shown in Fig. 3 give rise to the reduced
cross section

FIG. 3. The diagram contributing to L-violating scattering
processes via s-channel Higgs-boson exchange.

(3.6)

where m& is the mass of the physical Higgs scalar. We
have kept only the leading-logarithmic dependence on
m~. The results are very insensitive to the precise value
of m&, and we use m& =800 GeV for definiteness.

There are also I.-violating scattering processes involv-
ing N exchange, shown in Fig. 5. The full flavor struc-
ture of this amplitude is quite complex, and will not be
needed, since we must guess at the flavor structure in the
neutrino sector in any case. Therefore, we assume that
the dominant contribution comes from N exchange (for
some fixed j). The expression then becomes

(3.7)
J 21TS J

where

g (x)=—x + + 1+ in{1+x)x x 1+x
D x 2D2(x) D x.

—,'x for x &&1,

x for x &&1, (3.8)

I
I
t
I

&H
I
I
I
I

reduced cross section & is essentially the square of the
amplitude summed over final states, and is the natural
quantity which enters into the thermally averaged rates.
Precise formulas are given in Appendix A.) Of course,
there are also processes involving other quarks, but these
are negligible because of their small Yukawa couplings to
the Higgs field.

The t-channel Higgs-boson-exchange processes shown
in Fig. 4 give rise to the reduced cross section

T

m (hth)„s —MN +m~
&yg, (s)=

2
s —M~ +MN ln

KU S m~
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FIG. 2. The one-loop diagram which contributes to the CP
asymmetry in N, decay.

FIG. 4. Diagrams contributing to L-violating scattering pro-
cesses via t-channel Higgs-boson exchange.
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FIG. 5. Diagrams contributing to L-violating scattering pro-
cesses via N1 exchange.

and

1 x —l

D&(x) (x —1) +1 ~ /M~
J J

(3.9)

To obtain the result (3.7), we have removed the contribu-
tion due to real intermediate state N 's. (Note that there
is no enhancement at s =M&.) This contribution is not

J
correctly taken into account by the usual (zero-
temperature) Feynman rules, since the physical inter-
mediate state in the early Universe is a quantum state
containing many identical N's. The contribution to the
Boltzmann equations coming from real intermediate state
Ãs is taken into account via the decay and inverse decay
processes already discussed.

Note that for s &&Mz, we have
J

3so~= pm„, ,
47TU

(3.10)

where m . are the physical v masses. This shows that at
low energies, the lepton-number-violating scattering rates
are controlled directly by the left-handed neutrino
masses.

IV. BOI TZMANN EQUATIONS

nN +3HnN
1 1

nN1

(YD+VH, + VH, )

nN)

(4.1)

In this section, we write down the relevant Boltzmann
equations describing the evolution of B and N&. We
make the approximations of kinetic equilibrium and
Maxwell-Boltzmann statistics. The derivation of such
Boltzmann equations and the thermal averaging used is
reviewed, e.g., in Refs. [12] and [14]. Some relevant for-
mulas and brief remarks are collected in Appendix A.

Using the formalism of Appendix A, we can write

—28ng 79 ng (4.3)

for three generations and one Higgs doublet. (The reason
that the factor is not simply —,

' is that the anomalous elec-

troweak processes only act on the left-handed fields, and
so do not directly couple to B and L. ) Note that it is not
necessary that B +L violation be in equilibrium during
the era that a B —L asymmetry is being generated. As
long as B+L violation is in equilibrium at some time

Here, H is the expansion rate of the Universe, the n's are
number densities, and the y's are the rate factors defined
in Appendix A. The rate factors are labeled by the same
subscripts used in the previous section. nI is the number
density for a left-handed doublet, i.e., gI=2. We have
written the Boltzmann equation for B —L, since this
quantity is conserved by the anomalous (B +L)-violating
processes.

We will not discuss the derivation of Eqs. (4.1) and
(4.2) in detail, since a detailed discussion is given in [12].
We will limit ourselves to some brief remarks. First of
all, the equations are physically sensible and have a very
simple interpretation. The 3Hn terms describe the de-
pletion of the number densities due to the expansion of
the Universe. Equation (4.1) describes the depletion of
N& due to their decay and annihilation processes. The
first term in Eq. (4.2) describes the creation of lepton
number from the L asymmetry in N& decay, while the
second term describes the dissipation of lepton number
due to L-violating scattering processes.

