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Gravitational radiation from colliding vacuum bubbles
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In the linearized-gravity approximation we numerically compute the amount of gravitational radiation
produced by the collision of two true-vacuum bubbles in Minkowski space. The bubbles are separated
by distance d and we calculate the amount of gravitational radiation that is produced in a time ~-d (in a
cosmological phase transition v corresponds to the duration of the transition, which is expected to be of
the order of the mean bubble separation d). Our approximations are generally valid for r H . We
find that the amount of gravitational radiation produced depends only upon the grossest features of the
collision: the time 7 and the energy density associated with the false-vacuum state, p„„.In particular,
the spectrum dEG~/d~ ~p„„v.and peaks at a characteristic frequency co,„=3.8/~, and the fraction of
the vacuum energy released into gravitational waves is about 1.3 X 10 '(~/H '), where H'= 8mGp„„/3
(~/H is expected to be of the order of a few percent). We address in some detail the important sym-

metry issues in the problem, and how the familiar "quadrupole approximation" breaks down in a most
unusual way: it overestimates the amount of gravitational radiation produced in this highly relativistic
situation by more than a factor of 50. Most of our results are for collisions of bubbles of equal size,
though we briefly consider the collision of vacuum bubbles of unequal size. Our work implies that the
vacuum-bubble collisions associated with a strongly first-order phase transition are a very potent cosmo-
logical source of gravitational radiation.

PACS number(s): 04.30.+x, 98.70.Vc, 98.80.Cq

I. INTRODUCTION

Gravitational radiation from cosmological processes
may be a rich source of information about the early
Universe. Though efforts to detect gravity waves directly
have not yet borne fruit, the "menu" of sources, many of
which cannot be probed by other means, has made clear
the impact that gravitational-wave astronomy might have
on both cosmology and astrophysics [1]. Pulsar timing
data and the smoothness of the cosmic microwave back-
ground already place limits on the amplitude of the radia-
tion, and a new generation of detectors, such as the Laser
Interferometric Gravitational Observatory (LIGO) and
improved resonance bar detectors, are planned for the
near future [1,2].

Point sources of gravitational radiation will be of most
interest to astrophysicists; however, for cosmology the
stochastic background of gravity waves which exists to-
day will be most useful. Just as the blackbody microwave
background is a remnant of the early history of our
Universe (z —1000, t —300 000 yr), the gravity-wave
background is as well. However, its character is radically
different from the microwave background. Thermal
decoupling of gravitons presumably occurred at the
Planck epoch (T-10' GeV, t —10 sec), much earlier
than decoupling of photons, and so the resulting black-
body spectrum of gravitons is at a lower temperature
( 8 1 K) than the microwave background. If the Universe
went through an inAationary phase, the blackbody gravi-
ton spectrum will "redshift away" to an undetectably low
temperature T «1 K; a new spectrum arises because of
quantum fluctuations [3). More importantly, gravitation-
al radiation produced by cosmological processes occur-

ring after inflation is just superposed onto the stochastic
background and not thermalized. Thus gravitons may
provide us with a unique probe of processes occurring at
very early times. Since the frequency of gravity waves
produced at a given epoch is likely to be related to the
Hubble time H ', the present spectrum of the stochastic
background could have the thermal history of the
Universe spread across its spectrum.

Potentially important cosmological sources include
cosmic strings [4], textures [5], domain-wall collisions,
soliton stars [6], and phase transitions [7]. In particular,
oscillating string loops produce large amounts of gravita-
tional radiation, and timing measurements of the mil-
lisecond pulsar have been used to place stringent limits
on the existence of cosmic strings [8]. While the radia-
tion from textures has yet to be computed, their unwind-

ing involves considerable energy densities, making them a
possible strong source. First-order phase transitions can
be violent, producing large energy gradients and high ve-

locities, the necessary ingredients for strong sources of
gravitational radiation. Thus far, only qualitative esti-
mates of the amount of gravitational radiation from a
first-order phase transition have been made [7].

In this paper we initiate a detailed study of the gravita-
tional radiation produced in a strongly first-order phase
transition (by which we mean one with significant super-
cooling). In such a transition, the Universe starts in a
metastable false-vacuum state; bubbles of true vacuum
are nucleated through quantum-mechanical tunneling.
As a bubble expands, the liberated vacuum energy is con-
verted into energy of the bubble wall. Eventually, bub-
bles collide, completing the transition. Clearly, this situa-
tion involves the key ingredients of concentrated energy
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and high velocities necessary to produce significant gravi-
tational radiation. (Whether or not our results are also
applicable to first-order phase transitions that proceed
through thermal tunneling remains to be seen. )

Our work is motivated by a recent revival of interest in
theories where inAation ends with a first-order phase
transition, wherein the vacuum energy that drives
inflation is eventually converted into radiation by bubble
collisions [9]. Dubbed "extended" or "first-order"
inflation, these models circumvent the "graceful exit"
problem that plagued old inflation by means of a time-
dependent expansion and/or bubble nucleation rate.
Turner and %ilczek have estimated the stochastic back-
ground of gravitational radiation produced in these mod-
els, showing that bubble collisions are a potent source of
gravity waves and provide a unique signature of first-
order inflation [10]. Here we explore the production pro
cess in more detail, using numerical simulations of bubble
collisions. Our calculations are also relevant to other
first-order phase transitions in the early Universe that
proceed through the nucleation and percolation of vacu-
um bubbles; we discuss the application of our results to
cosmological first-order phase transitions elsewhere [11].

Specifically, we compute numerically the gravitational
radiation resulting from the collision of two scalar-field
vacuum bubbles. %e do so by evolving two bubbles clas-
sically for a time ~ comparable to their initial separation
d (d 0 r %few d). Our calculation is done in Minkowski
space, ignoring the gravitational effects of the bubbles
themselves, but to all orders in u /c (i.e., in the
linearized-gravity approximation, ' as we shall discuss, the
two aforementioned assumptions are valid for
r, d ~H '). We find the remarkable result that the spec-
trum of radiation and total amount of radiation only de-
pend upon the grossest features of the bubble collision,
the vacuum energy density and time/separation r. In
particular, the characteristic frequency of the gravity
waves co=3.8/r, dE&w/dco ~p„„r,and the fraction of
the vacuum energy liberated by the collision of two bub-
bles, f=1.3 X 10 (r/H '), where H =8rrGp„„/3.

In the next section we commence with a detailed dis-
cussion of bubble dynamics and the symmetry issues in-
volved in the problem. Section III covers the formalism
of gravitational-wave generation and several technical is-
sues. Theoretical expectations for the gravitational-wave
spectrum, based upon simple scaling arguments, are
presented in Sec. IV. Our numerical calculations and re-
sults are presented in Sec. V. %e end with a brief discus-
sion of bubble kinematics in a phase transition as relevant
to our work and, finally, a few concluding remarks. Some
technical discussions and formulas as well as a simple
analytical model that provides an explanation for the
scaling of our numerical results are relegated to three Ap-
pendixes.

Vo(q ) = —,(q' —qo)'2 22

V(q»= Vo(q»+&~qo(q+qo»
(2)

where e measures the degree of symmetry breaking be-
tween the two minima at +go. Figure 1 shows this po-
tential for various values of e. The relative minimum at
y+ =go+0(ego) is the "false vacuum, " while the global
minimum at q&

= go+—0(ego) is the "true vacuum. "
The difference in energy density between the false and
true vacua, p„„=2',yo. Classically, the false-vacuum
state y=p+ is stable, but quantum-mechanical tunneling
will cause it to decay to the true-vacuum state y=y
This decay proceeds via quantum nucleation of true-
vacuum bubbles that spontaneously appear from the
false-vacuum state. Coleman has shown that the bubble
with minimum action is O(4) invariant [12]; this
minimum-action "bounce" solution satisfies the equations

q=q(p), p=(&E+x')' ', (3)

dy 3 dq BV

dp p dp BQ
(4)

with the boundary conditions

lim q)(p) =(p+, =0,
dp

(5)

where tE =it is Euclidean time. The Euclidean action for
the O(4) bubble is
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Our metric signature is (1,—1, —1, —1). We are interest-
ed in the case where the potential V(y) possesses two ine-
quivalent loca1 minima: a false- and a true-vacuum state.
Throughout this paper we will use a y potential with
two degenerate minima, Vo(q), with an additional linear
term that breaks the degeneracy:

II. SCAI.AR-FIELD BUBBI.KS AND SVJMMKTRY ISSUES
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A. Bubble nucleation

Consider a single real scalar field y with Lagrangian
density

FIG. 1. Scalar-field potential [Eq. (2)] plotted in dimension-
less units for @=0.033, 0.05, 0.1, and 0.15. Note that e deter-
mines the ratio of the vacuum energy to the barrier height,
while A, and y0 set the overall energy and length scales.
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The most likely initial bubble configuration after the
quantum nucleation event is obtained by analytically con-
tinuing the bounce solution to Minkowski space and then
taking the t =0 time slice. Bubbles of different sizes or
profiles than the bounce solution have larger actions asso-
ciated with their nucleation, and their nucleation rates
are suppressed exponentially by the difference between
their action and the bounce action. In any case our re-
sults are insensitive to the initial bubble configuration.

