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N = 1 supergravity as a nonlinear realization
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The N = 1 supergravity in superspace (more precisely the minimal Einstein version of it) is consistent-

ly reformulated as a simultaneous nonlinear realization of two complex finite-dimensional supergroups
generating via their closure the whole infinite-dimensional N =1 supergravity group and having in their
intersection the rigid N =1 Poincare supergroup chosen as the vacuum-stability subgroup. Thus N =1
supergravity is found to be a kind of nonlinear 0. model describing a partial spontaneous breaking of the
infinite-dimensional supersymmetry down to the rigid N=1 supersymmetry. The only independent
Goldstone superfield accompanying this breaking appears to be an axial-vector superfield H""(x,0,0)
identified with the N =1 supergravity prepotential. All the other Goldstone superfields are expressed in

terms of H"" by imposing appropriate covariant constraints on the corresponding Cartan superforms
(the inverse Higgs effect). Thereby, the 15-year-old result of Borisov and Ogievetsky who interpreted
Einstein gravity as a nonlinear cr model is generalized to the N =1 supergravity case. Possible implica-
tions of the proposed formulation are discussed. In particular, the intriguing analogy between N = 1 su-

pergravity and the (super) p-brane theories is pointed out.

PACS number(s): 04.65.+e, 11.10.Lm, 11.15.Ex, 11.30.Pb

I. INTRODUCTION

It is becoming more and more clear that most of the
theories of current interest such as various
(super)particle, (super)string and (super)membrane
theories can be viewed as generalized nonlinear o models
with appropriate (super)group coset spaces playing the
role of target manifolds (see, e.g., Refs. [1—4]). As any
theory possessing spontaneously broken symmetry, they
can be universally constructed in terms of the corre-
sponding nonlinear realizations [5,6]. This gives new
geometrical insights into these theories and indicates
their profound relations with more customary o models
(associated with spontaneously broken internal symme-
try, e.g., those describing a chiral dynamics of pions [7]).

It is worth mentioning that an analogous interpretation
of the Einstein gravitation theory as well as of the Yang-
Mills theory was given much earlier [8,9]. The basic
feature of these theories consists of the fact that the un-
derlying nonlinearly realized symmetry is infinite
dimensional, namely it is the group DiffR ' in the Ein-
stein case and the local internal symmetry group in the
Yang-Mills theory. However, the infinite dimensionality
of these symmetry groups does not represent a principal
obstacle since it is possible to formulate the correspond-
ing nonlinear realizations in terms of a ftnite number of
Goldstone fields that are identified with the graviton and
the Yang-Mills field quanta, respectively. This happens
due to the inverse Higgs effect [10] which allows one to
reduce the number of Goldstone fields to a subset of the
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essential ones by imposing appropriate covariant con-
straints on the corresponding Cartan forms, i.e., which
allows one to express most of the Goldstone fields in
terms of a few, independent, unremovable Goldstone
fields and their derivatives.

The treatment of the gravity theory can be further
simplified by the Ogievetsky theorem [11] according to
which the group DiffR ' can be obtained as a closure of
two finite-dimensional groups —the 15-parameter con-
formal group and the 20-parameter affine group having
the Poincare group as a common subgroup. Then, as
proved by Borisov and Ogievetsky in [8], the Einstein
theory appears to be a simultaneous nonlinear realization
of these two groups. Thus, in contrast to the Yang-Mills
case [9], no need to introduce infinite sets of Goldstone
fields arises. The only Goldstone field involved is the one
associated with spontaneously broken affine transforma-
tions and it is identified quite naturally with the gravita-
tional field [12].

The o-model interpretation of Yang-Mills theories has
been extended to the N=1 super Yang-Mills theory by
one of the authors [13]. In contradistinction to the pure-
ly bosonic case, the self-consistent nonlinear-realization
treatment of the N= 1 Yang-Mills theory is only possible
if one takes the fundamental symmetry to be a complex
extension G' of the Yang-Mills group G.

For N=1 supergravity, which is very similar to the
N=1 Yang-Mills theory by its intrinsic geometry, no
consistent nonlinear o.-model formulation has been con-
structed so far. Only some preliminary steps have been
given in [14,15]. It was shown there that the N= 1 super-
gravity infinite-dimensional superspace groups (for both
minimal and nonminimal cases) can be again represented
as closures of two appropriate finite-dimensional super-
groups but in a more complicated way compared to the
gravity case.
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The Ogievetsky-Sokatchev formulation [16] of N=1
minimal Einstein supergravity is based on the (4+2)-
dimensional complex superspace

C4/2 —C4/4gCQ/2 [( gp 8p }]

=[(xÃ 8s}J (2.1)

with (xgP, 8' ) and (x](P, 8P+ ) =(xgP, 8PL ) being its left- and

right-handed parametrizations. In superspace C the4/2

infinite-parameter complex gauge supergroup 6 acts. It
is infinitesimally defined by

5xgp=l, pp(x1, 81 ),
58pl =A,"(xL,8L ) .

