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I. INTRODUCTION

The main purpose of this work is to show the complete
equivalence, in the nondissipative limit, between two al-
ternative kinds of approaches —using variation principles
of respectively "convective" and "potential" type —to
the covariant treatment of superfluid dynamics at a mac-
roscopic level.

In particular, the relativistically covariant theory of
two-constituent superfluid dynamics that was derived
[1—3] by the convective variational approach (a speciali-
zation of the formalism developed [4,5] for the covariant
treatment of elastic media) is found to agree precisely
with the theory that was derived independently [6,7] us-

ing a potential variational principle (a generalization of
the classical Clebsch formalism [8]). (For a specific
application —such as the experimentally accessible exam-
ple of liquid helium, or the theoretically predicted exam-
ples of highly compressed superfluids in neutron stars-
the theory so obtained requires just the prescription of an
appropriate equation of state giving the relevant action
density as a single scalar function of three independent
scalar variables. )

The convective variational approach [1—3] used a mas-
ter function A that is given as a function of the three in-
dependent scalar variables (nt'n, nt's, st's ) that can be
constructed from an entropy current vector sP, and a
total-particle-number current vector nt' (which are both
taken to be conserved in the nondissipative limit con-
sidered here) so that in a fixed background geometry its
most general variation takes the form

d A=p dnP+0 dsP,

for coefficients p and 0 that are interpretable as respec-
tively particle and thermal four-momentum covectors.
On the other hand, the potential variational approach
[6,7] used a Lagrangian density 4 that is given as a func-
tion of the three independent scalar variables

(I, = ,'rn v —vt', I2=mkv wt', I3=—,'k w wt') that can be
constructed from superfluid and thermal momentum
covectors v„and w„so that in a fixed geometrical back-
ground its most general variation is expressible as

d%= jt'dv +st'dw (1.2)

mn P~jP, ksP~sP,

is~ —mv, 8~—kw

p~m p, 0~kT, Ay~m a,
(1.3)

where the scalars on the last line repectively represent
chemical potential, temperature, and velocity potential.

Although less trivial than a question of normalization,
the relation between the two different kinds of Lagrang-
ian is also straightforward, being given by a simple
Legendre-type transformation whose respective versions
are expressible by

—nPp —sP8 =4—A= jPv +sPw
P P P P

' (1.4)

for coefficients jP and sP that are to be interpreted as
representing rest mass and entropy currents.

As far as notation is concerned the translation between
the two approaches is straightforward, the only
significant difference being our use of opposite sign con-
ventions for the specification of the momentum covectors
and a difference of dimensionality between the particle-
number current nP and the corresponding mass current
jP whose specification implicitly incorporates a dimen-
sional scale factor m that is interpretable as a fixed rest
mass per particle. (This mass m might of course, without
loss of physical generality, be set equal to unity, m = 1, by
choice of units. We shall, however, retain the particle
rest mass m, together with the speed of light c, the Dirac
Plank constant A, and the Boltzmann's constant k, as
freely adjustable parameters. } We obtain a translation
table of the form
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Clearly the requirement of invariance of the spacetime in-
tegral of 4 under free variations of the potentials p, y, a,
and g leads directly to field equations given by

and

s~V&y =0, V~(Ps~) =0 (1.6)

Vpi'=0, Vpi'=0 . (1.7)

The latter set (1.7), giving just the usual conservation
laws for particles and entropy, is physically satisfactory
as it stands, while use of (1.5) to eliminate the potentials
p, y, a and g, in favor of the physically well-defined vari-
ables v and w, leads to the replacement of (1.6) by
mainifestly gauge-invariant dynamic equations of the
form

V( U
) 0, S V) N

j
—0 (1.8)

where square brackets are used to indicate index antisym-
metrization. This final result is exactly the same as is ob-
tained by the more technically elaborate but more readily
generalizable convective variational principle whose ap-
plication will be described in the following sections. The
final section briefly describes the way the present theory
goes over exactly, in the nonrelativistic limit, to the stan-
dard Landau theory of superfluid dynamics in its original
(nondissipative} version [9], though not quite in its origi-
nal terminology. (It will be shown in a separate article
[10] how the original Landau theory can be translated
into terms that make its relationship to the present rela-
tivistic theory more evident. )