For orientation we quickly summarize bubble nu-
cleation in the "thin-wall" limit, valid when the false-
vacuum energy is small compared to the height of the
barrier between the false and true vacua (i.e., E «1). In
this approximation it is straightforward to compute ex-
pressions for the radius of the bubble at nucleation, R0,
and the Euclidean action for bubble nucleation, SE [12]:

Ro = f dlp+2VO(q2),
Pvac

277T 4

SE = f dlP+2VO(y)
2pvac 0

4
871 Pvac 1677 ~~'P002

2 2
Pl Pl

Direct evaluation of the required integral gives
1/2

f'01 m. Ro

&Y.eq,
' 3ze' ' I mPl

(7a)

(7b)

(7c)

Since we expect y0 to be of order the grand-unified-
theory (GUT) scale, 10' GeV or so, the size of the bubble
when it is nucleated will be much smaller than the hor-
izon. This justifies the neglect of gravitational effects on
bubble nucleation [13].

Once a bubble is nucleated, its evolution is determined
by the usual Klein-Gordon equation for a real scalar
field:

a' p2~— (9)
at2

The bubble initially has no kinetic energy. Since the inte-
rior true-vacuum region of the bubble has a lower energy
than the surrounding false vacuum, an effective outward
pressure exists on the wall of the bubble. This "vacuum
pressure" forces the bubble to expand; the region of true
vacuum becomes larger and larger. The velocity of the
bubble mall asymptoticaHy approaches the speed of light;
the bubble wall becomes thinner as the surface energy
density of the bubble increases. If we consider a pair of
bubbles, each expands quiescently until the two bubbles
collide. Since the bubble walls have large energy densi-
ties, the collision is violent. The colliding walls do not
annihilate or pass through each other, but create a region
where the scalar field oscillates rapidly. The collision of
two vacuum bubbles is illustrated in Fig. 2.

FIG. 2. Evolution of two identical vacuum bubbles. From
left to right and top to bottom, t =36, 60, 72, and 96. The plots
are 100 units in the r and z directions; each square is 2X2 di-

mensionless units.

B. Symmetry considerations

The classical evolution of a critical bubble of true vacu-
um after its quantum-mechanical nucleation possesses a
high degree of symmetry. Most of the following symme-
try considerations are well known [14]; here we review
them in some detail because of their bearing on the
present problem. The time evolution of a critical bubble
is given by analytic continuation of the O(4)-symmetric
solution to Minkowski space and taking the t )0 part.
The solution (

—~ & t & 00 ) corresponds to a bubble that
collapsed from infinite size to a minimum size R0 and
then again expanded to infinite size. Because of the O(4)
symmetry of the bounce solution, the complete solution is
O(3, 1) symmetric: Observers in all Lorentz frames see
the same thing. The symmetry implies that the field is a
function only of x —t; if we 1et x„,ll denote a fiducial
point within the bubble wall, then at time t the position
of the bubble wall satisfies

x —t =R
wall 0 (10a)

where R0 is the initial bubble radius. The bubble wall

moves with constant acceleration and rapidly approaches
the speed of light:

U wall (t2+R 2)1/2
0

(t'+R')' '
V wall

0

(10b)

(10c)

Note that at late times t ))R0 the Lorentz factor y in-

creases as t/R0; since the surface area of the bubble in-

creases as 4mt(for t »Ro), t.he energy in the bubble wall

increases as t, which is accounted for by the release of
false-vacuum energy E„„=4trp„„tl3 (t »Ro). Like-
wise, it is important to note that the bubble wall becomes
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thinner as a result of Lorentz contraction:
hR ~y '~t ', where AR is the wall thickness. This
fact must be taken into account when selecting the grid
size for numerical evolution of the scalar field.

The t )0 history of the bubble is not O(3, 1) invariant:
It corresponds to a bubble nucleated on the t =0 space-
like hypersurface of a specific Lorentz frame. However,
in the limit that Ro~0, the t &0 history of the bubble
solution is O(3, 1) invariant: It is the finite size of the bub-
ble at t =0 that defines a particular spacelike hypersur-
face and breaks Lorentz invariance. We note that a sin-
gle vacuum bubble, because of its spherical symmetry,
produces no gravitational radiation.

Now consider two O(3, 1) solutions with common time
origins centered on the z axis at positions z =kd/2 (in
some Lorentz frame). If we neglect the interaction of the
two bubbles for the moment and consider the complete
histories of the two individual bubble solutions, we see
that the "double-bubble" solution is O(2, 1) invariant (the
generators of the symmetry are Lorentz boosts along the
x and y axes and rotations about the z axis). If we include
interactions between the bubbles, the solution is still
O(2, 1} invariant, since the scalar field equation of motion
which governs the interactions is fully Lorentz invariant.
However, if we only consider the t )0 evolution of the
double-bubble solution, it is not O(2, 1) invariant, the
O(2, 1) invariance being broken by finite size of the bub-
bles at nucleation. As in the single-bubble case, in the
limit that the nucleated bubbles are of zero size (R v ~0),
the t )0 history of the two bubbles is O(2, 1) invariant.
As we shall see shortly, O(2, 1) invariance or noninvari-
ance is a crucial issue.

The noninvariant Lorentz boost (along the z axis) has
the effect of changing the relative nucleation times of the
two bubbles. If the O(2, 1) symmetry is unbroken, the
general two-bubble collision is gained from the equal-
bubble collision (i.e., simultaneous nucleation) simply by
a Lorentz boost in the z direction. More explicitly, for
two bubbles with nucleation events (t, ,z, ) and (t2,zz)
with spacelike separation, a Lorentz boost in the z direc-
tion with v /c =p=(t2 t, )/(z2 —z—

&
) transforms the col-

lision to a frame in which the bubbles are nucleated
simultaneously and the problem possesses O(2, 1) symme-
try. Conversely, for two bubbles nucleated simultaneous-
ly at z=+d/2, a Lorentz boost with v/c =P results in
two bubbles nucleated in the boosted frame at
t = +ypd /2, z =+yd /2; when the bubbles collide in the
boosted frame, the ratio of their diameters will be
(1+p)/(1 —p). In the boosted frame, we still have O(2}
symmetry (rotations around the z axis); however, the ad-
ditional boost symmetries in the x and y directions are
now gone, since these boosts will alter the relative nu-
cleation times of the two bubbles.

What is the significance of the O(2, 1) invariance? Chao
[15]has shown that an O(2, 1) invariant space-time cannot
support gravitational waves. Specifically, he demon-
strates that the O(2, 1) invariant space-time associated
with the nucleation of two bubbles of zero size is iso-
morphic to an O(3) (Schwarzschild —de Sitter} space-time
with a time-varying, spherically symmetric stress-energy
distribution. As is well appreciated, an O(3) space-time

does not have sufficient degrees of freedom to support
gravitational radiation; to produce gravitational radia-
tion, a source must have a time-varying quadrupole or
higher multipole moment.

A more heuristic explanation of why the fully O(2, 1}-
symmetric collision of two vacuum bubbles does not pro-
duce gravitational radiation proves helpful. Clearly, the
collision of two vacuum bubbles is highly nonspherical;
thus the absence of gravitational radiation must trace to a
precise cancellation of the radiation emitted at different
times and places during the collision, just as the absence
of gravitational radiation in a problem with spherical
symmetry traces to the cancellation of the gravitational
radiation emitted by the different parts of the spherically
symmetric matter distribution. In our case the O(2, 1) in-

variance guarantees the exact cancellation; in the spheri-
cally symmetric analogue, it is the O(3) invariance that
guarantees it.

In order that the collision of two bubbles of true vacu-
um produce gravitational radiation, O(2, 1) invariance
must be broken. In the present circumstance, the nu-
cleation event (as mentioned above) and the end of the
phase transition break the invariance. The first of these
does not result in significant gravitational radiation, pro-
vided that the bubbles are sufficiently far apart at the
time of their nucleation, i.e., Rp &&d, so that they are
spherically symmetric when nucleated. In Sec. V we will
show that d is expected to be much greater than Ro' in

any case the amount of radiation produced increases as
d, so that d &&Rp is the case of greatest interest.

This brings us to the important O(2, 1)-symmetry-
breaking effect, which allows for abundant gravitational-
radiation production from vacuum-bubble collisions. Ul-
timately, we are not interested in the collision of just two
bubbles of true vacuum. In realistic scenarios where the
phase transition is eventually completed, the two collid-
ing bubbles expand outward and at some time meet up
with space that is (more or less) in the true vacuum as a
result of the nucleation, expansion, and collision of other
bubbles. (Contrast this with only two bubbles, where
space outside the two bubbles, x & t, remains in the false
vacuum. } We use a phenomenological cutoff to account
for this fact: We compute the gravitational radiation em-
itted by two colliding bubbles from time t =0 to time
t =v., where ~ is roughly the duration of the phase transi-
tion. The time cutoff breaks O(2, 1) symmetry since the
time slice must be specified in a particular Lorentz frame.
The amount of radiation emitted will necessarily depend
upon the time cutoff. The precise form of the cutoff obvi-
ously depends upon details of the phase transition. To
model the cutoff, we multiply the stress-energy sources
for gravitational radiation by a smooth function C(t},
which we take as

1, 0&t ~~„

This cutoff factor smoothly ramps the sources to zero be-
tween t =v, and the cutoff time t =~. We generally take
~, =0.9~ so that the "completion of the phase transition"
takes place in the last 10% of the total time evolution of
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the bubbles. We also take ~0 small enough so that the
sources are essentially zero at t =~. While the cutoff is
ad hoc, our numerical results are not sensitive to the
functional form of the cutoff and vary in a sensible way
with r, /r (see Sec. V). Also note that a smooth cutoff is

necessary from a mathematical point of view: It serves as
a window function for the Fourier transforms appearing
in the radiation formulas derived in the following section.
An abrupt cutoff C(t)=e(r t—), where 6 is the Heavi-

side step function, introduces spurious radiation power
that swamps the physical signal, especially at high fre-
quencies.