(2.2}

Here, k~~ and iP are arbitrary superfunction parameters
satisfying the condition

The purpose of the present paper is to fill this gap, i.e.,
to construct the nonlinear o.-model formulation of N=1
supergravity. We demonstrate that the superspace N=1
supergravity can indeed be consistently rederived by the
nonlinear realization techniques. For simplicity and
without losing generality we shall restrict ourselves to the
minimal Einstein N= 1 supergravity [16—18] since the
nonminimal versions can be treated analogously.

In Sec. II we shall briefly review the gauge supergroup
of the N=1 minimal Einstein supergravity and specify its
structure in terms of its two important finite-dimensional
subgroups. Both of them are complex and are realized by
holomorphic transformations in the complex X= 1 super-
space C /—:[xL,8' J. The first one consists of arbitrary
OL -dependent translations of xI whereas the other is the
special linear group of C (consisting of all linear trans-
formations in C with the Berezinean equal to 1}.

Then Secs. III and IV contain nonlinear realizations of
these two subgroups (treated as abstract ones) and elim-
inations of various Goldstone superfield by the inverse
Higgs effect. It is shown that the N=1 minimal Einstein
supergravity can be regarded as a simultaneous nonlinear
realization of these two finite-dimensional subgroups of
the complex Ogievetsky-Sokatchev supergroup [16] with
the rigid %=1 Poincare supergroup as the vacuum-
stability subgroup and the axial superfield H""(x,8, 8) as
the only essential Goldstone superfield [the other Gold-
stone superfields are eliminated from the theory by the in-
verse Higgs effect; they are expressed in terms of
8""(x,8, 8) and its derivatives]. The corresponding La-
grangian turns out to be the simplest invariant with
respect to both above-mentioned subgroups.

Finally, in Sec. V the derived results are compared
with those of Ogievetsky and Sokatchev [16,17] and the
complete correspondence is found.

Note that a nonlinear realization treatment of N= 1 su-
pergravity along similar lines was discussed recently also
by Pletnev [19]. However, it remained incomplete, espe-
cially concerning the role of the supergroup of OL-

dependent translations.

II. GAUGE SUPERGROUP OF N=1
MINIMAL EINSTEIN SUPERGRAVITY

AND ITS STRUCTURE

ax~ =0,
axe' a8,

(2.3)

which expresses infinitesimally the preservation of the su-
pervolume in C ~ corresponding to the minimal version
of the N= 1 supergravity (for details see [16—18,15]).

Using the results of our previous paper [15] the follow-
ing theorem is true.

Theorem. The infinite-parameter gauge superalgebra a
corresponding to transformations (2.2) restricted by (2.3)
can be obtained by taking the closure of two finite-
dimensional subalgebras:

aa, =,g = i-
ce~

- a—:—iB; P . = —i
(}xP

(2.4)

D = —i(x«(}«.+28"(}„)J .

The closure is as follows:
a II

4

K., Pq. , Q". , Q", R ~p, T(„„),IPP„, D

(2.5)

aI

The structure relations (nonzero only) of superalgebras
u& and u» are given by

aI .

(2.6)

aII

[T( p), T( 2, )]=i(s T(pq)+s ),T(i3 )+si) T( 2)

+sp2 T( ) ),
[R pp, R ss] i(E ss sR pp spysp R ss')

[T( p), g"„]= i (5"pg „+. 5 "—Qp. ,), .

[T(.p) Q„]=i(&.„gp+&p„g.»
[T( g), I„PP]=i(E „I/P+ep„I «),
[R pp, P~«] =i (s . E ,PLY ,'s pE P. ~—,),—. .

aapp'Qpp] ap apgpii 4 ap apgpp

[R pp,
IPP]= i (5/5/I —

(. ,) ,'e pE,P—„P—P),

l»g"..l= —ig".. [»Q„)=2ig„
[D,PL .]=iPL ., [D,I„pp]=iI„pp,

[QP, ,I.»J = '(5i'.5.i' T(P„)+25P~-"..
+ ,'5.)'5.i'5p~} . -

(2.7)

and.»
——[g„;P,,;g, ; R-„=—i [x-a„——,

'5.P',(xa)];



45 N= 1 SUPERGRAVITY AS A NONLINEAR REALIZATION 4547

The meaning of a, and u„ is rather simple. u, is the su-

peralgebra of all Grassmann vector fields (i.e., each ele-

ment of ~& can be obtained by gauging ordinary four-
translations in purely Grassmann directions) and cz» is
the special linear superalgebra in C

Remarks

(i) The theorem can be proved by taking into account
the following facts: First, all the generators of superalge-
bras u& and u&& belong to the five types of generators list-
ed in [15] which yield transformations (2.2) satisfying
(2.3). Second, all the lowest-dimensional generators of
superalgebra u can be obtained from the generators of u&

and u» by using the relations (2.6), (2.7) and relations of
the type [a„a»]. Finally, the higher-dimensional genera-.
tors of u can be derived step by step from the previous
ones by successively commuting the latter with each oth-
er and using the induction technique.

(ii) In [15) the superalgebra u was obtained by taking
the closure of two superalgebras that differ from u& and
a». The choice of a&, a» has the advantage for con-
structing nonlinear realizations in the next sections since
u» (in contradistinction to the superalgebras used in [15])
involves the generators R and I ~~ which will be

pp p,

shown to have as their associate Goldstone superfields
those including the lowest components gauge fields of
graviton and gravitino.