However, the relation between the two kinds of variation-
al principle involved is not quite so simple. Neither, of
course, is a free variational principle (which would just
give the trivial solution n~=s~=0 in one approach and

v~
=w =0 in the other), and the nature of the constraints

that need to be imposed is very different in the two cases.
For the convective variational principle (which has the
advantage of being easily generalizable [5] to treat cases
such as that of superconductivity in an elastic solid) it is
required that the allowed variations be constrained to be
induced just by displacements of the current-Qow world
lines. On the other hand, for the potential variational
principle (which has the advantage of being rather
simpler to formulate explicitly) it is required that the mo-
menta be constrained to be given in terms of freely vari-
able dynamical potentials a, g, say, and auxiliary
Clebsch-type potentials p, y, say, according to a
specification which in the present case takes the form

(1.5)

only on a set of (contravariant) current vectors ng with
"chemical" index label X. (In a typical application to an
electrically conducting fluid, the relevant currents might
be taken to be an entropy current n~~0] =s~, say; a positive
ion current n ~~&

~

=n ~+, say; and a negative electron
current n fz~

=n~, say. )

The primary role of the master function (not just in the
strictly conservative case with which we are concerned
here but also in the more general convective variational
theory of resistive [1,3,5] and viscous [11,12] fluids) is to
determine a set of generalized momenta and their associ-
ated force covectors, the latter being required to vanish
in the strictly conservative case (but not in the dissipative
generalizations}. Specifically, in the present case, each in-
dependent current vector ng will have as its dynamical
conjugate what is interpretable as strictly a momentum-
energy (not momentum-energy density) covector p,
which is defined as the corresponding partial derivative
that may be read out from the general variation formula

d&= g(p, dnx~+px~n dg ), (2.1)

f ~=p V' nx +2nx V( p (2.2)

and whose vanishing can be shown (as discussed in the
next section) to be the necessary and sufficient condition
for invariance of the spacetime integral of A with respect
to convective variations, i.e., variations due just to dis-
placements of the integral curves of the independent
currents nf

Introducing the thermodynamic potential (or general-
ized pressure) function 4, say, that is obtained as the
Legendre transform of the master function according to
the specification

%=A —g nxi'p
X

(2.3)

we can go on to construct the corresponding total stress-
momentum-energy density tensor T~ according to the
specification

T~ =%g~ + g nx~p
X

(2.4)

The covariant divergence of this tensor defines a total
force density

+he particular form of the coefficient of the fixed-point
(Eulerian) variation dg of the spacetime metric being
derivable [2,5] as a Noether identity expressing general
covariance. For each current vector there is also a corre-
sponding naturally defined force density covector f, say,
that is expressible as

II. CONVECTIVE VARIATIONAL FORMALISM
FOR IDEAL MULTICONSTITUENT FLUIDS

The particular example of the two-constituent
superfluid theory is a special case within the more general
multiple-constituent perfectly-conducting-Quid theory
[2,3,5] for which the equations of motion are derivable
just from a Lagrangian-type master function A, say, that
apart from the background spacetime metric g depends

(2.5)

gfx f
X

(2.6)

The foregoing formalism can be made more explicit by

which is decomposable as the sum of the separable con-
stituent force densities (2.2) which, as a further Noether
identity [5,16] will automatically satisfy
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noting that the requirement that A be covariant means
that it can depend only on the scalar products nzpn Y of
the currents so that the variation formula (2.1) can be
written out equivalently in the form

dA= —,
' g%' "d(n»1'ny ),

XY
(2.7)

in which, in view of the symmetry restriction
Pl+ Pl Yp 6 Y Pl +p there is no loss of generality in irnpos-

ing that the partial-derivative coefficients gP should
satisfy the corresponding symmetry condition

~[XY] () (2.8)

We thereby obtain a symmetric "inertia metric" %'

(that is uniquely defined provided the number of indepen-
dent currents does not exceed the relevant spacetime di-
mension) in terms of which the momentum covectors will
be given by the chemical-index-raising operation

X y ~»yn
Y

(2.9)

(2.10)

It as important to notice that the stress-energy-
momentum tensor Tt' as defined by (2.4), and hence also
the total force f as defined by (2.5) or (2.6), are invariant
with respect to a change of chemical basis of the form

n» ~n», n» =QN» ny
Y

(2.11)

whereby new currents are defined as linear combinations,
with constant coefficients Xz, of the original currents,
which implies a corresponding contravariant transforma-
tion

It is thereby apparent that despite the asymmetry of the
separate terms in (2.4) the total stress-momentum-energy
density tensor will nevertheless be symmetric after all,
i.e.,

that is charged with electromagnetic coupling constant
(per particle) e, say, the effect of an electromagnetic field
with four-potential A can be allowed for [2,3,5,11] by a
procedure of the usual kind whereby the physically well-
defined momentum covector p is replaced in the for-
malism by a corresponding gauge-dependent rnomenturn
covector m =p +e