The O(2, 1) symmetry of the problem has some very
practical value. Even though the space-time of the two
equal colliding bubbles is not globally O(2, 1) symmetric,
the field q&(x, t ) is a function of only two variables over its
domain of definition [14,16]; i.e., for 0 ~ r ~ r,

p(x, t ) =p(t r, z ),— (12)

where r —=x +y . Changing to hyperbolic coordinates
defined by

t =s cosh/, x =s sinh1( cos8,

y=s sinhi)'jsin8 (t ) r ),
t =s'sinhP', x =s'cosh/'cos8',

y=s'cosh/'sin8' (t (r ),

(13a)

(13b)

it is clear that q is independent of g, f' and 8, 8', that is,
y=y(s, z) or y=p(s', z). In these coordinates the La-
grangian density and equation of motion become, respec-
tively,

2 2

a~ & a~ —V(y),
2 Bs 2 c}z

By+2 By By BV
Bs2 s Bs Bzz Bq&

(14)

(15)

Thus the evolution of two colliding bubbles reduces to a
two-dimensional problem: one spatial variable z and one
time variable s. For the problem at hand, calculations us-

ing this (1+1)-dimensional wave equation are much less
computationally demanding and allow far greater dynam-
ic range.

III. GENERATION OF GRAVITATIONAL RADIATION

A. Assumptions and approximations

Because of the nonlinear nature of gravity in the con-
text of general relativity, computing gravitational radia-
tion is more complicated than computing electromagnet-
ic radiation [17]. In simplistic terms the difficulty arises
because the gravitational field itself (including gravita-
tional radiation) can act as a source. When computing
electromagnetic radiation, one often expands in powers of
the velocity of the source, U/c. In the computation of
gravitational radiation, the analogous procedure is a dou-
ble expansion in terms of the strength of the gravitational
potential, P/c, and the velocity of the source, v/c. For
a gravitationally bound system, the two expansion pa-

rameters are of comparable size: P-U (the virial rela-
tion). This relation holds for most astrophysical sources;
however, it certainly does not hold for the collision of
two bubbles. Our problem is highly relativistic —the ve-
locity of the bubble walls asymptotically approaches the
speed of light as the bubbles expand —but gravity plays a
negligible role —the bubble expansion is driven by the
pressure difference between the true and false vacua.

Throughout the present calculation, we make the fol-
lowing assumptions.

(1) Gravity is linearized, and gravitational effects on
the expansion of the bubble itself are neglected. The radi-
ation produced by the gravitational field of the bubbles
and back reaction of radiation on the bubble motion are
of course also ignored. In this approximation the
gravitational-radiation problem is precisely analogous to
its electromagnetic counterpart (except for the additional
tensor index).

(2) Since the source reaches velocities very close to the
speed of light, it is necessary to keep many terms in the
source velocity v/c. We keep all orders in u/c, although
a self-consistent approximation dictates expanding only
to order n in the velocity, where P/c -(U/c)". The ap-
proximation which keeps only the first-order term in
P/c and all terms in the velocity is commonly known as
the "post-Minkowski" or "linearized" wave-generation
formalism.

(3) The source is localized in space, and so it is possible
to define a "far-field zone" and use the standard radiation
formalism. A pair of vacuum bubbles expanding
indefinitely is not a localized source, but because we im-

pose a time cutoff (as explained above), the source for our
problem is localized.

(4) We ignore the expansion of the Universe and gravi-
tational effects on bubble nucleation. In the limit that the
cutoff time v is much less than the Hubble time H, this
is a valid approximation; as we shall see in Sec. V, one ex-
pects ~&a

Before going on, let us consider the gravitational po-
tential associated with the bubble. Just outside a bubble
of radius R, the gravitational potential is
P-R p„„/R—(R/H ') . Thus we see that
P/c 5 u /c —1, provided that the radius of the bubble
is less than the Hubble time H '. The condition
P/c S U /c justifies neglecting gravitational effects on
the expansion of the bubble as well. Finally, recall that
the initial size of the bubble relative to the Hubble radius,
Ro/0 '-yo/mp, , is expected to be very small, provided
that tpo ((mp~.

B. Radiation-generation formalism

Now we write down the formalism for computing grav-
itational radiation from a source in the linearized-gravity
approximation. All necessary information is contained in
the space-space components of its stress-energy tensor
T""(x,t); we follow the treatment given by Weinberg
[18]. He defines the space-space components of the
Fourier-transformed stress tensor with the unusual con-
vention
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T, (k, co) = fdt e' 'fd x T;~ (x. , t )e
1

(16)
For the stress-energy tensor, we take the canonical

form

The components contributing to gravitational radiation
satisfy the null condition k„k"=0,i.e., ~k~ =co. The total
energy radiated in the direction k into the solid angle d Q
at frequency co is given by

dE =2Gco A, .
I (k)T'~'(k, co)T' (k, co),

leo GQ
(17)

where A;. I is the projection tensor for gravitational ra-
diation:

A; I (k)=5,t5 —2k k 5;(+—,'k;k)klk

T" =cPpB"y —Xg~'. (21)

T;, (x, t)=B;q&B,qr+5,,X~B,q) Bjq.& . (22)

From this point on, all references to T;- actually mean
B;Ip BJp.

From Eqs. (17) and (20b), it follows that any term in
T~(k) proportional to 5;J yields no gravitational radia-
tion ("pure trace" terms do not contribute to gravitation-
al radiation). Thus, for the purposes of calculating radia-
tion, we make the replacement

,'5—
,J5—1 +—,'5,"kIk +—,'5, k, k, .

Our problem is axially symmetric about the z axis con-
necting the two bubble centers, and so without loss of
generality, we can take

k„=sin8, k~ =0, kz =cos8, (19a)

C. Quadrupole approximation

Before exhibiting the components of the Fourier-
transformed stress tensor in full generality, we consider
quadrupole approximation. The familiar quadrupole ap-
proximation is obtained simply by taking the limit
kx —+0:

k=cok, co =—cosin8, m, =cocos8 . (19b)

ij, lm Im, ij (20a)

We note the following symmetry properties of the projec-
tion tensor:

T;J(k, co)~T;Jq(co)= f dt e' 'f d x T; (x, t)

1 fdt e' 'fd x B,.p B qr . (23)

A;I 5;=0,
A;I k;k =0,

(20b)

(20c)

(20d}

I

T,&&(co)=D(co)5, +b(co)5;,5", . (24)

Further, the first term does not contribute to gravitation-
al radiation. The second term is given by

With axial symmetry about the z axis, the off-diagonal
components are zero and T;/co) must be of the form

A(co) = Tg —
—,'(Tg+ TPy)

f dte' 'fd x
27T 0

8/7

az

2 '2
Bq 1 B~

2 Bx 2 Bg

'2

C(t)

=f "dt e' 'f dz f "r dr

'2
By 1 Bq&

Bz 2 Br

2

C(t), (25)

where C(t) is the time cutoff discussed in the previous section [Eq. (11)]and r is the radial polar coordinate in the x-p
plane. Note also that we have assumed the nucleation events take place at t =0.

If the two bubbles are nucleated simultaneously, the field is a function only of the two variables s and z; a further
change of variables to the hyperbolic coordinates

t =s cosh/, r =s sinhg, u =cosh/ (t ) r },
t =s sinhg, r =s cosh/, u =sinh1{ (t & r )

leads to the expressions
2

r &t: A, (co}=f s ds f dz f du e'"'"C(su) ——f s ds f dz
o — Bz 2 0 —oo BS

2

(26a)

(27a)

r &t: bz(co)= f "s ds f dz f "du e' '"C(su) ——f s ds f dz + f "du(u +1)e'"'"C(su),
0 Bz 0 2 0 —m Bs 0

(27b)
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b, (co)=b, ,(co)+62(co) . (27c)

=Geo ~b, (co)~ sin 8, (28)

The subscripts 1 and 2 denote the two regions of integra-
tion. Note that functions of y depend only upon s and z.
By using Eq. (20d), it follows that, in the quadrupole ap-
proximation,

factor of 50 greater than that in the full linearized-gravity
calculation, which includes all the multipoles [19]. Since
the total power radiated in the full linearized-gravity ap-
proximation is presumably an incoherent sum of all the
multipoles, this presents a paradox of sorts. We will re-
turn to this point later (its resolution is explained in Ap-
pendix B).