(iii) The superalgebra a&& contains the Lorentz genera-
tors M p and M .

p given by

M p=R( p)+ T( p), M.p=R(.p),
where

(2.8)

R(ap) lXL(a happ)s (ap) lXg(a gp)p

R .pp= —,'[R( p)(.p)+s pR(.p)+s.P( p)] .

These Lorentz generators form a semidirect sum with su-
peralgebra ~,. Thus, without losing generality, they can
be added to u& and included into the intersection in Fig.
1.

(iv) The generators (2.4), (2.5) are essentially complex
and so the corresponding group elements will in general
be defined on the complex parameter manifold. Factori-
zations over one or another real subgroup (i.e., passing to
a coset) will then amount to leaving only imaginary parts
in the corresponding group parameters. For instance,
factorization over physical (real) Lorentz group will mean
that the generators (2.8) enter into the coset elements in
the combination

i(y ~M
c)
—

y ~M,~)

while the combination

sponding to superalgebras a& and a», respectively, with
the stability subgroup H being the physical Lorentz
group generated by M &, M,&

defined in (2.8) [recall the
remark (iv)].

III, NONLINEAR REALIZATION OF Gg

Let us denote G& the complex supergroup, the su-
peralgebra of which is ~, defined in (2.4). In what fol-
lows, we shall not need a specific coordinate realization of
the u& generators and thus we shall treat them as the
abstract ones subjected to Eqs. (2.6). Each element g, of
supergroup 6& can be parametrized in the following way
convenient for constructing the nonlinear realization of
G&

gI g1 g2 g3

where

g, =exp[i(8 Q +xc P~ )], .

(3.1)

g =exp[i(Q„PPQ "«.)],
g3=exp[iaPPK . ] .

PP

(3.2)

Assuming g& of the form

g& =I+i(s Q +c P~, +P„'"Q",+y K ).(3.4).
we obtain the infinitesimal transformation laws of the
supergroup parameters

58a sa

PP=cPP+i 8' PP+(8Sg )yPP

5g PP =P PP —2i g y PP

$g PP =yPP

(3.5)

Now, following the general routines [5,6] we introduce
left-invariance Cartan 1-form co, , co&pp, co&„)'~, and k, pp

via

g) dg) =i [co) Q~+coP~P~&&+co,„PPS" +k,~~K&&[ . .

(3.6)

By a direct computation we obtain

As has been noted in remark (iii) of Sec. II, group G& can
be extended by including physical Lorentz generators.
Then (3.1) represents the coset of such extended group
over its Lorentz subgroup and G& can be regarded as the
corresponding factor group. Transformation properties
of the group parameters 8, xc, P„PP, and aPP follow
from the group multiplication law

(3.3)

i (1 ~M + I ~M . . )ap ap

specifies an element of the stability subgroup.
In the next two sections we shall show that the N=1

minimal Einstein supergravity is the simultaneous non-
linear realization of the supergroups G& and G» corre-

dO

co,„«=d Q„PP+2iaPPd 8„,
k pp —dgppI

(3.7a)

(3.7b)

(3.7c)

(3.7d)
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We shall use these left-invariant Cartan 1-forms to
eliminate some Goldstone superfields which are associat-
ed with the group generators. More precisely, we shall
identify the group coordinate associated with
P» =PL»+ Pz» =Pl »+ (PL"") with the bosonic coor-
dinates x"" of the real superspace, while that for
P„""=i(PL™Pz—"") with the Goldstone superfield
H""(x,8, 8). The group parameters 8"= 8&l, 8"
—:e~+ =(8~1 ) are interpreted as Grassmannian coordi-
nates of the real superspace R ~ . The complex (4+2)-
dimensional superspace (2.1) can be regarded as an
(8+4)-dimensional real superspace [(xL i',x+, e~l, 8~+ ) ].
In this superspace a real physical superspace
[(x~~,e",8")] is imbedded as a (4+4)-dimensional hyper-
surface determined by four equations xL «—xz«
=2iH~~(x, e, e) [16]. The remaining group parameters
itt„~~ and a~~ will be identified with Goldstone superfields
%„i'~(x,e, e) and A~~(x, e, e) given on R which will be
expressed in terms of H~i'(x, 8, 8) by exploiting the in-
verse Higgs effect [10] and thus eliminated from the
theory.