Also, note that in equilibrium, the right-hand side of
Eq. (4.2) vanishes, in accordance with the general result
that no particle-antiparticle asymmetry can exist in equi-
librium. In fact, there are some subtleties which must be
taken into account to ensure that this happens: If the CP
asymmetry in yD were the only source of CP violation,
then the Boltzmann equation would predict a nonzero L
even in equilibrium. Also, using unitarity, it can be
shown that the zero-temperature cross sections for the
scattering processes we have considered do not have a net
CP asymmetry, so it appears that they cannot resolve the
dilemma. However, when the contribution from real in-
termediate N &'s is subtracted out from the scattering pro-
cesses, it is found that the resulting scattering rates do
have a CP asymmetry which combines with the asym-

metry from N& decay to give the first term in the
Boltzmann equation (4.2). This is discussed in detail in

[12].
When the anomalous (B +L)-violating processes are in

equilibrium, the baryon number nz is related to nz I by

[9,15]
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afterwards, B —I.will be converted to B according to Eq.
(4.3).

It is convenient to scale out the expansion of the
Universe by using rescaled variables

quarks. This is certainly a reasonable assumption, since
in most seesaw models, all of the Dirac mass matrices
have a similar origin. For purposes of making estimates,
we will assume that the neutrino Dirac matrix in the
weak basis has the "hierarchical texture"

N
1

nN
1

(4 4)

etc., where $ is the entropy density [3]. As long as the
Universe expands isentropically, s ~ R where R is the
scale factor, and we have

H (Mi )5

etc., where we have defined

MN
X=

T

(4.5)

(4.6)

Equation (4.5) no longer holds if there are significant
deviations from equilibrium and the Universe does not
expand isentropically. In particular, the N&'s can be far
out of equilibrium and can create substantial entropy
when they decay. (Physically, what happens is that the
decay products rapidly thermalize and heat up the
thermal bath of radiation, which causes the Universe to
expand faster, which in turn dilutes any out-of-
equilibrium number densities such as n~ I . At the end
of the out-of-equilibrium era, the entropy is again propor-
tional to the equilibrium number density of radiation, and
so measures the dilution of quantities such as nz L /ny ).
This effect is easily estimated: If the N&'s decay at a tem-
perature Td„,y, then by the second law of thermodynam-
ics the entropy generated is

PN& ( decay )
hs=

Tdecay
(4.7)

If the N&'s are far out of equilibrium when they decay,
they will be nonrelativistic and pN=MNnN-—MNny so
that

decay

(4.8)

This shows that entropy generation by N& decays can be
significant if the decay takes place at x ~g, —100.
Perhaps surprisingly, it has been shown [16] that the sim-
ple estimate (4.7) is accurate to within factors of order
unity when entropy generation is important. We will
therefore use Eq. (4.7) to estimate the effect of entropy
generation, defining the instant of decay as the time when

2
mD YJ 'g 'g mD3

1

(5.1)

where g is a small parameter which controls both the
mass hierarchy and mixing angles.

We assume that the right-handed neutrino mass matrix
M~ has a texture similar to that of Eq. (5.1). We now
consider two different mass scenarios.

In the "democratic" mass scenario, we assume that the
basis which diagonalizes MN is completely uncorrelated
with the basis which diagonalizes mD. Then, we expect

2
mDj

I MNl

(5.2)

where mD are the eigenvalues of mD. This is the case
most often considered in the literature. Note that in this
case, the physical left-handed neutrino masses display a
hierarchy m„+, /m„-ri .

However, there is another possibility, which we call the
"correlated" mass scenario, in which there is a basis
which approximately diagonalizes both mD and MN. In
this case, the physical left-handed neutrino Majorana
masses are given by

2
mDj

vj
Nj

(5.3)

This scenario may be appealing if the scale of the right-
handed neutrino masses are not far above the weak scale,
so that one may reasonably speculate that mD and MN
have a similar origin. In this case, m „J+&

/rn „-g.
In the democratic case, we estimate

2
2mD3

(h h}))—- (democratic },
U

2 (5.4)

which controls the rate for scattering due to Higgs-boson
exchange. N-exchange scattering is assumed to be con-
trolled by N, exchange, so that Eq. (5.4) controls this rate
as well. The expression (3.3) for the CP-violating param-
eter e is assumed to be dominated by the contribution
from j=2. (Note that the term with j= 1 vanishes identi-
cally. ) Thus, we estimate

V. NEUTRINO FLAVOR SCENARIOS

m2 MND3e= sin5 (democratic),
7TU

(5.5)