where, as before, k, =cosO.
The quadrupole approximation is of interest because it

is much simpler numerically than the full linearized-
gravity approximation. It also provides a check on our
numerical results, since the radiation in the two cases
must have the same asymptotic behavior in the limit that
co~0. We do not, however, expect the quadrupole ap-
proximation to be accurate because our expanding bub-
bles are highly relativistic. In fact, we would naively ex-
pect the quadrupole approximation to underestimate the
amount of gravitational radiation in our problem. As we
shall see, quite the opposite is true: The total energy ra-
diated in the quadrupole approximation is more than a

D. Full linearized-gravity approximation

T, (k, co)=. f dt e' 'f d x e ' '"c);pc),.y . (29)

The polar coordinate transformation gives, e.g.,

Fixing k =0 with the given axial symmetry implies
T"~(k,co)=T~'(k, co)=0. The procedure for calculating
the remaining components of T'J(k, co) is straightforward
and essentially the same as in the quadrupole case, with
the additional factor of e '" " in the integrand:

T""(k co)= f dt e'"'f dz f drtf r dr cos rje (30)

The g integration can be performed explicitly using the Bessel-function identity

f e'~" cosnx dx =2i "nJ„(P). (31)

Then, for the equal-bubble case, the same hyperbolic coordinate transformations yield various expressions of the form
' 2

Ti (k, co)=—f s ds f dz e ' f du(u —1)e'"'"[Jo[co s(u —1)'~ ] J2[co„s(u——1)'~ ]]C(su ) .
2 0 —oo ()S 1

The complete expressions for T'J(k, co) are given in Appendix A. The required contraction with the projection tensor
simplifies:

dco dA
=Geo

~

T"(k,co)sin 8+ T""(k,co)cos 8 T~~(k, co) ——2T"'(k, co)sin8cos8~

E. Unequal bubbles

For two bubbles nucleated at different times, the situa-
tion is more complicated, as the field is no longer a func-
tion only of the two variables s and z. In principle, the
evolution of the field y is now three dimensional (two
space and one time), making the problem computational-
ly intractable. However, if two bubbles are nucleated at
different times with a spaeelike interval between the nu-
cleation events, there is an appropriate Lorentz boost to a
frame in which the bubbles are nucleated simultaneously.
The formulas derived in Sec. III D are valid in the boost-
ed frame, except for the time cutoff. In the original
unequal-bubble frame, the cutoff is spatially uniform; in
the boosted frame the cutoff depends on both time and
space. We can use the equations derived above for the
unequal-bubble case, provided that the cutoff function

C(t) is replaced by the "tilted" cutoff function
C[y(t+Pz)]. For unequal bubbles we calculate the re-
sulting radiation by (a) transforming to the frame in
which the nucleation times are equal, (b) using the for-
malism of Sec. III D, modified by the tilted cutoff, to cal-
culate the radiation spectrum, and (c) transforming the
spectrum of gravitational radiation back to the original
frame.

IV. SCALING EXPECTATIONS

As is often the case, the dynamical range accessible to
numerical techniques does not allow full exploration of
parameter space. Therefore it is important to discover
any exact or approximate scaling relations. The problem
of two colliding vacuum bubbles has several time/length
scales: the separation of the bubbles d; the cutoff time ~,
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which, since the bubbles expand at essentially the speed
of light, sets the bubble size at the cutoff; the initial bub-
ble size Ro-—I/~A, ego, and the initial thickness of the
bubble wall, hR, also of order yo '. In the context of a
phase transition, ~ corresponds to the duration of the
transition, and as we shall discuss in Sec. VI, the duration
of the transition and bubble separation are expected to be
of the same order: d -~. Further, v. is expected to be of
order fewX10 H ', which implies that d, ~))RO the
initial bubble size. This makes Ro an irrelevant length
scale. Finally, there is the bubble-wall thickness hR,
which is initially of order Ro, but which decreases with
time as a result of Lorentz contraction. A priori, the
bubble-wall thickness could be an important scale; as we
shall see, it is not. In the end, for the case of two collid-
ing bubbles of equal size, there is but one relevant
time/length scale: r.

Let us now estimate the gravitational radiation pro-
duced by the collision by two bubbles. Recall that in the
quadrupole approximation, the power emitted in gravita-
tional waves is given by

~GW GQ3

Eow-G fQ3(t) dt —fQ3(co) dco,

(33a)

(33b)

where Q is the quadrupole moment of the energy distri-
bution, Q3(t):dQ/dt—, and Q3(m) fd-t Q3(t)exp(imt )

is the Fourier transform of the triple-time derivative of
the quadrupole moment. Assuming, as we have, that ~ is
the only relevant time/length scale, Q3-p„„r,where

pvac is the energy density associated with the false-
vacuum state. It now follows that

Comparing this with the energy radiated in gravity waves
gives

EGw Gp„„r
E 3

vac Pvac+

7

H-'
'2

(36)

That is, the energy fraction liberated into gravity waves
varies as r; further, we recognize QGp„„asthe Hubble
parameter associated with the expansion of the Universe
driven by the false-vacuum energy density. Thus we dis-
cover the fundamental relation that f is proportional to
the square of the size of the typical bubbles when they
collide relative to the Hubble radius [10]. Since the
false-vacuum energy liberated by bubble collisions is re-
sponsible for "reheating" the Universe in extended
inflation (or in a strongly first-order phase transition in
which the entropy of the Universe is greatly increased},
the predicted ratio of energy density in gravitational
waves to radiation after the transition is also f.

Finally, what are our expectations for the gravitational
radiation produced by the collision of bubbles of unequal
size? Suppose at the time of collision (i.e., when the two
bubbles first "kiss") the larger bubble has size R and the
smaller bubble size r ( «R ). Since we expect the smaller
bubble to be encompassed by the larger bubble in a time
of order r, the time cutoff will also be of order r. The
controlling time/length scale in this problem is r: The
size of the collision region will be characterized by r, and
the time rate of change of the quadrupole distortion will
occur on the time scale r. (We of course assume that at
collision both bubbles are much larger than their initial
sizes. ) As in the equal-bubble case, the relevant
time/length scale determines the scaling relations

EGw-Gp„„r& Q3(t)-r g(t/r) &

Q3(m)-r g(mr), dEow ldco-r ~g(mr)
~

(34) EGw —Gpv„, —
GpvacdN

(37)

3
Evac Pvac+ (35)

where the function g does not depend upon v.
Expressions (34} contain the essence of our expecta-

tions for scaling behavior: (i) the energy emitted in gravi-
ty waves depends upon the size of the bubbles when they
collide to the fifth power and the square of the vacuum
energy; (ii) the spectrum of gravitational waves is an in-
variant function of e~, so that the characteristic frequen-
cy of radiation varies as r '; and therefore (iii)

dEGw /des varies as ~ . As we shall see, all of these scal-
ings are verified numerically. In a highly relativistic
problem, one might question whether scalings based upon
the quadrupole approximation bear up when the full rela-
tivistic calculation is done. The answer is yes, basically
because these relations follow from dimensional con-
siderations. In Appendix C we develop a simple analyti-
cal model that reproduces all of these scalings.

The most crucial point is that the energy emitted in
gravitational waves varies as the fifth power of the sepa-
ration of the nucleated bubbles. The absolute energy ra-
diated in gravitational waves is of less interest than the
fraction of the vacuum energy liberated into gravitational
waves. The false-vacuum energy released scales as

and

Eowf= -Gp„„r2-—
vac

r
H-'

2

(38)

Note that expressions (37) and (38) only depend upon the
size of the small bubble and have the same form as the
corresponding expressions in the "equal-bubble" case and
thus smoothly extrapolate to the case R =r -~. The lack
of dependence upon R follows because the scale r con-
trols all the action —the size of the quadrupole moment
and its time variation. As we shall discuss in the final
section, we do not expect a great disparity in bubble sizes:
In a typical first-order transition, the distribution of bub-
ble sizes is approximately Gaussian with a width that is
about half the mean bubble size.

As we shall now discuss, our numerical results display
the naive scaling expectations presented here, in particu-
lar, that dEow/dm~p„„r and that f ~(r/H ') . As
stated at the beginning of this section, the discovery of
these scalings is crucial to applying our results to realistic
situations. To illustrate, consider the following example.
In our largest simulation, r-100RO —10 /VA, &po. As we
discuss later, for a realistic phase transition, we expect
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~-few X 10 H ' —10 rn pauli/iLyo

—10 (mp]/yo)RO .

For yo-10' GeV, our simulation is just large enough to
handle the realistic scenario; for yo«10' GeV, our
simulation is far too small. However, because of the scal-
ing results, we can make reliable estimates even for
o«10' GeV.

V. NUMERICAL CONSIDERATIONS AND RESULTS

Expressions (27) and (Al) —(A8) for the various com-
ponents of T'J(k, co) needed to compute dE/dcodQ are
complicated integrals over gradients of the scalar field
y(x, t). As such, they cannot be evaluated in closed
form, and so we must resort to numerical techniques to
evaluate them. The numerical work consists of two
parts: evolving the scalar field and evaluating the in-
tegrals.