Keeping in mind that

aa aa
p p 7

so that

L 7 R 7 (3.9)

and using (3.7) we find the following expressions for the
covariant differentials Vx and VH

Vx —=RecoL =dx + f„—de"+—
g„. de" (3.10)

and

VHaa 1 «dH«+ y «de y aade p
~ 1 1

L 2p 2p
(3.11)

Now we shall decompose VH in the covariant
differentials Vx, d8p, d8 p and calculate spinor covari-
ant derivatives of H, i.e., S„H and 2) H(foll. owing

the general procedure described in [6]). We get

VH-—=Vx»a e-+de~@ H- de~5 H—-.
pp p

=dx»a 8+de-"a K +de"a H —de. "q —+ de"lp ' a—H+ de. "y. +— de "lp."'a—H.H
p P 2 P 2 P vv 2 P 2 P vv

(3.12)

so that

n H-=a H- ——'y "'(a .a.'—ia .H-)
p p 2 p v v vv:—a H —g"'A-D 1

p 2 p vv

and

(3.13)

co ~~=VX a q~~+de~2. ) y ~I' dean q ~~—
P p p p

=Vx a P„+de fvpP„~~+2le pg~l']

—d 8 ~vp1(„~i', (3.18)

P ~~ by expanding the 1-form co ~~ in the covariantp p
differentials Vx, d 8p, d 0 p, namely

= —a H« ——q ""(a ~a &+ja H«)
p p 2 p v v vv v,=a,+i(A -')"„„.a~»a„„.=a,+i V~»a„„. ,

(3.19)
~ 1

p 2 p vv (3.14)
v = —a +i(A -')"" ae»a = a . iv v».a .— —

p p PP P VV P P pp &

Vx» =dx»+ i ( A -')~ a H»d e~
PP p

Equating spinor covariant derivatives X) H and 2)H.
p p

to zero

~ ~aa ~ ~aa 0p p
(3.15) —i(A -')» a H»de&, .

PP p
(3.20)

which is the operation covariant with respect to the left
action of G, we obtain

VH'Yx =V PPQ
PP

(3.21)

and

q "=2(A-')"' a H«=2v H-
p pp p (3.16)

g)1 g pp:vt Q pp

[we have substituted expressions (3.16}, (3.19) into Eqs.
(3.10), (3.11)].

Equating to zero
—4ia«=0 one finds

q. "=—2(A '}"" .a H»=2v H". .
p

(3.17)

where the matrix A . is defined in Eq. (3.13).
PP

Analogously, we can define covariant derivatives of

g PP = ——VP PP= —( VVV )HPP
~ i ~ 1

4 " 2i
(3.22)

Note that V~&p„f~ is also covariant, but it vanishes iden-
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tically after substituting (3.16), (3.17) and using the prop-
erty t V„,V„j=V'(„V )

=0.
Thus the nonlinear realization of GI can be entirely

formulated in terms of the superfield HPP(x, 8,8), all the
other superfield supergroup parameters are covariantly
eliminated by the inverse Higgs effect in terms of Hpp.

The remaining GI covariants are

c} HPP,. V V HPP (and conjugated —V V H}.
P l" P p.

(3.23)

and their 8 ., V'P, V. derivatives.rr' ' u
To summarize, we have shown that the basic building

blocks of the Ogievetsky-Sokatchev formulation of
minimal N= 1 supergravity [H""(x,8, 8), VpH"", VQ""]
naturally emerge already at the rigid-supersymmetry lev-
el in the framework of a nonlinear realization of the
supergroup GI. The problem now is to select those of the
G1 covariants (3.23) which are simultaneously covariant
with respect to the supergroup 6». Then the minimal
action constructed out of these covariants can be expect-
ed to coincide with the minimal N=1 supergravity ac-
tion. But before, we need to implement a nonlinear reali-
zation of G» on the same objects x"",8", 8",H" (x, 8, 8).

IV, NONLINEAR REALIZATION OF G gg

Analogously to the previous case, 6» denotes a com-
plex supergroup the superalgebra of which is a» defined
in (2.6). Each element g«of supergroup G„can be
parametrized as

(4.1)

The Cartan 1-forms are defined once again according
to the general rules of [5,6] by

+co+ . R pp+cor T(ap)+coDD j .

By comparing both sides of (4.5) we obtain

(4.5)

co(1=(d8 +il(c0, 1.1PP)e p,

col 11
= ( dxPLP+ i g&PPd 8")B ep= .e1PIP1B ep, .

PP —d f U.g PP IP
»p p

0 "=(dA.,
" +A, &" dq yy.)(8 ')PP .eq',

pp PP P~ rr PP

PP — gy dg vv(g —
1)pp HAPP +(g —1} TTd+PP

Raa pp aa vv aa Tj. t

(4.6)

~ap i g(ad+)ypCOT
—

4

co =dy ——
A,".d$ PP,

4 PP

where 8 is defined by

g
—1R aa

g
—(R

—1)aa (g) IppR Tr
PP 5 «PP q j (4.7)

and is a function of the Goldstone superfields associated
with R

All these 1-forms, except those related to M P, M.P,
which are hidden in cuR and mz, undergo the induced
Lorentz transformation with respect to their spinor in-
dices when 6» acts on gI, by left shifts

where g1, denotes the element of the coset space G»/L
with L being the Lorentz group

L =expIil PM pjexp[il PM.pj, l P—:(I P) .

Here M p and M,p are defined in (2.8) and l is an element
of the Lorentz group L.

The element g» of the coset space G»/L can be
parametrized in the following way:

where

L'" = I+i5h P(x, 8, 8)M p+i5h P(x, 8, 8)M p.
and

g» —-I+i(E Q +c I'~ +P„'PQ" +cr . PPR. .

(4.8)

(4.9)

g» g1 g2 g3 g4 g5 (4.3) +v PT p+p" I„+cD) . . (4.10)

where g, and gz are defined in (3.2) and

g3 =exp I i A,".I PP j,PP

g~=exP[ivr PPR ppj, .

g, =exp[iyD] .