We will now make some assumptions about the Savor
structure in the neutrino sector in order to reduce the
number of free parameters in the model. We will assume
that the neutrino Dirac masses fall into a hierarchical
pattern qualitatively similar to that of the leptons and

where 5 is a CP-violating phase. (In what follows, we will
assume maximal CP violation: sin5= 1.) The important
parameters in this scenario are thus MN, mD3 and the ra-

tio MN /MN .
In the correlated case, we estimate
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2
2mD1

(h h)„= (correlated) .
2

(5.6)
100

10

¹xchange scattering is assumed to be controlled by N3
exchange, and we estimate

2
2mD3

(h h)33= (correlated) .
U

2
(5.7)

m2 M~D3e= sin5 (correlated} .
nU' M~,

(5.8)

If the hierarchy of N masses is the same as that of the v
masses, then e will be dominated by the contribution
from j=3, and we estimate

0.1 r

0 01

0.001

0.0001

lO ":..
lO "
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10» NB
/

/
/

MN] /T
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I
'I

\ 1
\

1

I

'I

'I

\

\

V

100

The important parameters in this scenario are thus Mz,
1

mD3 and the ratio Mz /M~
1 3

The assumptions we have made are intended to be
crude approximations, and are not expected to be realis-
tic in detail. In particular, the value of e depends on ra-
tios of masses of right-handed neutrinos, which we can-
not estimate with any real confidence. This is important
to keep in mind, since the baryon asyrnrnetry generated
in this model is essentially proportional to e.

FIG. 7. N& and N~( X 10' ) as a function of temperature for
1

the "democratic" neutrino mass scenario with M& =10" GeV
I

and m»=100 GeV. Note that a large baryon asymmetry is
generated at temperatures T-MN, but that it is dissipated (by

scattering processes) at lower temperatures. For smaller values
of MN, the scattering processes become important at higher

1

values of T/MN, and there is no baryon number generated at
1

T-MN .
1

VI. RESULTS

The Boltzmann equations (4.1) and (4.2) were numeri-
cally integrated to obtain the present baryon asymmetry.
Typical results are shown in Figs. 6 and 7.

We can get an approximate analytical understanding of
the solutions as follows. We assume for simplicity that
only the decay terms are important. For x ((1,we then
have

(r &

H(MK )

where

(h h)it N,K=
32m. H(M~ )

(6.1)

(6.2)

100

10

1p] 0 Napprox
B

If K «1, 1V, will be far out of equilibrium when it de-

cays, and we expect our baryogenesis mechanism to be
effective. However, we will see that the mechanism
works even if K —100. The Boltzmann equations can be
written as

0.1 r

0.01 r
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lo"..
) O
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p10 NB
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/

eq
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I
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/

10 100 1000

MN1/T

FIG. 6. NN, Nz, and N~( X 10' ) as a function of tempera-
1 1

ture for the "democratic" neutrino mass scenario with

MN =5X10"GeV and m»=1 GeV. The straight dashed line

corresponds to the approximate solution for N& discussed in the
text. This is meant to illustrate a "typical" case where the
baryogenesis scenario works well. For larger values of M&,

1

N& goes farther out of equilibrium, causing entropy generation
1

which dilutes the final value of N&.

dN~
N N(N N'q )Kx— — (6.3)

dN~
=(N~ NNq)eKx-

dx
(6.4)

We solve the Boltzrnann equations by writing

N~ =N'q(m =0)(1+6,) . (6.5)

6 measures the deviation of N& from the equilibrium
1

value appropriate for a massless (nondecaying) particle.
Then

2db x
dx 4

(6.6)

dN~ x=N'q(m =0) 6+ eKx
dx 4

(6.7}

The x /4 term comes from the difference

N; —N'q(m =0). For 6 «x l4, we have the solution



45 BARYOGENESIS VIA LEPTOGENESIS 461

rx'
b, (x)=—

20
(6.8)

lp -07

/

lp -08
mp3 = 100 GeV

which remains valid as long as x «5/E. Substituting
this into Eq. (6.4), we obtain the solution IQ

mp3 = 10 GeV

9
~(x)= eEx

4~4g,
(6.9)

The physics of this solution is very simple: At high tern-

peratures, the decay rate is so small that N& is nearly
1

constant, while Nzq is changing due to efFects of the

nonzero N, mass. This small deviation from equilibrium
is enough to drive the 8 —L generation given by Eq.
(6.9).