III. CONVERSION FROM CONVECTIVE
TO POTENTIAL VARIATIONAL FORMULATION

dnx =Cx V "x "x V kx +"x V 0x (3.1)

It is to be noticed that invariance of the integral of A
with respect to the displacernent generated by a vector
field parallel to the corresponding flow, i.e., such that

If the master function were used directly as an ordi-
nary Lagrangian in a free variational principle, the corre-
sponding variational equations would simply amount to
the (chemically covariant) requirement that the momenta

p should all vanish, a condition which is so restrictive
as to render the dynamics entirely trivial. To get varia-
tional models with nontrivial dynamics it is therefore
necessary to specify constraints on the variation of the
current fluxes. One of the simplest possibilities is that of
a strictly conservative perfectly-conducting model as
characterized by the (chemical-base dependent) condition
that each of the forces f should vanish, which is what
results from a convective variational procedure of the
kind introduced in the case of a simple perfect fluid by
Taub [13],in which the variation of the current vectors is
constrained to have the form naturally induced by
infinitesimal displacements of the flow lines. Explicitly, if
gx~ denotes the conuecting uector field generating the
infinitesimal displacements of the flow lines of the current
nzp then the corresponding Eulerian perturbation in-

duced by the convection of the current will be given
[4,2,5,11]by

(2.12) x &nx 0—— (3.2)

~XY g(XY~ ~XY y ~ZWi~ X~ Y

ZW
(2. 13)

However, the chemical transformation properties of the
individual force-density contributions are not quite so
simple: They can be considered as the diagonal com-
ponents

Y

The "inertia matrix, "which plays the role of a naturally-
defined metric for the chemical vector space, undergos a
transformation of the corresponding contravariant ten-
sorial form

requires only the vanishing of the corresponding tangen-
tial contraction of the force density, as given by the iden-
tity

"x f t =nx p tV~nx (3.3)

fX —() (3.4)

generically entails the (chemically covariant) condition
that all the currents be conserved, i.e.,

It is apparent from the last identity that the (chemical-
base-dependent) perfect-conductivity postulate to the
effect that all the force densities vanish, i.e.,

fX —f X (2.14)
V' n)=0 (3.5)

of a force-density matrix

f» p~V~ny +2n—y V( jPp) (2.15)
and that when this last condition is satisfied the residual
content of the perfect-conductivity condition (2.14)
reduces to the standard form

whose chemical transformation law is of mixed (covariant
and contravariant) tensorial type.

It is to be remarked that in the case of a constituent n»I'V(~ )
=0 . (3.6)
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p =ir +V' a, nest'V a =nxt'p z,
which, by (3.6), automatically entails the conditions

(3.7)

nxt'V (px }
=0, nxi'x =0, (3.8)

which are well known to ensure that the covector H is

invariant under transport by the flow congruence of the
corresponding current n~t' (in the strong sense of having
zero Lie derivative with respect to any variable multiple
of the current vector). Under these conditions it follows
without loss of generality (making use of the gauge free-
dom in the choice of a and on the understanding, of
course, that we are not concerned with generalizations to
more than four dimensions) from the theorem of Pfaff [8]
that we can take ir to have the form

This (chemical-base dependent) condition of perfect con-
ductivity includes as a special case the stricter condition
of fully irrotational flow as characterized by the (chemi-
cally covariant, i.e., basis-independent) condition that all
the momentum forms be closed, i.e., that each of the ex-
terior derivatives V(~ } should vanish, which charac-
terizes a class of fully superconducting superfluid models.
The chemical covariance would be lost in a weaker
specification requiring vanishing divergence and closure
of the momentum form for only some but not all of the
currents as, for example, would be appropriate for a mod-
el of a nonsuperfluid but superconducting liquid.

It is to be remarked that the formalism set above can
be applied not only to perfectly-conducting fluids but also
to the other nondissipative case of perfect insulation, in
which some or all [14] of the currents are locked togeth-
er, in which case the corresponding displacements in the
variational principle should also be locked together,
which means that only the sum (but not the separate
values) of the corresponding forces is to be set to zero. It
is also to be remarked that it is possible to get nondissipa-
tive models in which creation occurs, so that (3.5) is not
satisfied, but where the tangential force contraction (3.3)
is nevertheless made to vanish by instead requiring that
the corresponding chemical affinity [5], namely ngp ~, be
set to zero.