We work in dimensionless units, defined in terms of the
scales associated with the scalar field y. The mass of the
scalar field, m =A.yz, defines the natural time/length
scale: m ' =A, '

yo ", and Zap defines the natural scale
for energy density. We thus define the following dimen-
sionless quantities, denoted by a tilde:

(x, t)=(x, t)A, 'i
q&0 ', (co, k)=(co k)A, '

(39)
0'fo~ P=P~fo ~

where (x, t ) are (length, time), (co, k ) are (frequency, wave
number), p is energy density, and of course R =c = 1. The
Lagrangian density becomes

A. FieM evolution

'2 '2

&(s,z}=—1 By + + V(y) .
2 9$ 2

(42)

Consider an infinitesimally thin tube of radius dr along
the z axis; the total energy contained in this tube is

As mentioned above, for the case of two bubbles nu-
cleated simultaneously, the wave equation governing the
field evolution can be converted to a (1+1)-dimensional
partial-differential equation in the space coordinate z and
"time" coordinate s. First, Eqs. (4) and (5) are solved for
the bubble profile using a straightforward relaxation
method. The initial conditions are the field values along
the z axis connecting the two bubbles; for the equal-
bubble case, we have reflection symmetry about the z =0
plane, and so only the field values for z ~ 0 must be calcu-
lated. We impose a reflective boundary condition at z =0
and evolve the field in steps using Eq. (15) with a stag-
gered leapfrog algorithm. Recall that the bubble-wall
thickness decreases roughly as t ' as a result of Lorentz
contraction; our step size is chosen to give reasonable
resolution of the final bubble-wall thickness (five to ten
grid points across the thickness of the wall}.

A common check on the accuracy of the scalar-field
evolution is simply to calculate the total energy of the
field at each time step and make sure energy is conserved
to within some prescribed tolerance. Unfortunately,
since the "time" variable s is not the true time (recall
s =t r}, energy —is not conserved from one s step to
the next. But the energy between s steps does change in a
definite way, and we can use this fact as a check of the
scalar-field evolution [16]. The Hamiltonian density of
the field is

X =A.yo
— ——(q) —1) e(f)+1)—

()g" Bx
(40)

E(t)dr =2m dr 1 dz %(z, r, t)
r=o

In terms of these dimensionless units, the quantities that
we calculate are related to physical units by

1 2
1 By 1 By=2m. dr dz +—
2 Bs 2 Bz

'2

dEG%'
) 0 0

dc' mp)

dEow(e)
(41a)

(43)

dEG~ dEG~
7 ' =A, porn p) de

3

Eow(e}=A, '~ Eow(e) .
mp)

(41b)

(41c)

s =f

Taking the time derivative (equivalently, the s derivative)
of both sides gives

2

dE(s) B y By 1 d Bqp BV By=2' dz
ds — ps~ Bs 2 ds Bz By Bs

Note that the dimensionless units for the quantities in-

volving E~~ differ by a factor of yo/mp, from other
energy-related quantities (because of the dimensional fac-
tor of Newton's constant G —m z& in their definitions).
While the dimensionless quantities dEG~/den and Eow
are independent of k, they do depend upon e, scaling as
e (which follows from the fact that EGw ~p„„).In all of
the results and figures which follow, we use dimensionless
units, but omit the tildes for ease of notation. To recover
the physical units of dimensionless quantities, simply use
the conversion factors given above.

a'~ a'q av
Bs Bz

4m.

y
By

s — Bs
(44)

where we have integrated by parts and used the equation
of motion [Eq. (15)]. As a field-evolution check, at each s
step we calculate the total energy [Eq. (43)], as well as an
estimate by integrating Eq. (44) over all the s steps to that
point, and make sure the two match to within a given er-
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ror, which we generally take to be 2% for all times. We
choose our s- and z-partition sizes to be 0.025 and 0.05,
which gives an acceptable field evolution for all but our
largest initial bubble separation; for d =480 the energy
check has an error of around 7%%uo at the time cutoff. Note
that the initial bubble size in dimensionless units is
Ro —10. For the largest simulations, taking a finer grid
spacing actually increases the error in the field evolution,
suggesting that our precision is limited by accumulated
round-off errors and not by partition size. We believe
that the inaccuracy in the field evolution for our largest
bubble separation does not significantly affect the calcula-
tion.

B. Numerical integration

Formulas (Al) —(A8) must be evaluated to compute the
amount of gravitational radiation from two bubbles nu-
cleated simultaneously. The task at hand is to evaluate
numerically a three-dimensional integral, for many values
of k (direction) and co. Refiection symmetry reduces the
range of z integration to positive values. Note that for a
given value of s, the z and u integrals are independent,
since the field derivatives depend only upon s and z. In
effect, the integrals are each a pair of double integrals in-
stead of a single triple integral. This greatly aids numeri-
cal evaluation. First, we choose values for co, the fre-
quency of the radiated power, and 8, the polar angle of
the direction of radiation (k, =cos8). Then, beginning
with the initial bounce solution for y(z), we evolve the
field with the "time" variable s. After a certain number
of time steps, we evaluate the z integral with a Simpson's
rule integration over the partition of y and the u integral
with a trapezoidal integration over a partition which
varies in size depending upon how many oscillations of
the integrand occur in the region of integration. These
two integrals are multiplied together, and a running sum
for the s integral is incremented. Note that the z and u

integrals are not true Fourier transforms, since the trans-
form variable co appears in the integrand as well as in the
exponential factor. Thus the usual technique of the fast
Fourier transform cannot be used.

We have tested our code in a variety of ways. First, we
have computed the gravitational radiation from a single,
expanding bubble; while not precisely zero, it is around
seven orders of magnitude smaller than that from two
colliding bubbles. We have also computed the amount of
radiation when the cutoff ~ is less than d/2, so that the
two vacuum bubbles do not collide. Again, the result is
seven orders of magnitude smaller than in the case of two
colliding bubbles. Finally, the asymptotic behavior of the
full, linearized-gravity and quadrupole results are identi-
cal as co—+0.

As explained in Sec. III E, the case of two bubbles nu-
cleated at different times is equivalent to the equal-bubble
case with a tilted time cutoff C(t, z). In the expressions
for the stress-tensor components, the z and u integrals,
which are independent in the equal-bubble case, are now
coupled since the u integrand depends explicitly on z
through the cutoff function C(su, z). This of course
makes the numerical evaluation of the integrals much

more time consuming, since now we must evaluate triple
integrals. We are limited to only a handful of data points
for unequal bubbles, as the computing time involved
nearly two orders of magnitude greater than in the
equal-bubble case.

1=[(ad) —R j' -ad ' (45)

that is, at the cutoff time, the bubble radii are ad (disre-
garding bubble integrations). This is geometrical in the
sense that for any value of d the bubble configuration at
t =~ will look identical, up to an overall rescaling of dis-
tance. The final bubble configuration for representative
values of a is shown schematically in Fig. 3.

We begin with the results for our "benchmark case":
initial separation d =60, cutoff time factor a =1.2, cutoff
function given by Eq. (11) with r, =0.9r and
ra=(r r, )/4—, and scalar-field potential given by Eq. (2)
with a=0. 1. In dimensionless units, for a=0. 1, the ini-
tial bubble radius is Ra=9.5, making the cutoff time
~=71.37. After discussing the results for this case, we
vary the parameters individually and explore how the re-
sults change. For each case we calculate dE&w ldcodQ
for a range of frequencies, at angular increments of 2'.
The energy spectrum dE&w /den is obtained by a numeri-
cal integration of dEow /des d Q over a solid angle.

Figures 4(a) and 4(b) show radiation patterns for the
benchmark case, i.e., polar plots of dEowldQ de for
0~ 8 ~ for various values of co. Recall that the problem
possesses axial symmetry, and so the energy radiated into
the solid angle d 0 is independent of the azimuthal angle
P. Further, symmetry dictates that dE&w/dcodQ vanish
along the z axis. As the frequency approaches zero, the

0 o (a)

(b)

FIG. 3. Size of the bubbles at (a) nucleation and at the cutoff
time ~ for (b) a=1 and (c) a=2 (we have done calculations for
a=1.2, 2.0, 2.5, 3.5, 5.0, and 8.0). An x marks each bubble's
center. In this schematic illustration we have ignored bubble in-
teractions.

C. Results for equal bubbles

We consider identical bubbles nucleated at time t =0
with centers on the z axis at z=+d/2. A geometrical
criterion for the cutoff time ~ is used:
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FIG. 6. Comparison of the
energy spectrum in the quadru-
pole and full, linearized-gravity
approximations, for d =240,
a=1.2. Note the quadrupole
spectrum is the larger one (see
Appendix B}. As they must, the
two calculations agree in the
limit co~o.
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tic frequency ro,„=3.8/~.
Now consider the scaling with ~ for 6xed d under vari-

ations of a. For a realistic phase transition, we expect d

to be of the order of w, i.e., the duration of the phase tran-
sition comparable to the initial bubble separation (see