This approximate solution is plotted along with numer-
ical solutions in Fig. 6. Note that Nz becomes constant
near the temperature where the approximation breaks
down. This occurs when Kx -20, so the 8 —L generat-
ed is (very roughly)

&a-l. — (6.10)

which is independent of K. This explains why the baryon
asymmetry generated is insensitive to E over a large
range of E values. Also, since the solution is valid as
long as x «(5/K)', it at least partially explains why
baryogenesis is efFective for large values of E.

In Figs. 8-10, we show the generated baryon asym-
metry for various parameter choices for both the derno-
cratic and correlated neutrino mass scenarios. In the
democratic scenario, the most important parameters are
MQ rnD3 and the ratio MN /M~ which enters into e

1 1 2

In Fig. 8 we plot the generated baryon number as a func-
tion of MN for several choices of m&3. We have assumed

1

lQ ":
lp-06 r

lp 07,;

l
Q-08

lP -09

lQ -10

I I I

mp3 = 100 GeV:

I
I

f

mp3 = 10 GeV/
/ 1/

/ y/ g/ I/

mp3 ——1

lQ 11

lQ-12

lo "'.
lO '4

10 12 14 16 18

logyp(M~&/1 GeV)

FICx. 8. The generated baryon asymmetry as a function of
Mz for the "democratic" neutrino mass scenario for various

1

values of ma3. The value of Xz required by big-bang nucleosyn-
thesis is given by the solid horizontal line. Note that Nz is
essentially proportional to the CP-violating parameter e, and
our estimate of e is rather uncertain, as explained in the text.
Therefore, we can conclude that the scenario should probably
be considered viable for MN 10 GeV and mg)3 & 10 GeV

1

10 10 ~

Q
11 g

mp3 = 1 GeV

lp-» I.

lp"
lp '4

4

I I

8 10 12 14 16 18

logyp(MN~/1 GeV)

FIG. 9. The generated baryon asymmetry as a function of
M& for the "correlated" neutrino mass scenario for MD =1

1 1

MeV and various values of m». We see that the scenario can
work well for MN as low as —1 TeV.

1

that M~ /M~ =0.1 for de6niteness. Since the baryon
1 2

number generated in this model is essentially proportion-
al to e, and e ~ M~ /M~~, the actual values of 8 plotted

1 2

should be viewed only as "typical" values for the given
values of M& and ma3. However, we expect the depen-

1

dence of B on Mz and mD3 shown in this figure to be
1

correct.
We note that both for an "intermediate-scale seesaw"

(M~ —10 GeV) [17] and a "grand-uni6ed-theory-
1

(GUT-) scale seesaw" (MN —10' GeV) [6], the model

considered here can give rise to the observed baryon
asymmetry. These see-saw scenarios are attractive be-
cause they are theoretically well motivated by grand
unification arguments, and because they give rise to neu-
trino masses with the correct order of magnitude to
resolve the solar-neutrino problem via the Mikheyev-
Smirnov-Wolfenstein (MSW) effect [18].
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FIG. 10. The generated baryon asymmetry as a function of
MN for the "correlated" neutrino mass scenario for m& =10

1 1

MeV and various values of mD .
3
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m —1eV, m, —1keV, m, —10keV,
e P

(6.11)

if we assume M~ .M~ ..M~ = 1:10:100. Thus, this
1 2 3

scenario predicts neutrino masses near their direct exper-
imental upper limits. Also, since the lightest right-
handed neutrino has mass —1 TeV, we might expect to
see new lepton Aavor physics at high-energy colliders.
We find this scenario rather attractive, since it holds out
the possibility that the physics responsible both for neu-
trino mass and baryogenesis in the early Universe is
directly experimentally accessible.

VII. CONCLUSIONS

We have seen that the observed baryon asymmetry in
the Universe can be accounted for assuming only the ex-
istence of right-handed neutrinos with large Majorana
masses. Depending on the assumptions made about the
structure of the neutrino mass matrices, the scenario
works for right-handed neutrino Majorana masses from 1

TeV all the way to the Planck scale 10' GeV. On the
one hand, this may be viewed as disappointing, since the
model does not make a sharp prediction about the baryon

asymmetry. On the other hand, we feel that it is very in-
teresting that a very attractive class of models is capable
of generating the baryon number of the Universe, includ-
ing parameter ranges which are considered to be theoreti-
cally attractive for very different reasons.