To see how the generic system of perfectly-
conducting-fiuid equations of motion (3.5) and (3.6) can
be converted into potential variational form, the first step
(following lines that are well established in the noncon-
ducting case [8,14]) is to introduce a (gauge-depe:ident)
set of scalar fields, a, say, and a corresponding set of
flow-transported covectors, a, according to the
prescription

as obtained from (3.7) and (3.9), the Clebsch-type equa-
tions of motion (3.10) are sufficient by themselves to give
back the original gauge-independent form (3.6) of the dy-
namic equations, the evolution equations (3.6) for the dy-
namic potentials a being merely an automatic conse-
quence.

Having gotten to this point, it is now straightforward
to verify that the complete set of dynamical equations,
which in this potential reformulation consist just of (3.5)
and (3.10), is obtainable from the general variation for-
mula given for the generalized pressure function 4 by
(2.1) and (2.3), i.e.,

d%= g ( ng—dp+, p~~n dg ),
X

(3.12)

by directly substituting the expression (3.11) and impos-
ing the requirement that the spacetime integral of 4 be
invariant with respect to infinitesimal variations of the in-
dependent dynamical potentials a and of the indepen-
dent Clebsch potentials p and y . Within this system
the special case of an irrotational flow, V(~ }=0,as re-

quired for superfluidity of superconductivity, is obtain-
able directly at the level of the variational principle sim-

ply by omitting the auxiliary variables, i.e., dropping the
final Clebsch term in the expression (3.12) for the relevant
momentum covector (which is equivalent to restricting
p or y to be uniform).

IV. SINGLE-CONSTITUENT FLUID

n"=nu" (4.1)

where u" is a unit flow tangent vector as characterized by
the normalization condition

u "u = —c2
P (4.2)

According to the principle expressed by (2.1) the corre-
sponding momentum covector works out as

(4.3)

As a preparation for discussing the two-constituent
case that is of greatest interest, it is worthwhile to briefly
recapitulate how the convective variational formalism
works out for the familiar case of a single-constituent
fluid, including the special case of a zero-temperature
superfluid, with only one independent timelike current
vector n", say, so that the master function A depends
only on a single scalar n, say, defined as the magnitude of
the current by

PxV yx (3.9) with

in terms of generalized Clebsch potentials P and y that
are themselves constant along the flow world lines, i.e.,

dA
dn

(4.4)

nx~V+ =0, nx~V y =0 . (3.10)
Under these circumstances the Legendre-transformed po-
tential 4 will be given by

I V x+pxV x (3.11)

Proceeding conversely, it can be seen that when taken in
conjunction with the combined expression

(4.5)

while the stress-momentum-energy density tensor is ob-
tained in the familiar perfect-fluid form
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Tp = 6+p
c

(4.6)

where the energy-mass density 8 and pressure P are
given in this case simply by

6= —A, P=% . (4.7)

It is to be noted that in this simple "barytropic" case the
"inertia metric" defined by (2.7) has only a single com-
ponent that will be given as%'=(6'+P ) In .

The four vectorial components of the vanishing force
equation

ing Minkowski coordinates in a flat background, but un-
like (4.11) the momentum equation (4.12) has the disad-
vantage of not being covariant under nonlinear transfor-
mations such as are needed even in flat space if one
wishes to use spherical or cylindrical coordinates. If one
were dealing with just an individual particle world line,
the best one could do to get general covariance would be
to add in an appropriate term involving the Christoffel
connection so as to convert (4.11) to the form
u "V~ = —(BH/Bx~+u'p, I ). However, in a fluid
where one has a whole congruence of trajectories there is
a neater alternative, which is to use the fact that H will
be determined as a field over spacetime whose gradient

f =0 (4.&)
V,a=aatax~+u a~.tax~

that is obtained by direct application of the original Taub
variational principle [13] (the prototype for the general
convective variational formalism used here) can be
decomposed into two parts. The first is a scalar part
which, in the usual algebraically unconstrained version of
the theory, is satisfied by the imposition of the current
conservation law which in this case can be written out in
terms of differentiation with respect to proper time v.

along the flow as

dn +nV uP=O.
dv

(4.9)

H=O . (4.10)

The Hamiltonian equations themselves have a form that
is just the obvious (4+1)-dimensional analogue of the
usual (3+ 1)-dimensional form, i.e.,