(4.4)

Applying the general formula (4.8) we get the transfor-
mation properties of the coset parameters 8", xgP, g„yr,
iP. , h P, h P, and B„. under g»..

50~=~~+28 & &—2g~c —«--~.a &aa '

Actually one could start with the general element of
G„, adding to (4.3) the one more factor, namely
expIimT( p) j a. nd requiring the right gauge invariance
under L. But one may completely fix this right gauge
freedom by putting m P=O and arrive eventually at g» as
a G»/L coset representative. One might equally choose
a different gauge condition that would amount to a
different form of g». The choice vr P=O is most con-
venient for our purposes.

5xgp=cPP+1 8PR PP xrrcr PP 'xePc-
rr

5y rr=P rr 2y rr va q PP~rr',
p p a p p PP

+y rrc+(I(, pp(y yrpv )

(4.11)

M" . =pP. —cA,".+2k,". +vPA . rPPc'P.
PP PP PP PP O'O' PP

+Xp y-pP XP y ppp". .—
pp P ocr PP v pp
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5h Pv =yP + I /(Pyypv)

5B . =2B . P5h . +2B .P 5hjj jj P p

+(0 rr —f rrp': )B

(4.12}

gHaa (
aa aa

) VHppbaa V pp aa
L» R» PP PP

(4.13}

Here Vx and VH are defined in Eqs. (3.10) and (3.11) and

baa (Baa eq+B aa
PP 2 PP PP

c« .
—=—(B« ev' B« .em). —

PP 2 PP PP

Further, using the representation (3.12)

VHPP=Vx~~B -8PP+d0PZ) HPP —d0 "X).HPPH
P p

and expressing

Vx«=gxPP(b &)« —VHPPc rY(b &)«
PP PP yr

(4.14)

Now we are prepared to eliminate extra Goldstone
superfields and single out the covariants of G» which are
simultaneously covariant with respect to 6, .

Looking at Eqs. (4.6) and (4.7) we see that coLn is co-
variant also under GI since R and D can be added to GI
as extra automorphism generators, and thus G, does not
transform the superfields B and g at all.

Next, one should decompose ~L» into the covariant
differentials of x and H (b,x and b,H ) once again
and then extract covariant derivatives of H from
b,H . It turns out that conditions (3.15) for elimination
of 1(t„pp in the nonlinear realization of G, are simultane-
ously covariant under G&& so that g„given by Eqs.
(3.16) and (3.17) possesses correct transformation proper-
ties with respect to both G, and G„(for the proof see

[9I).
The proof goes as follows. First, we define the 6»-

covariant differentials of x and H

aa
(

aa + aa
)
—VxPPbaa +VHPPcaa

~ 1
L» R» PP PP

@f g kA. Q g pp+ a+ p pp a+ f pp

where

q PP V q lxB PPe 3g&

a p a p 7

(4.18)

(4.19)
g q PP=V y ~~B

a p a p A, A,

The derivative 6 p„pp involves V g„" =2V V„H
which is not GI covariant. On the other hand,

V $„=2V V.„H " belon. gs to the set of the G, covari-

ants (3.23) and so b,,g„pp is covariant both under G, and

G» (and hence under the whole infinite-dimensional N= 1

supergravity group). Thus, h, 1(t„pp can be used for imple-

menting the sought after covariant constraint. It is

meaningless to equate b,,l(„pp to zero because it would

contradict the Bat-superspace limit

q ——o, X,=o, B„«=5,P5,P, H»=-,'0p0p,
(4.20)

p p p

Thus, one should equate b, .g„pp to a proper Lorentz-

covariant constant matrix. The only such constraint con-
sistent with the fiat limit (4.20) is the following:

and we have proven the proposition given above.
After eliminating 1(t, 1(. by Eqs. (3.16), (3.17) the

P.

covariant differentials of x and H, hH and bx
respectively acquire the forms

QxPP=Vx«(b PP+Q HrYc PP)=Vx I PP
aa aa yy aa

(4.16)

bHPP= —Vxrr(c .PP —8 H.b PP):. Vx—N
yy yy &A, aa

(4.17)

with b PP an. d c,PP given in (4.14).
Their structure is completely specified by expressing

the remaining Goldstone superfields A, , n(or B. ), and y in
terms of H"".

We begin with B, By inspecting the structure of
the Cartan forms (4.6), we conclude that B, can be
eliminated by imposing appropriate constraints on one of
the spinor covariant derivatives of the Goldstone field

. These are defined as the coefficients in front of co„,
6 II in the G»-covariant Cartan form coII„PP

and, also, expressing V0, d 0 via the covariant
differentials cuII, co II one finds EHPP in the following gen-
eric form

QHPP= Qx rrPPP —B PP
yy AA, p

or

a p a p

HPPB A, A, I 5 A,5 A. $7+2'
a p pp 2 a p

From here

(4.21)

(4.22)

+B PP 2) Hco pe. .
p

(4.15)

where for our purposes, there is no need to know the ex-
plicit structure of matrices P, B. The main point is that B
is not singular (its starts with the Kronecker symbols and
so the GII-covariant spinor derivatives of HPP differ from
the GI-covariant ones 23„H, X) H only by nonsingu-

lar matrix factors). So Eqs. (3.15) are also G,&
covariant

Brr =~ em'+2@(e —&)rr
13P 2 PP '

where

PP —V V HPP
yy y y

Taking into account the detB = 1, one also finds

(4.23)

(4.24)
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e (p=(2) (dete )
' (detr )'r

~=(2) (detP) ' (dete)'i
(4.25)

where 9= (e—)=VVH. Comparing (4.24), (4.25) with
the set (3.23), we see that Brr&& and (p, 9) are indeed G1
scalar s.