Even with the large uncertainties present in our esti-
mates, it is clear that sufficient baryon number cannot be
generated for much of the parameter space. The value of
e may be much smaller than our estimates, since it is pro-
portional to sin5, where 6 is a CP-violating phase. How-
ever, it is difficult to imagine how e could be several or-
ders of magnitude larger than our estimate. Thus, we can
think of our results for B as rough upper bounds. An ex-
ample of a nontrivial case in which sufficient baryon
asymmetry cannot be generated is Mz —10 GeV with

mD3-100 GeV. This corresponds to a simple possibility
in the context of SO(10) with an intermediate breaking
scale of 10 GeV and where we take mD3 —-m, ~ 100 GeV.

In the correlated scenario, the most important parame-
ters are Mz, mn„m~3, and the ratio MN /Mz which

1 1 3

enters into e. In Figs. 9 and 10 we plot the generated
baryon number as a function of Mz for several choices

1

of mD, and mD3. We have assumed M~ /Mz =10 for
1 3

definiteness.
Note that in this case, the baryon asymmetry can be

generated for Majorana masses —1 TeV. If we assume
that the neutrino Dirac masses are close to those of their
charged-lepton partners, then this means that

APPENDIX A: THERMAL AVERAGES

In this Appendix, we review the formalism for thermal
averaging of reaction rates and collect some useful for-
mulas and establish notation.

We assume Maxwell-Boltzmann statistics, so that the
equilibrium phase-space density of a particle species a is

faq(p)eE(P) /T (Al)

(We assume that there are no net conserved charges
present in the early Universe, so that all chemical poten-
tials vanish. ) The approximation of Maxwell-Boltzmann
statistics is expected to introduce errors of order 10%,
which is tolerable for our present purpose. The number
density is

d3
n = ( )a=ga

2 3fa P (A2)

where g, is the number of internal degrees of freedom. In
equilibrium, we have

gama T
2772

(A3)

where E„(x) is a modified Bessel function. (We follow
the conventions of [19].)

The Boltzmann equation for the phase-space distribu-
tion of the particle species a can be written as

Lf.= ,'C. [f],—— (A4)

Lf,:E,f, —H~—p, ~

a

and the "collision integral" is given by

C, [f]—= g fdnxd~r(2~) 5 (pa+px pr)
ax~ Y

x [f.f,~a(~x
—f„~a(r ax) ~'],

(A5)

(A6)

where the sum runs over all allowed processes aX~Y,
where X and F are multiparticle states. ~A ~

is the tran-
sition amplitude (averaged over internal degrees of free-
dom in both the initial and final states). We have used
the abbreviations

drab

1d—:II d, d b=g 2E, )(2m. )' 2E(pb)
(A7)

where the Liouville operator in a Roberson-Walker
spacetime is given by
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etc. As always, if there are identical particles in the ini-

tial or final states, appropriate symmetry factors must be
introduced to avoid double-counting initial or final states.

We can write an equation for the number density by in-

tegrating Eq. (A4) over dm, :
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2f dm, Lf, =n, +3Hn,

= —fd~. C.[f] . (A9)

sionless "reduced cross section" o(s} is the amplitude
summed over final states,

8(s):—8@@2(s)Jder.(2n).5 (p, +pb —p„)
Note that the right-hand side of this equation depends on
the functional form of the phase-space distributions.

There are several assumptions which can be used to
greatly simplify the Boltzmann equations. First, we as-
sume that the particle species is in kinetic equilibrium
(but not necessarily chemical equilibrium}, so that the
phase space distribution is

X lA(ab~Y}l (A17)

{[s—(m, +mb) ][s —(m, —mb) ]J'

where 42(s) is two-body phase space for the initial state:

@2(s}—=fd~, d~b(2~} 5 (pa+pb p—r)

f (E)— e EIT—
&eq

a

(A10) (A18)

This will be the case if there are reactions occurring rap-
idly which can change the kinetic energy of the a parti-
cles, but the reactions which can change the number of
a's are out of equilibrium. Even in cases where this is not
strictly true, the assumption of kinetic equilibrium can be
viewed as an ansatz that the most important out-of-
equilibrium effect is the deviation of the number density
from its equilibrium value. We can then write a closed
set of equations for the number densities:

For two-to-two scattering,

dt 8ms
(A19)

y(a& Y)=n.'qnb'& ~(a& Y) lv I & . (A20)

where s and t are Mandelstam variables. The integral in
Eq. (A16) can be efficiently evaluated numerically. We
can relate y to more familiar quantities by writing

where

)le
y( Y~aX)

7l y

n, nz
ri, +3Hn, = — g y (aX~Y)

aX~F ~a +x

(Al 1)

In the presence of CP violation, the y's depend on the
reaction direction. In addition, there are subtleties re-
garding the handling of processes in which it is possible
to create a real intermediate state. This issue is discussed
brieily in the main text, and we refer to [12] for more de-
tail.