The remaining part takes what is an ordinary Hamiltoni-
an form of the uniformly canonical type [15]. What this
means is that the equations for the flow lines are given by
a single particle-type Hamiltonian in which covariance is
obtained by using proper time w as a fifth independent
variable, the ordinary time variable x being treated on
the same footing as the space variables x ', i = 1,2, 3, while
similarly the mass-energy component p, say, is combined
with the ordinary space momentum components p;, say,
to form the covector p ~t)M, p; }.The superfluous degree
of freedom that would otherwise be introduced in such a
covariant formalism must be removed by the imposition
of an appropriate constraint fixing the initial value of the
Hamiltonian, which is of course conserved along each
world line. The statement that the flow is of uniform
canonical type means that it has the same form for each
world line, which implies without loss of generality that it
can be arranged to have the standard form

2u V~ pj= —VH, (4. 13)

whose right-hand side drops out in the uniform case con-
strained by (4.10), and which in any case is not only gen-
erally covariant but has the convenient feature that, due
to the antisymmetrization on the left, its evaluation does
not involve the Christoffel connection.

In the simple perfect-fluid case with which we are con-
cerned, the relevant point-particle-type Hamiltonian is
given as a function of the position coordinates x" and the
four-momentum components p, by

c2a= g"p~.+& . (4.14)
2p 2

This confirms the interpretation of the covector p as an
ordinary four-momentum in the usual technical sense. [It
is to be observed here that p/c plays the role of an
efFective mass in the kinetic term of (4.14)].

Subject to (4.10), the canonical equation of motion
(4.13) is interpretable as meaning that the vorticity ttvo

form

wp~ =2V(+~) (4.15)

is conserved in the strong sense [15] (meaning that it is
dragged along by the flow, i.e., its Lie derivative with
respect to an arbitrary multiple of the flow vector is zero)
so that in particular its (positive-indefinite) magnitude

wp w p is constant along each flow world line. Under
these conditions the vorticity form is expressible in terms
of the ordinary kinematic rotation vector

is covariant even though its separate terms are not. Un-
der such conditions it is apparent that the general Hamil-
tonian equation (4.12) can be rewritten in the
canonicalform

and

dx"u"=
d7.

aH

Bpp
(4.11) co"= c,"P u Vu1

v p 0

by the relation

(4.16)

pp BH
dw

(4.12)
=2p CJ

wpv
= Epvpu~c

(4.17)

with xp replacing x' and p replacing p;.
These equations are, as they stand, covariant with

respect to ordinary Lorentz transformations if we are us-

As a corollary one obtains [16] an ordinary divergence-
type conservation law for the relativistic helicity Pux
p c/, i.e.,



45 COVARIANT SUPERFLUID DYNAMICS 4541

V (p M)=0. (4.18)

If it were not already obvious from the form of the
momentum transport equation (4.13), Eq. (4.18) makes it
manifestly evident that any solution that is initially irro-
tational in the sense of having vanishing vorticity w, or
(equivalently in this case) vanishing rotation aP, will
remain irrotational in its subsequent evolution. By the
Poincare lemma such irrotational flow is evidently
characterizable in terms of a flow potential.

dA=O dsp+p dnp, (5.1)

so that the corresponding force densities will be expressi-
ble as

tions, the two-fluid theory is to be constructed in terms of
a Lagrangian scalar A depending on a pair of currents sp

and nP, say, for which there will be associated momen-
tum covectors S„and IM, say, that are determined by a
(fixed-background) variation formula of the form

wp~ =0 ~ PP=AVP+, (4.19}
f''=8Vs +2s V 8

P P [~ pj ' (5.2)

the inclusion of the Dirac Plank constant having the
effect of rendering the potential y conveniently dimen-
sionless. It is this special class of irrotational solutions
that is relevant to the superfluid case, in which the flow
potential is interpretable as being proportional to the
phase of an underlying quantum wave function, so that
one gets what is obviously [16] the simplest and most nat-
ural relativistic generalization of the single-constituent
London theory for a zero-temperature superfluid with no
"normal" component. In this theory the global periodici-
ty of the phase gives rise to the familiar topological
quantization condition on the circulation. When the
number current of marker particles is normalized to
agree with that of the superfluid bosons then the poten-
tial y will presumably be directly identifiable with an or-
dinary phase angle so that its periodicity should have the
standard value 2m. It is to be remarked that this canoni-
cally normalized potential p differs [see Eqs. (1.3)] from
the potential a introduced directly by the classical formu-
la V~a = —

U~ [as in (1.5)] by a dimensional factor:
y/a =m/R.