The objects e ~, e + can be identified with the quan-
tities F, F playing a crucial role in the Ogievetsky-
Sokatchev approach [17].

Note &hat the constraint (4.21) can be given a more fa-
miliar meaning as the vanishing of a covariant derivative
(which is generic for the inverse Higgs phenomenon) [9]
after passing to a real basis in the superalgebra u„and
singling out an ordinary real Poincare subsuperalgebra.
Namely, the subset of ~» generators

can be rearranged as

where P , Q, Q. . form the real Poincare superalgebra

[Q; Q'I =o

pA p p A p A

p) Lp)c zp)' Qr Qr Q pr' Q r

(4.26)

and Q "., Q ". are traceless, Q ".=0. Then the relevant piece of the a»-valued Cartan form (in the real basis) can berr' rr Ir
written as

i [ ,'coPI»+—,'coP" ]—Q„+.i [2(co Pa«+ ,'co»pP" —]Q +i hx"."P . —bH""P".

+' [ coL, » ,'co» p"—]Q„".+1 [—92111 —,'c011 p ]Q
"+icon(„.r' Q" +ico»(. r'r. Q ". . (4.27)

Now Eq. (4.21) is easily recognized as the condition that the covariant 8 projections of the Cartan form before the gen-

erators Q", Q ". , Q"., Q". vanish. It is worth mentioning here that in the fiat limit (4.20) the expression (4.27) goesrr' rr
over to the familiar Cartan forms of N= 1 Poincare supersymmetry [taking account of Eqs. (3.16), (3.17), (4.18), and
(4.19)]

[Eq. (4.21)]=id8"Q +id8 "Q +i dx. ""+ (8"d8—"+8"d8") P . .P P 2 PP

Let us now explain how to eliminate the Goldstone
superfield A,".. The corresponding constraints arise from

pp
the requirement that in the d 0 projections of forms be-
fore the generators R, D, and T, only the inhomogeneous-
ly transformed components associated with the Lorentz
generators M &, M,&

survive. The resulting equations
are again manifestly 6» and 6, covariant. They are of
the form

(pv) — 1 ((~)co(prr'V (~—1) v)N.
TTQ7

+25 'V '(2cp+2(p) I e.r

(4.31)

The Lorentz connections are just the surviving
pieces of the d 8 projections of the form

(Pv) — 1 (~&)(PirrV (~e
—1)v) —2P

r 4 r' TTCO

8(eg(crV2 )V il)H pp+ 1 (B—1)(2.(.il.r VBrcr )(r) 0
pp 2 r TT'

)(, .V VpH~p= ——(B . ') ""V Bp . . +E pV. y . .
~ 1

Pp 2 T7N r

(4.28)

(4.29)

and their conjugates. They coincide with the connections
found by Ogievetsky and Sokatchev in [17).

To bring the second expression into the form given in
[17],one must use the identity

The first equation originates from the Cartan form
standing before the generator R while the second from
the forms associated with the D and T ~. From Eq.
(4.29) one gets

[ 1(B—1)vrurrV B +8 vV ](g. 1)rp
Pp 2 r' TT'peg) p r pp

Note that Eq. f4.28) is satisfied automatically by substi-
tuting (4.20) into it and that A,&. turns out to be construct-

Pp
ed from the 6& invariants.

E.).,V ((p+ 2')+.e .Vz(y+ 2@. )

1= ——[(e) ."V.(e '), q+(e) q"V.(e '),.".
J .

Then one gets

(p&) —$ pp v~+ $ vp p-
r r r (4.32)

that coincides (up to the factor 2) with the expression in
[17].
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V. THE INVARIANT ACTION

After employing the inverse-Higgs-effect constraints,
the remaining simultaneous G, and G» covariants are re-
duced to the following set:

(i) The covariant differentials of the N= 1 superspace
coordinates:

= 2(~L~ii+~%n}

68"=co/i, b8"=cog, =(co), ) .

(ii) The covariant differential of H""(x,8, 8):

(5.1)

Thus we have shown that all the Goldstone superfields
of nonlinear realization of supergroup GII, except
H""(x,8,8), can be eliminated in a manifestly covariant
way with respect to both G» and G„hence to the whole¹=1supergravity group. We are eventually left with a
single Goldstone superfield H""(x,8, 8) which alone sup-
plies nonlinear realizations of G, and G». This confirms,
from another point of view than in [16—18], its role as the
fundamental geometric object of the minimal ¹=1 super-
gravity.