Sec. UI). However, the precise relationship will depend

upon the details of the phase transition. In Fig. 9 we
show the total energy radiated as a function of a for
d =60 fixed, with a ranging from 1 to 8. This range of a
corresponds to the phase transition ending when each
bubble wall just reaches the other bubble's center (a = 1),
to it ending when each bubble wall has moved a factor of
8 times the distance to the other bubble's center. Over

the range a=1-2 or so, EG~ ~ a, as expected from the
scaling prediction dEow /d ro ~ r (valid for d -r or
a-1). For the largest values of a, Eow increases more
slowly than this, and we expect that in the unphysical
limit a»1, Eow ~a . (This expectation is based on a
simple model of bubble dynamics in which the radiation
from the interaction region of two colliding bubbles is
neglected; see Appendix C.) To recapitulate, by varying
both a and d, we have shown that, provided d-r (a of
order unity), the energy spectrum r dEow /de is only a
function of cov. and the total energy radiated in gravity
waves, Eow ~ r . (That is, neither quantity explicitly de-
pends upon d or a, provided a- 1 and d »8 o.)
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FIG. 7. Scaled energy spectra
for various initial bubble separa-
tions and o.' = 1.2. The top
curve is for d=60; the curve
second from the top is for
d = 100. The other virtually in-
distinguishable curves are for
d = 160, 240, 300, and 4SO.
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Finally, recall that we introduced a time cutoff v. to

take into account the fact that the vacuum bubbles do
not expand into the false vacuum forever; eventually,
they meet up with regions which have been converted to
true vacuum by other bubbles. Physically, then,
represents the duration of the phase transition. Our re-
sults depend quantitatively upon the choice for the cutoff
function, but the qualitative dependence is slight. In ad-
dition to our standard Gaussian function [Eq. (11)j, we
have used the following different forms for the cutoff
function C(t):

10 I I I I I I I I I

.3 1

I I I I I I I I I

3 10
I

30

1, 0&t+~, ,

(47a)

FIG. 8. Scaled energy spectrum per octave frequency inter-
val. At low frequencies the energy per octave increases as
(e~)", at high frequencies it decreases as (e~)

V(V»=
8

(V' —V o)'+«mo(V' —mo»
2 22 (46)

where the term that breaks the degeneracy between the
two vacua is cubic rather than linear. The energy radiat-
ed in gravity waves in this case falls neatly on the same

Next, consider the scaling of the energy radiated in
gravity waves with the vacuum energy density; in the pre-
vious section we argued that Ezw ~p„„.To vary p„„we
have varied e (from 0.033 to 0.15); recall that for the po-
tential given by Eq. (2), p„„=2ekyois a good approxima-
tion. Changing e not only changes p„„,but also changes
the initial size of the bubble, Rp and the shape and thick-
ness of the bubble wall. In Fig. 10 we show Ezw as a
function of p„,for d=240 and +=1.2; it is apparent
that pGw scales quite precisely as p„„.As a further test
of this scaling, we have also tried an alternative form for
the scalar potential:

1, O~t~~, ,

2t —w —
wc +

4 2 '
7 7c

c— (47b)

D. Summary of numerical results

To summarize, through numerical studies we have es-
tablished that the energy radiated in gravity waves in the
collision of two vacuum bubbles depends upon only the
grossest features of the bubble collision: the false-
vacuum energy density p„„andthe duration of the col-
lision (cutoff time r), provided that the separation of the
bubble centers d is comparable to ~ and d is much greater
than the initial size of the bubbles, Ro', both assumptions
are true in the cases of interest. In particular,

Moreover, we have varied the time ~, at which the cutoff
comes into play. The sensitivity of our numerical results
to the choice of the cutoff is shown in Figs. 11 and 12.
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FIG. 9. Total energy radiated as a function
of cutoff time r=(a d —Ro) =ad. For
1.2d ~ 2.2d the energy radiated scales as

s; for large w the energy radiated increases
less rapidly than w (for w/d )) 1 we expect

E~w ~ 7; see Appendix C).3.
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(48)

where in the final expression a =0.042.
With this result in hand, we compute the fraction of

the total vacuum energy released that goes into gravita-
tional waves. Neglecting the interaction of the two bub-
bles, at time v. the volume occupied by two bubbles
separated by distance d is 4m' g(a)/3, where the geome-
trical factor g (a ) = 1+3/4a —1/16a accounts for the
bubble overlap; the vacuum energy liberated is just this
volume times p„„.For simplicity, we ignore the geome-
trical correction factor of order unity and write

E„„=4m.~ p„„/3;it then follows that the fraction of the
vacuum energy released that goes into gravitational
waves is given by

'2
EGw 3tt p...~ q o

Evac 4m m p]
(49)

2

f= =1.3X 10-'
32m H

(50)

That is, the eSciency of gravitational radiation depends
upon the ratio of ~ to the Hubble time; this is the result

which, by relating p„„to the Hubble parameter
H =8trp„„/3mp&, can be written as

r '2
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FIG. 11. Energy spectra for
different length cutoffs, for
d=60, +=1.2. In order of de-
creasing amplitude, the curves
are for w, /&=0. 95, 0.90, 0.80,
and 0.70. Our results are at least
qualitatively insensitive to w, jw.

Sxi0

0
0 ~02 .04 .06 .08 .12 .14 .16 .18



4528 KOSOWSKY, TURNER, AND WATKINS 45

10

I I I
)

I I I
)

I I I
(

I I I
)

I I I
)

I I I
)

I I I
[

I I I
[

I I I
)

I I I

8x10

6x10

4x10

FIG. 12. Energy spectra for
different forms of the cutoff
function, for d =60, a = 1.2.
In order of decreasing ampli-
tude, the curves are for cubic,
cosine, and Gaussian cutoffs; cf.
Eqs. (11)and (47).

2x10

0
0 .02 .04 .06 .08 .12 .14 .16 .18 .2

predicted in Ref. [10]. This result is not completely
surprising; recall that the Newtonian gravitational poten-
tial outside a bubble is P/c -(R/H '), where R -r is
the size of the bubble; this implies that, as R/H ~1,
the gravitational field becomes strong. Also, note that, as
v~H ', our calculation becomes suspect, as we have
linearized gravity, neglected the expansion of the
Universe, and ignored gravitational effects in the bubble
nucleation process. Most importantly, as the radiation
efficiency becomes large, radiation back reaction on the
source becomes a dominant effect. As we shall discuss in
the next section, in typical cosmological circumstances
one expects r/H ' to be of the order of a few percent.

E. Unequal bubbles

Because of the massive computational resources re-
quired, our results for the unequal-bubble case are very
limited. We have considered two cases. As viewed in the
equal-bubble frame d =60, the equal-bubble frame is re-
lated to the laboratory frame by a Lorentz boost along
the z axis of (i) P=0. 1, corresponding to a difference of
nucleation times of Et=6 and a ratio of bubble radii
when the bubbles first touch of about 1.22, and (ii)
p=0. 2, corresponding to a nucleation time difference of
12 and ratio of bubble radii at first touch of 1.5. Note
that the separation of the bubbles in the laboratory frame
is (1—p )'~ d =60. Figure 13 shows the energy spectrum
of gravitational waves for these two cases, along with the
equal-bubble case for comparison. For the unequal-
bubble collisions, the total energy radiated is smaller and
the peak of the spectrum is shifted (slightly) to higher fre-
quencies. This is consistent with our expectation that in
an unequal-bubble collision it is the size of the smaller
bubble that sets the length/time scale for the problem.

VI. DISCUSSION AND CONCLUDING REMARKS

A. Bubble nucleation: expectations for v and d

Our results depend sensitively upon the duration of the
phase transition, ~, and rely upon the assumption that the
bubble separation d is of the same order as the duration
of the phase transition, ~. To address both questions we
briefly discuss bubble nucleation in a first-order phase
transition. The bubble nucleation rate (per unit volume)
is generally of the form I =A exp[ —A(t)]; the tunnel-
ing action 2 varies with time through its dependence
upon the temperature (or the evolution of other fields)
and, given a specific model, is straightforward to compute
[12]. The prefactor is more difficult to compute and less
important (all the "action" is the action); Ai is an energy
scale characteristic of the phase transition, expected to be
of the order of the fourth root of the false-vacuum energy
density (or, equivalently, the phase-transition tempera-
ture). The completion of the phase transition occurs
roughly when I -H, which corresponds to a nucleation
rate of the order of one bubble per Hubble time per Hub-
ble volume. Given A (t), it is easy to describe the phase
transition in detail: duration, distribution of bubble sizes,
etc. , and this is done in Ref. [20]. We quickly review the
salient facts here.

First, expand the action around t=t, , the time at
which the phase transition completes:

A(r)= A„+A, (t t,)+— (51)

note that A ~
= [d A /dt ]~, , (0. This expansion is gen-

eral enough to describe most first-order phase transitions;
moreover, it is the rate of change of the action that deter-
mines all quantities of interest here. Let H, be the value
of the Hubble constant at time t, ; we can solve for 3,
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by equating I (t, ) to K, —JK /m pi'.

A, =41n(mp, /JK) .
dn

exp[ (r —ro) /2o —],dr 8me
(56)

V(t, t') = tt(t) f3 t' a(u) (53)

The probability that a point in space still remains in
the false vacuum at time t is p(t) =e '", where

r(t) =f 'r(t ) V(t, t')dt' .
0

(54)

The kinematics of bubble nucleation depends upon Pt)
and I (t). At the end of the phase transition, the distribu-
tion of bubble sizes r is

= [R(t)'1 (t)e
r

(55)

where t (r) is the time at which a bubble of size r was nu-

cleated, defined implicitly by the equation

r=R(t) J,~„id /Ru( ). uWe define the end of the phase

transition (t=t, ) to be the time when the probability
that a point in space remains in the false vacuum is very
small, p(t, ) =e™,where M-10—30 (i.e., I, =M) and
the duration r to be the time it takes I(t) to increase
from m to M, where m -0.1 —1. Matters simplify if we
assume that the transition lasts a Hubble time or less
(corresponding to

~ A» ~

~H); for most cases of interest,
this is a good approximation. Making this assumption,
the duration of the transition r=ln(M/m )/~ A ~ ~

=few/~ A „~and the distribution of bubble sizes is given

approximately by

For simplicity, assume that bubbles are nucleated with
zero initial size and expand at the speed of light. Then, if
a (t) is the cosmological scale factor, the volume at time t
of a bubble nucleated at time t' is

3

where ro =lnj&/~ A „~ is the mean bubble size,
o =1/~ A, ~

= ro/2 is the Gaussian width of the distribu-
tion, and the average distance between bubbles,

—1/3
25/6 1/6e 1/3

(57)

Since our results depend only logarithmically upon the
somewhat arbitrarily defined quantities M and m, we
need not be too concerned with refining their definitions.