The superfluid subcase obtained, as just described, by
supplementing the general equations of motion by (4.14)
with the initial-value restraint (4.19) can be gotten direct-
ly [without any need to consider the more general unres-
trained solutions of (4.14)] using a less severely con-
strained variational principle [16]. Instead of requiring
that the allowed variations be convective, one allows the
current vector to vary freely apart from the requirement
that is is required to preserve the conservation law (4.9),
which in this case is imposed in advance as a restraint
whose effect may be taken into account in a free variation
principle with an augmented Lagrangian of the form
A+AyV n where q is a locally defined dimensionless
Lagrange multiplier. This leads immediately to the re-
stricted irrotational dynamical equations (4.19) with the
Lagrange multiplier itself taking the role of the flow po-
tential. It is to be remarked that by subtracting off the
total divergence V (fiyni'} one obtains an equivalent but
more convenient potential gauge-invariant Lagrangian of
the form A —AnPV y whose value after substitution of
the ensuing field equation (4.19) is just that of the ordi-
nary pressure P.

V. THE TWO-CONSTITUENT FLUID

We now come to the most important application,
namely the case of a two-constituent superfluid. Accord-
ing to the principles described in the introductory sec-

and

f,"'=p V n +2n V( p, )
. (5.3)

The thermodynamic potential, as given by the Legendre-
type transformation (2.3), will take the form

%=A —sp8 —npp
P P

(5.4)

and the stress-momentum-energy density tensor (2.4) will

be expressible as

TP =%'gp +sp8 +npp (5.5)

In ordinary applications to heat-transporting fluids one
would wish to interpret np as a current of conserved
marker particles which (except in exotic circumstances)
might appropriately be taken to be baryons, or (more
conveniently for superfluid applications) bosonic com-
binations of baryons (corresponding to neutron Cooper
pairs, or a-particle quartets for example) while s" would
be identified with a current of entropy, which would also
be conserved in nondissipative applications such as those
with which we are concerned in the present work (but
which would not be conserved in more general applica-
tions such as have been considered elsewhere [6,7, 11]).
Such an interpretation is particularly convenient in the
case of superfluids in view of the comparative ease with it
is possible, from a phenomenological or experimental
point of view, to identify not only the baryon current but
even the entropy current. (Although the most appropri-
ate identification of the latter may still be subject to some
ambiguity, it is clearer in superfluid applications than in
most other fluid contexts. The simplest case is that of the
low-temperature limit, in which proton contributions can
be neglected so that the entropy current can be recog-
nized [17] as consisting essentially just of a current of
phonons. ) With this identification, p is to be interpreted
as an effective momentum per marker particle (e.g., per
baryon or per bosonic combination of baryons} and 8~ as
an effective momentum per unit entropy.

To obtain the original version of what from a convec-
tive variational point of view is the simplest imaginable
two-constituent superfluid theory, we apply the variation
principle with respect to strictly convective variations of
the entropy current sp while allowing free variations of
the current np but ensuring its conservation, in the
manner described for the single-constituent case in the
previous section, by adding an appropriate Lagrange
multiplier term AyVpnP and then subtracting the diver-
gence V (A'yn~) so as to obtain a corresponding
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modification A~X, say, of the Lagrangian function
which will take the form

potential variation dy by

dsi'=+V s~ s—V P+s~V g, dp =A'V (dy) .
X=A —RnPV y . (5.6)

(5.14)
Applying the variational principle with respect to the
multiplier y now gives the particle conservation law

V nP=O, (5.7)

while allowing the entropy current sP to vary in accor-
dance with the more restrictive convective ansatz of the
form (3.1) implies that the corresponding thermal force
density (5.2) must vanish. Achieving this latter require-
ment by the usual vanishing-divergence condition of the
form (3.5) so as to obtain a nondissipative model in which
entropy is also conserved,

Vp~=0, (5.&)

one finds that the vanishing of the remaining part of the
thermal force density simply gives an evolution equation
of the standard form

sPVi 8 )=0 (5.9)

for the thermal momentum. Finally, applying the varia-
tional principle with respect to free variations of nP in
(5.6), one finds [consistently with the vanishing of the
other force density (5.3)] that the evolution of the particle
momentum will be determined by the stricter irrota-
tionality condition

(5.10)

that follows from the potential flow condition

p =AVq (5.11)

obtained from (5.6). Thus (as already remarked for the
zero-temperature case) the Lagrange multiplier q& be-
comes what may be interpreted a representing a
superfluid phase angle, with periodicity 2m if the particle
current is normalized in such a way that there is just one
marker particle per bosonic unit (whether it is an a parti-
cle in ordinary helium or a baryonic Cooper pair in a
neutron star) of the type whose condensation is supposed
to underly the superfluidity phenomenon.