It remains to see how the minimal ¹=1supergravity
action reappears within the present framework.

bH""=—.(aP" c—og ) .
~ 1

L» II (5.2)

(iii) The 8-covariant derivative of the Goldstone field
I,". (the projection of the Cartan form 0". onto the co-

PP PP
variant differential b,8"):

n X&.=(S.X& +X ~P.a y»}(B ')i'i'-. e~. (5.3}
I pp u pp purr PP

The 0 projections of the rest of the Cartan forms are ei-
ther zero by the inverse Higgs effect or are the com-
ponents of the inhomogeneously transforming Lorentz
connection [see Eqs. (4.31)]. Concerning the G» covari-
ant 0 projections, they, as was already mentioned, essen-
tially involve a G, -noncovariant quantity V 1(„Yp and so
are not tensors with respect to the ¹=1supergravity
group. Thus the objects (5.1}—(5.3) are the only obvious
building blocks for constructing the mutual invariants of
G,I and GI.

In fact, only the covariant differentials (5.1) actually
matter after substitution of the inverse-Higgs-effect ex-
pressions (3.16}, (3.17), (4.23), (4.25), (4.27) for the Gold-
stone superfields g„PP, B" ., q&, A~&&. The expression (5.3)pp' ' pp'
gives rise to a higher-derivative invariant (it is propor-
tional to one of the basic supertensors of minimal ¹ 1

supergravity, the superfield R [3]),while AHPP (5.2) iden-
tically vanishes. Indeed, after some algebra the matrix
N pp in Eq. (4.19.) can be represented as

N . PP= —i
e 'v'+e'A . ~"(~e '}PP [e . »A .«+P . »A «](A —i) YY(f i) PP

aa 4 aa V, pj, vv pp vv CT CT rr

The expression within the square brackets equals zero:

[e . "'A +r . ". A . ]={V,V ]H i [V,V ]H—"'"c) H =0,
pp vv p,p vv p' p p' p vv

(5.4)

(5.5)

where we have used the relation [17]

{Vp, Vp]
= i [ V ii, Vp]H—""c3, .

Thus we have

AHPP=O . (5.6)

We are led to find explicit expressions for E M. This can
be done by substituting the expressions of Goldstone
superfields into the explicit formulas for AxPP, 50)", 60",
Eqs. (4.6), (4.17), (4.19), and (3.20). One gets

Er=5 e +—iV'HPE . , E . =iA
itt )M JM pp

' aa aa pp
(5.8)

Note that the vanishing of the covariant differential EHPP
has an analogue in the case of pure gravity [8] where the
covariant derivative of the symmetric Goldstone field
(corresponding to spontaneously broken affine transfor-
mations) is also zero.

Finally, we are left with the covariant differentials
Ax"", 60", 60". An obvious simplest invariant is the su-
pervolume of N= 1 superspace (x"",8",8") constructed
as an integral of the Berezinean of the corresponding viel-
bejns over d ~ d 0 d 0:

EY = i'V HppE . Y, Z Y=.(ZY), .
p V PP

gY =(gY ) gY =(EY )
pp

E . = —2 (AA) . Y(e ')
PP pp rr

Xc .aa(r ') aadet(e r),
VV CT CT

gz~= (gxii~ g8a g 8—a) =dzME

=d& «E& +d 0I E&+d 0 I E&
aa P

aa ~

V Hppg aa E aa —(g aa)
P P pp

' p

(5.7) where
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c ».= '[—V', V. ]H""=—'[(r }—(e)] ."".
pp ~' I I w

E &=/ I e 'P E .~=/. i'e + E I =E.l"=0a a a a a a

Now one might immediately calculate BerE M. Howev-

er, it is more instructive to find first the components of
the inverse vielbein E z. These are introduced most
directly through the differential of some Lorentz-scalar
X= 1 superfield P

E ""=ie +V~"", E «=. ie +V,H«,
E" =ie. '~+~'[co '~~'s 5—gV~~],PP p Pg p

E PP =. (E ) PP +.iE IJ .V H PP +iE P .V H PP
PP PP PP I PP p

where (E ')&&« is the inverse of E&&«,

(5.11)

dg=dz dMP=hz X~g=hz Ez d

&w=Ex dM EM"EN =&M

One gets

(5.10} (E-~} «=., 2~~-+e~c .«
PP PP

(5.12)

Now, using the standard definitions and Eqs. (4.25), we
have

BerE ~=Ber 'E ~ =det '[E&&«+E «(E ') „E~&&+E,«(E '), E".]detE "detE".

=det '[(E ') «]e
PP

=2 (dete 9)' det 'c

(dete) ' (de&) ' det' A det' 77 (5.13)

S=
~

d xd L9BerE~.
1

K
(5.14)

VI. CONCLUDING REMARKS

We finish by listing the basic peculiarities of the non-
linear realization treatment of N=1 supergravity, dis-
cussing its analogies with the p-brane-type theories, and
indicating some possible directions in which it could be
further elaborated.