Based upon this simple model, we see that duration of
the phase transition, the typical bubble size, and the bub-
ble separation are all comparable and determined by

A„:in particular, r=few/~ A, ~. Finally, let us relate
A

„

to A „and,thereby, to 9/, or T„.The tunneling ac-
tion varies with time because of its temperature depen-
dence (or the evolution of other fields); unless one "tunes"
the parameters of the model, one would expect the time
scale for change in the action to be comparable to the
time scale on which the temperature changes, which im-
plies that d 3 /dt —A, /H, '. If we define

~

A ~ ~

=p A ~ H, we expect the dimensionless constant p to
be of the order of unity. We can then write

r/H „'=few/PA ~ = 1/ln(mp&/JK) —1/ln(mp&/T~ ) .

For the temperatures of interest, say, 1 —10' GeV,
~/H ' is expected to be of the order of a few percent;
thus (w/H~ '

) —10,which implies that the fraction of
vacuum energy converted into gravitational waves is of
the order of 10 —10 . (We note that in inflationary
models associated with a first-order phase transition, re-
ferred to as extended or first-order inflation [9], r/H ' is
usually close to unity [20], which is even more favorable
for gravity-wave production. )
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B. Summary

We have numerically studied the collision of two bub-
bles of true vacuum in Minkowski space, and in the full
linearized-gravity approximation we have computed the
amount of gravitational radiation produced in a time ~
comparable to the bubble separation d. As we have dis-
cussed, both the linearized-gravity approximation and
the neglect of the expansion of the Universe are good ap-
proximations for ~ H; further, in a realistic phase
transition, one expects ~ to be of the order d. Most of the
gravitational radiation produced is associated with the
bulk motion of the bubble walls and not the fine-scale os-
cillations associated with internal motions of the scalar
field. Because of this fact, the gravitational radiation that
arises from the collision of two vacuum bubbles is very
simple to characterize. It depends only upon the dura-
tion of the phase transition ~ and the false-vacuum ener-

gy density p„„.In particular, the spectrum
dE&w/d~ ~p„„rand peaks at a characteristic frequen-
cy ca,„=3.8/r (characteristic of the bubble wall curva-
ture and not the thickness of the bubble wall). The frac-
tion of the total vacuum energy liberated by the collision
of two vacuum bubbles that is released in gravitational
radiation is about 1.3X10 (r/H ') .

While our results are based upon the linearized-gravity
approximation (i.e., sum of all multipoles), we also com-
puted the gravitational radiation in the familiar "quadru-
pole approximation. " Surprisingly, the quadrupole ap-
proximation overestimates the amount of gravitational ra-
diation produced by a large factor (about 50); since the
full linearized-gravity result is just the incoherent sum of
all the multipoles, this presents a paradox. The resolu-
tion of this paradox is simple: The usual quadrupole ap-
proximation (like its dipole counterpart in electromagne-
tism) involves an additional assumption, namely, that the
source size is small compared with the wavelength of the
radiation produced, and this assumption is not satisfied in
the present circumstance. The "true quadrupole" contri-
bution to the full linearized-gravity approximation is
indeed smaller than the sum of all the multipoles. Fur-
ther, a simple analytic model described in Appendix B ex-
plains quite well the discrepancy between the linearized
calculation and the familiar "quadrupole approxima-
tion. "

The collision of two vacuum bubbles is a potent source

of gravitational radiation; we expect that a fraction of or-
der 10 or so of the vacuum energy released when vacu-
um bubbles collide goes into gravity waves. Careful esti-
mates of the contribution of a strongly first-order phase
transition to the stochastic background of gravitational
radiation based upon the present work are made else-
where [11]. Finally, we are currently developing a more
realistic model for the calculation of gravitational radia-
tion produced in a first-order phase transition by exploit-
ing the simple approximation to bubble collisions
developed in Appendix C, and we believe that we will be
able to treat the collisions of hundreds of bubbles and
without recourse to a phenomenological cutoff [21].

Tote added. After this work was completed, we be-
came aware of a similar numerical study by M. Shibata
and Y. Nambu (Kyoto University preprint 1095) which
used a much coarser numerical grid (less than one grid
point across the bubble wall) and did not exploit O(2, 1)
symmetry. Their results for the amount of gravitational
radiation produced by bubble collisions are significantly
smaller than ours (some six orders of magnitude), and the
conclusions they draw very different. They are currently
redoing their calculations with a finer grid.
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APPENDIX A: STRESS-TENSOR COMPONENTS

This appendix contains the complete formulas for the
relevant components of the Fourier-transformed stress
tensor in the case of two vacuum bubbles nucleated
simultaneously. The subscripts "1"and "2" refer to two
different regions of integration prior to the hyperbolic
change of variables [Eqs. (26)], and p is the distance from
the z axis. A given component of the stress tensor is a
sum of the "1"and "2" contributions. The T" and T '
components are zero since we have taken k =0.

For r & t (region 1),

2

T, (k, co)= —f s ds J dz e ' f du(u —1)e'"'"[Jo[co s(u —1)' ]
—J2[co s(u —1)' ]]C(su),

2

T~P(k, co)= —f s ds f dz e ' f du(u —1)e'"'"[Jo[co s(u —1)'/ ]+J2[co s(u —1)'/ ]]C(su),

2

T (k, co)= J s ds J dz e' '' f du e' '"So[co„s(u —1)'/ ]C(su),
0 oo Bz

(A2)

(A3)

oo oo l CO Z&f'(k, ~)= i s'ds — dz e
0 oo Bs

oo
du(u2 1)1/2eimsuJ [~ s(u2 1)1/2]C(su )

Bz
(A4)

For r ) r (region 2),
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'2

T2 (k, co)= —f s ds f dz e ' f du(u +1)e'"'"[Jo[co„s(u+1)' ]—Jr[co„s(u +1)' ]]C(su), (A5)

2

T (k co)= —f s ds f dze * f du(u +1)e' '"[J [co s(u +1)' ]+J [cos(u +1)' ]}C(su),
OQ

2

Tz'(k, co)= s ds f dz e ' du e' '"Jo[co„s(u +1)'/ ]C(su),
0 Bz 0

(A6)

(A7)

T~z(k, co)=i f s ds f dze
0 —oo Bs

oo

du (u 2+ 1 )1/2eimsuJ [ s(u 2+ 1 )I/2]C(su )
Bz 0

(A8)

where k, =cos8, ~, =co cos8, co„=co sin8; J„is the Bessel
function of order n; and C(x) is the cutoff function [Eq.
(11)]. As discussed in Sec. II, the scalar field y is a func-
tion only of s and z.

APPENDIX B: RESOLUTION OF A PARADOX

tained by solving the field equations in the near zone and
matching to the far-zone solutions [Eq. (Bl)]. In particu-
lar, the electric multipole amplitudes az(l, m ) and mag-
netic multipole amplitudes aM(l, m ) can be expressed in

terms of integrals over the source:

It may seem paradoxical that the Aux of gravitational
waves is smaller when calculated in the full linearized-
gravity approximation (fully relativistic treatment) than
in the quadrupole approximation (linearized gravity,
lowest-order term in U/c). After all, should not the total
energy radiated be given by an incoherent sum of all
multipoles —quadrupole, octupole, and so on? The
answer is yes and no. We will elucidate this interesting
and important point by first examining the electromag-
netic analogue.

1. Multipole electromagnetic radiation

Linearized gravity is like electromagnetic theory with
an extra index. Thus the treatment of electromagnetic
multipole radiation provides a simple and familiar exam-
ple to illustrate the underlying reason why the radiation
in the "full" calculation can indeed be less than that
given by the quadrupole formula.

Recall the multipole formalism of electromagnetic ra-
diation [21]. In the far zone (distance r » wavelength

=2m/k), E, and. B are expanded in vector-spherical har-
monics X& and nXX& (1=1,2, 3, ...;
m= —l, —I+I, . . . , 1 —1,l}:

e Ik'I l Q)f

Q~
k

E~BXn,

g ( i )'+'[a—z(l, m )XI
1, m

+a~(l, m )n XXI ], (Bla}

(Blb)

where ~k~ =co, n is the unit vector in the radial direction,
and for simplicity, just a single mode is considered (which
is easily generalized to a Fourier integral). The power ra-
diated in electromagnetic waves is given by the in-
coherent sum over multipoles:

P= /[~a (1,m)~ +~a (l, m)~ ] .1

8mk 1m

az(l, m }= i — YI~ P [rJI(«)]4mk

&l(l + 1)

+ik(r J)jI(kr} 'd x,
(B3a}

where jl(kr) is the spherical Bessel function of order I,
p(x)e '"' is the charge density, J(x)e ' is the current
density, and for simplicity the magnetization term has
been left out. These results are exact.