It is to be observed that (5.11) can be used post facto for
the evaluation of the augmented Lagrangian X, which
thus works out to be given by

X=A —nPp =4+sPO
P P (5.12)

The general variation (in a fixed background) of this hy-
brid between A and 4 will evidently take the form

dX=O dsP —nPdp
P P (5.13)

It is apparent that this hybid function can be used as the
Lagrangian for a hybrid variational formulation that is of
the convective type only for the variable sP, while being
of potential (Clebsch) type for the other independent field
variable which in this version is p, whose constraint is
simply that it should have the form (5.11). Explicitly this
means that the most general allowed variation is expressi-
ble in terms of an infinitesimal convection vector P and a

Thus having first introduced the scalar y with the status
of a Lagrange multiplier in (5.6) we now find that in this
hybrid formulation it has taken on the role of a fully
fledged dynamic flow potential from the outset.

VI. THE NONRELATIVISTIC LIMIT

jP=mnP, (6.1)

where m is some proportionality constant having the di-
mensions of a mass. The choice of this "rest mass per
particle" is quite arbitrary as far as the fully relativistic
formalism is concerned, its use for a condensed medium
in a highly relativistic context being just a hangover from
a prerelativistic conceptual framework or from the
theory of dilute gases, in which the interaction between
the particles is so weak that their separate rest masses
remain well defined. The notion of a fixed "rest mass per
particle" does, however, acquire a certain degree of phys-
ical significance in the context of a nonrelativistic limit
approximation, whose characterization requires not only
that relative velocities in the fluid be small compared
with the speed of light (by a factor that can be thought of
as defining what is meant by "of order 1/c") but it also
requires conditions of the form

=1+0(1/c ),
mc

=O(1/c )
mc

(6.2)

as 1/c~O, in terms of a mass parameter m whose value
is thereby fixed to within small, O(c ), adjustments
whose affect will be unimportant unless one is so un-

reasonable as to want an extremely high degree of accura-
cy without having to go to the trouble of calculating
corrections to a correspondingly high order. In practice,

In the absence of any adequate microscopic theory of
the nonlinear regime (in which not only phonons but also
more complicated roton-type excitations are present) the
phsyical justification for the theory described in the
preceding section is simply that it is the mathematically
simplest possibility that is characterized not only by rela-
tivistic covariance but also by formal agreement with the
standard Landau theory in the appropriate nonrelativis-
tic limit.

To see how the relativistic formalism described in the
main part of this article can be translated in the nonrela-
tivistic limit into the Newtonian formalism of the (rather
inelegant) traditional kind, it is necessary at this point to
take account of the long tradition of describing
superfluids not in terms of readily identifiable marker
particle (e.g., baryon or superfiuid boson) and entropy
currents but in terms of various "mass currents" whose
empirical identification is rather less clear cut, being
motivated by Newtonian considerations that lose their
relevance in a relativistic context. The one whose
definition is least ambiguous is the so called "total-rest-
mass current"
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the freedom of adjustment that can be tolerated to ac-
commodate personal tastes and preferences will usually
be suKciently generous that, for example, if the particles
under consideration are atoms of helium-4, it will seldom
matter whether one takes the "rest mass" to be four times
the mass of a proton (which might be the most obvious
choice for a high-energy physicist), or —,

' of the mass of an
isolated atom of oxygen (which might be the most obvi-
ous choice for a chemist), or —,', of the mass of an iron nu-

cleus (which might be most obvious for a nuclear physi-
cist, who might also settle for that of just one a particle}
rather than the mass of a single isolated helium-4 atom in
its ground state (which is probably what a low-
temperature physicist would choose).

However the problem of its precise normalization may
have been resolved, the rescaled current vector jp will

have a dynamical conjugate U, say, that can be read out
of the fixed-background (dg =0) variation formula

dA=S dsP+U djP . (6.3)

This covector U will therefore be given in terms of the
true momentum per particle, p, by the formula

pp= mUp (6.4)