First of all, the nonlinear realization approach allows
an algorithmic construction of N= 1 supergravity based
on the universal method of Cartan forms augmented with
the inverse Higgs phenomenon. The N=1 supergravity
prepotential H""(x,8, 8) appears from the beginning as a
Goldstone superfield describing the simultaneous spon-
taneous breaking of 6, and 6» supersymmetries. Many
objects and relations introduced "by hand" or postulated
in the Ogievetsky-Sokatchev approach acquire a clear
group-theoretical meaning. For instance, the objects F
and F playing the crucial role in the Ogievetsky-
Sokatchev formulation [16,17] turn out to be related to
the Goldstone superfield associated with the spontane-
ously broken generator D» of the supergroup 6„. The

which coincides, up to a renormalization factor, with the
minimal Einstein N=1 supergravity superspace Lagrang-
ian in the form given by Ogievetsky and Sokatchev [17].
The expressions for the inverse vielbeins (5.11) are also in
one-to-one correspondence with those presented in [17].
Thus we have constructed, following the standard non-
linear realization prescriptions, the minimal invariant ac-
tion for the nonlinear realization of 9» in the coset G»/L
and have demonstrated that it is just the action of
minimal N= 1 supergravity:

relations (4.25) postulated in [17] prove to be a particular
case of the inverse Higgs effect. It is worth mentioning
that the inverse-Higgs-effect constraints are purely alge-
braic, in contradistinction to the standard N=1 super-
gravity constraints which are reduced to certain
difFerential equations (vanishing of some components of
the torsion), the prepotential being a solution of the
latter. In the present formulation these latter constraints
are secondary, they can be shown to be a consequence of
the Maurer-Cartan structure equations for G, and G».

It is interesting to see how the complex geometry of
N=1 supergravity [16] (the preservation of chirality)
reappears in the framework of the nonlinear realization
description. Primarily, it manifests itself in that one
deals with the complex supergroups 6, and 6» in a holo-
morphic parametrization (cf. the N= 1 super Yang-Mills
theory which can be interpreted as a nonlinear realization
of complex extension of local internal symmetry [13]).
The C ~ coordinates xg'",8" naturally arise as the param-
eters of the relevant complex coset spaces. The con-
straints of the inverse Higgs effects in the present case
can also be interpreted as a kind of covariant chirality
conditions starting the absence of the d 8 projections in
the corresponding Cartan forms.

Let us stress the defining role of the nonlinear realiza-
tion of linear supergroup 6&&. The structure of the basic
building blocks of N= 1 supergravity, the covariant
differentials Ax"", At9", 6", is completely specified by
this nonlinear realization (together with the inverse Higgs
effect). The role of G& is in a sense subsidiary: it provides
very simple criteria for determining in what cases the
G&&-covariant quantities and relations are covariant under
the whole N=1 supergravity group. This concerns, e.g.,
the equations of the inverse Higgs effect. Reca11 that in
the case of Einstein gravity treated as a nonlinear realiza-
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tion [8] the role of the conformal group (which is the
analogues of G, ) is more essential: Conformal invariance
alone picks out the Einstein Lagrangian among several
appropriate invariants of the nonlinearly realized aKne
symmetry.

The construction of N= 1 supergravity as a nonlinear
realization of the complex supergroup G&& in the coset su-

permanifold G«/L, with N= 1 superspace (x"",0",8 "}as
a real subspace and the N=1 supergravity action as a
G»-invariant supervolume of this subspace suggests an
interesting analogy of N= 1 supergravity with the
(super)p-branes (strings, membranes, etc.} in the treat-
ment of Refs. [2]. Actually, the minimal N= 1 supergrav-
ity is recognized as a kind of "spinning" super p-brane of
dimension (4/4) moving in the complex coset G»/L as
the target space. The Goldstone superfields eliminated
by the inverse Higgs effect are direct analogues of the
Goldstone field which parametrize in ordinary p branes
the cosets of the relevant Lorentz groups and are ex-
pressed there in terms of the translation Goldstone fields
by the same procedure [2]. This similarity raises some in-
teresting questions, in particular, whether N=1 super-
gravity can be reproduced as an effective "low-energy"
limit of some higher-dimensional superfield supersym-
metric theories, by analogy with condensation of
(super)p-branches in a field theory [20].

Closely related to the latter remark is the problem of
existence of theories with a "linearity realized" N=1 su-

pergravity group. Such theories could be related to the
nonlinear realization formulation of N=1 supergravity
much like linear o. models with associated internal sym-
metries related to the corresponding nonlinear 0. models,
via appearance of nonzero vacuum expectation values of
some fields. Our constructions give a hint that these
linear realizations should operate with linear representa-
tions of supergroup 6„. An analogous problem for the
Einstein gravity has been settled in [8]. As was suggested
by Witten [21], the linear cr model of this kind describes
the phases with unbroken local symmetries in gauge
theories and can be presumably understood as topological
field theories.

Finally, we note that the nonlinear realization treat-
ment of the nonminimal N=1 supergravity theories can
seemingly be constructed in an analogous way; however,
owing to technical complications such a construction
does not seem too enlightening. It is a much more ambi-
tious problem to find a general principle allowing us to
construct higher-N supergravities by the nonlinear reali-
zation techniques. One might hope to obtain in this way
the geometric prepotential formulations of supergravities
with N ~ 3 which are unknown at present.
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