APPENDIX B: AVOIDING MAJORANA CONFUSION

y(ax~ Y)= fd~, d~»d~„(2~)454(p, +p» p&)—
Xf; f» l~(aX

If we neglect CP violation, we have

lA(x Y}l =lA(Y x)l',

(A12)

(A13)

and the Boltzmann equations simplify further. Note that
in this case the y's are independent of the direction of the
reaction, since the energy-conserving 5 function allows us
to make the replacement f qf q=frq in Eq. (A12).

We now present explicit formulas for the collision
terms for decays and two-body scattering, assuming that
CP is not violated. For decays and inverse decays a~7,
we have

4a'&A+ (AA+H c ) . (Bl)

(Our conventions for charge conjugation are given in Ap-
pendix C.) To quantize this, it is convenient to introduce
a four-component Majorana field defined by

In this Appendix, we give the Feynman rules for Ma-
jorana fermions. The graphical rules presented here are
much simpler than those given in the literature [20], and
are free from subtleties concerning the overall sign of am-
plitudes. It is highly probable that these rules are known
to many practitioners, but to our knowledge they have
not been explicitly stated in the literature, so we will state
them concisely here.

Consider first the Lagrangian for a free two-component
(right-handed) fermion with a Majorana mass term:

y( a Y}=n q( I'(a ~Y}), (A14) x—=%+A' (B2)

where

Ki(m, /T)
( r(a Y)) =—

' ' r(a Y) .
Kz(m, /T)

(A15)

where gz is now viewed as the right-handed projection of
a four-component spinor. By definition, y satisfies the
Majorana condition

Here, I is the usual (zero-temperature) decay rate, and
the prefactor can be interpreted as a time dilation factor.

For two-body scattering ab~Y,
We can now rewrite the Lagrangian in terms of y:

X=
—,'X(i8—m }X

(B3)

y(ab~Y)= fds&sK, (&s /T)&(s) .
64m

(A16} ,'X C (iB—m—)X . — (B4)

Here, s is the usual Mandelstam variable, and the dimen- In the last line we have eliminated y using the Majorana
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X;„,=httpgtt pe +H. c.

=h4'X'CPs. X h—*4 X C PttX, (88)

FIG. 11. Majorana spin wave functions.

condition:

+ c +TCf (85)

the Feynman rules may be easily read off. Again, this ap-
proach yields only a single vertex for each physical pro-
cess, while other approaches yield several.

Note that if the Lagrangian for the Majorana field is
derived starting from a Lagrangian for a two-component
field as done here, the resulting Lagrangian will contain
helicity projection operators which ensure that the prop-
er number of spin states propagate in fermion loops.
Thus, there is no need to multiply by —,

' for closed Ma-

jorana fermion loops, as is required in other approaches.
This eliminates confusion which can occur when there
are both Dirac and Majorana fermions in the same loop.

The propagator is just the inverse of the quadratic
form in Eq. (84):

d'
(O~Ty (0}yp(x}~O&=f "Pe '~'" '

C
(2n. ) Jl —nt +i0+

(86)

APPENDIX C: CONVENTIONS
FOR CHARGE CONJUGATION

We summarize our conventions for charge conjugation
here, since there are several different conventions
currently in use. We define

In contrast with other approaches, there is only one kind
of propagator, greatly simplifying the graphical rules.
Since there is no conserved charge carried by y, we
denote the propagator by a solid line with no arrows.

The spinor wave functions for external y lines are
given in Fig. 11. In calculations, it is often useful to use
the fact that the standard Dirac spin wave functions can
be chosen to satisfy

(87)

where s =+1 labels the spin state.
To derive Feynman rules for vertices, one simply elimi-

nates g in the Lagrangian using Eq. (85}. For example,
for the Yukawa coupling

pc CQT

where C satisfies

C y„C=—y„.
We use the notation

P
c (Pc)— ETC t

A' =—(Pz 4}'

tt'tt =(Ptt 4)'

etc. Then we have

(f')'=p, (Q')'=f

(Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

(C7)
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