The lowest-order term az(l, m ) is the electric dipole
term; as is clear from Eq. (B2), the total power radiated
must be greater than this term. However, the form for
az(l, m) is not familiar. That is because an additional
approximation is usually made when computing
az(l, m): the assumption that kr,„«1;i.e., that the
source dimensions ( & r,„)are small compared with the
wavelength of the radiation. In this limit we can use the
fact that j&(x)~x'/(21+1)!! for x &&1 to write all the
multipole amplitudes in more familiar forms:

I /2
4mk + l+1

az( 1,m ) = i —
„

f r 'YI~ p d x,21+ 1 !!

(B4a)

. 4~k'+'
(21+1)!! 1(l +1)

1/2

4+ka~(l, m)= i — f YI" [V (rXJj)I(kr)]d x,
l(1+ 1)

(B3b)

The electric and magnetic multipole amplitudes are ob- X f r'YI* V (rXJ)d x . (B4b)
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Now the electric dipole takes on its familiar form. In
the limit of a small source, kr,„&(1,the total power
emitted must be greater than that given by the familiar
dipole term. This is also true for a large source,
kr,„~1, provided that the exact expression [Eq. (83a)]
is used for t2E(l, m ). The dipole radiation given by the
familiar small-source approximation can be larger than
the exact expression for dipole radiation, and so the total
power emitted need not be larger than that given by the
"small-source" (i.e., familiar) dipole expression. When
the small-source approximation is used for a large source,
one is assuming that the radiation from throughout the
source adds coherently —a most "favorable" assumption.

2. Multiyole gravitational radiation

The multipole formalism and result generalizes readily
to gravitational waves; we will present a brief sketch. To
make the analogy as close as possible, the equations in
the gravitational-wave case will be denoted by primes on
the equation numbers, corresponding to their electromag-
netic analogues. For a more complete presentation of the
multipole expansion of gravitational waves, see the
Thorne review in Ref. [17].

The transverse-traceless part of the metric perturba-
tion, which describes the gravitational radiation, can be
expanded in the far-zone region in tensor-spherical har-
monics:

G " I d I dl
It TT y y, I™(t&)TE2,™+ g™(t p. )7 82,™

jk I jkr 1=2 =-l dt dt jk (81')

where I™are the "mass-multipole moments, "S™are the "current-multipole moments, " and T,k'" and TJ'k2™are the
"pure spin-2" tensor harmonics, which are linear combinations of the six orthonormal tensor harmonics T~k'' (A, =O
and f'=I; X=2 and f'=l+0, +I,+2).

The power radiated in gravitational waves is given by the incoherent sum of the multipole moments:

p y [ ~dl+ lllmydt +1~2+ ~d
+ g ddt +

~2]
G

3277
(82')

As in the electromagnetic case, the multipole moments are obtained by matching the near-zone solution to the far-zone
solution [Eq. (Bl')] and can be written as integrals over the stress-energy tensor of the source:

' 1/2

I lm( t ) (
~

)
I + 2g f e i cu( t ——t ')

dI. '
(1+1)(1+2)

2(21 —1)(2I+ 1) [ T2I —2, lm( II ) ]
e
J (~r )

3(l —1)(1+2)
(2l —1)(2l + 3)

1/2

[T~q™(Q)]*jl(~r)

1/2

+ I (I —1)
2(21+ 1)(21+3 )

[T2'+2' (Q)]*jl+2(cur) r (t', r, Q)r dr dQdt'dao,

(83a')

d'
elm(t) —

(
~ )I+2g f —

t ru(t —t')'
dt

1/2I+2 [T2l —l, lm(II)]eg (~r )2I+l I —1

' 1/2

[T2l+ 1, lm(Q)]ej (~&)
2l +1 1+1

X rzz(t', r, Q)r dr d 0 dt' dc', (83b')

16~
(21 + 1)!!

' 1/2
32vr (I+2)(2I+—1)

(2l + 1)!! 2(l —1)(I+ 1)

where r is the sum of the stress-energy tensor of matter ( T ) and the Landau-Lifshitz pseudotensor (for the efFectivew
stress energy of the gravitational field). In the present circumstance gravity is weak and we work only to linear order;
thus, r = T . The lowest-order term in the expansion is the mass quadrupole (1=2); from Eq. (82') it is clear that the
total power radiated must be greater than that given by the mass quadrupole, as the multipoles add incoherently to give
the total power emitted.

The form of the quadrupole (and other multipoles) in Eq. (83a) is unfamiliar; if we take the small-source

(kr,„«1),weak-field limit, the familiar multipole formulas obtain
1/2

(I + 1)(1+2) (84a')
2l(l —1)

f (e x pU )[Y' " ]*r' 'd x, (84b')
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APPENDIX C: "KNUELOPK" APPROXIMATION

The remarkable scalings that our numerical results ex-
hibit indicate that the bulk motion of the bubble walls
produce most of the gravitational radiation and suggest a
simple, and as it turns out, very accurate, approximation
wherein only the motion of the bubble walls is taken into
account in computing gravitational radiation. In the
"envelope" approximation we assume that all of the vac-
uum energy liberated by a vacuum bubble resides in its
wal1; moreover, for purposes of computing gravitational
radiation once two bubbles collide, we only consider their
uncollided envelope, ignoring the interaction region. As
two bubbles collide, an increasing fraction of their sur-
faces overlap; the uncollided portions of the bubbles are
no longer complete spheres, and therefore the two bub-
bles can radiate gravitational waves.

In the spirit of the approximation, we work with thin-
wall bubbles nucleated on the z axis at t =0 with zero ini-
tial radius and initial separation d. With these assump-
tions the energy density of the bubbles in the regions of
space where they have not yet collided is given by

4mt p„„/3
(C2)

In this appendix we will only calculate the gravitation-
al radiation in the quadrupole approximation. The gravi-
tational radiation emitted can be expressed in terms of
the quadrupole moment of the energy density as [18]

2

T;~~(co)= f dt e' 'f d xx;xj Too(x, t)C(t/r),

p(t, r,z)=o(t) — 5[r —[t (lzl —d/2) —]' ], (Cl)
r

where o (t) is the surface energy density, r =x +y, and
we have assumed that the bubbles expand at the speed of
light, so that the radius of each bubble is just t. In the
noninteracting portion of the bubbles, the surface energy
density is just what it would be if the bubbles never col-
lided, which from conservation of energy is given by

where in the final expression we have kept only the
lowest-order term in d and assumed that r»d/2 .We
can rewrite b (co) to make its scaling properties manifest:

(c—or) p„„dr
b, (co) = du u e' '"C(u) .

12 0
(C5)

The integral in this expression, which we denote by f(x),
is a function only of co~. We can now write

~EGw 2~=
135

Gp„'„(~r)'lf(cur)l'd'r', (C6)

Eow Gpz dzr3 f dx x slf(x ) I' .
0

(C7)

dEGw

d(cur) p„„dr (cor) [(cor) 6(cor) +—3] e

226m G
w 135 P

=0.24 H-'

From these two expressions we can immediately see the
various scalings we discovered in our numerical results:
(i) dEow/der is only a function of d'or, aside from an
overall factor of p„„dr; (ii) for fixed a:r/d, —
dEGw/dao ~ r and Eow ~ r; and (iii) for fixed d,
dEowldco~r and Eow ~r (which implies that in the
unphysical limit of a » 1, Eow ~ a ). Furthermore, if we

take a very simple form for the cutoff function,
C(t/r)=exp( t /2r ), w—e can compute dEow/d(cur),
EG~, and EG~ /E„„analytically:

(C3)

where Too=p and as before C(t/r) is the "cutoff" func-
tion (C=1 for t/r«1 and C=O for t/r»1). In the
envelope approximation only portions of the bubble wall
that are "uncollided" contribute gravitational radiation;
i.e., we neglect any radiation from the interaction region.
Integrating over the uncollided portions of each bubble
we find

b, ( co ) =Tg —
—,
'

( Tg + T~ )

2

f dt e' 'f dz f r dr(zi ,'ri)——
Xp(t, r, z )C(t /r)

2
co p ygg8

dt e' 't4C(t/r),
12 0

(C4)

where E„„:—4mp„„r/3. We see that this overestimates

EG~ by about a factor of 100, as expected from the quad-
rupole approximation.

How good is the envelope approximation? Since the
features of the radiation spectrum depend only upon the
bulk motions of the bubbles, it might be expected to be
very good. This is indeed the case. We have calculated
numerically the energy spectrum of gravitational radia-
tion in the envelope approximation using both the quad-
rupole and full linearized-gravity radiation formulas, and
the envelope-approximation results for the spectrum of
radiation are almost identical to the numerical results
based upon the detailed evolution of the scalar field [22].
We are currently studying the envelope approximation in
more detail and anticipate being able to use it to compute
the gravitational radiation in a realistic model of a phase
transition: hundreds of bubbles nucleated according to a
bubble nucleation prescription, with no time cuto6'neces-
sary to model the completion of the phase transition [22].
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