~ gP+p~ g =gP+p Qe g = & gP+Q~ Qv

in the form

(6.5)

p p- aq' + a%'8nP ——gp p + 8
1 2

8% 8%sP= —gP p + 8
aI, . aI, - (6.6}

To see how the nonrelativistic limit is obtained from the
generally covariant theory set up above, the essential step
is the introduction of a "3+1" decomposition with
respect to some inertial reference system in what, form
this point on, is to be understood as a Bat background
with standard Minkowski coordinates, [x"j = [x,x'j
with i =1,2, 3. With respect to any inertial frame there

which differs from the superficially analogous relation
(4.3) in that m (unlike p/c ) is a constant, while —v (un-
like u ) has a generically variable scalar magnitude. This
latter one-form u is what, in the traditional jargon,
would be referred to as the superQuid "velocity", a termi-
nology which is rather misleading: the sleight of hand
whereby it has been scaled so as to acquire the right di-
mensions for a velocity does not alter the fact that [unlike
the unit covector u in (4.3)] v still has the dynamical
role not of a velocity but of a momentum.

The inverse of the relevant application of the momen-
tum to current relationship (2.9) is obtainable directly
from the generalized pressure function 4 whose variation
formula is given by the Legendre transformed analogue
(1.2) of (6.3). Explicitly, the relation between the pair of
independent current vectors n~ (=m 'j~) and s~ and
the corresponding conjugate pair of momentum covec-
tors p (= —mu ) and 8 (= —kw ) is obtainable in

P P P P
terms of the three independent scalars

will be a well-defined "normal*' and total current three-
velocity vz and u' with corresponding density (three-)
scalars given by

j"~[pj 'j =mn[1, v'j, s"~s[1,v~'j . (6.7)

In the corresponding decomposition of the conjugate
four- momenta it is convenient to introduce an effective
chemical potential JM and an effective temperature 0
(preferring this symbol to the use of T in this context be-
cause of the possibility of confusing the latter with the
trace of T~) that are given rnodulo a Lorentz factor by
the thermal (i.e., "normal" ) frame component of the cor-
responding momentum covector, according to the
specification

su8 = s8
p

This leads to a decomposition taking the form

—m 'p =u ~{m 'p+v~'us, , —us, j,
—8 =km„~[8+vNJ8, —8;j

(6.8)

(6.9)

(which of course simplifies somewhat in units such that
k =m = 1). The covector (as opposed to vector, a distinc-
tion that would still matter even in three-dimensional
space if nonflat, e.g. , spherical, coordinates are used) vs;

that makes its appearance here is interpretable —in the
nonrelativistic limit —as the much discussed quantity
that is commonly but rather misleadingly described as
the super6uid "velocity" vector. Its analogously defined
thermal partner 8;, on the other hand, is something that
is hardly ever discussed explicitly, more importance being
traditionally attached to the combined total momentum
density which is given by

PI =pUss+s8i (6.10)

In terms of these quantities the variation of the general-
ized pressure function takes the form

d%=n dp+s d8+p;dvz' (j ' puz')dus—; . —(6.11)

In the nonrelativistic limit, as characterized by (6.2)
one obtains the simplification

p; =j,+O(1/c ) (6.12)

whose substitution finally reduces (6.11) to a form that is
well known as a possible starting point for the develop-
ment [17]of the standard classical theory [9].

Having derived this limit as a check on consistency
with previously established results, it is to be remarked
that while a fully relativistic treatment is of course neces-
sary for astrophysical applications such as the treatment
of neutron star interiors (not the mention more exotic
contexts such as cosmic strings), the covariant treatment
also has some conceptual advantages even in the
terrestrial-laboratory context of ordinary liquid helium,
for which a Newtonian approximation is an extremely
good approximation but for which, in practice, the tradi-
tional use of inappropriate nonco variant concepts
remains a source of unnecessary complication and conse-
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quent misunderstanding, so that a fresh covariant ap-
proach can provide useful clarification. This implies that
it is worthwhile to develop a covariant description within
a Newtonian framework in order to translate the original
formulation [9] of the Landau theory into a form [10]
that gives a better match to the more elegant relativistic
version described in the preceding sections. In particu-
lar, the covariant approach makes it clearer that what
has traditionally be referred to as superfluid "velocity"
should more correctly be called superfluid momentum:
whereas the "normal" velocity transforms contravariantly

under Lorentz boosts as a genuine velocity should do, on
the other hand the so-called superfluid "velocity" trans-
form covariantly, i.e., like a differential one-form, which
is the behavior characteristic not of a velocity but of a
momentum. This can also be understood from a
quantum-mechanical point of view according to which a
genuine (necessarily subluminal) velocity represents the
bicharacteristic direction of propagation of a wave pack-
et, whereas a momentum corresponds to the phase gra-
dient of a wave front (which without violating causality
can exceed the speed of light).
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