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We present the Green's functions for photons and gravitons in the vicinity of an idealized cosmic
string. We stress the importance of the Ward identities involved and the necessity for "smoothing" the
curvature singularity in the space-time in order to carry out the calculations. The Green s functions are

employed to determine the renormalized vacuum expectation value of the stress-energy tensor for scalar,
electromagnetic, and linearized gravitational 6elds propagating in the neighborhood of an idealized
cosmic string.

PACS number(s): 04.60.+n, 03.70.+k

I. INTRODUCTION

The space-time generated by an infinite, straight cosm-
ic string has been studied in some detail [1]. In the most
simple idealized case, where the string is assumed to have
zero thickness, the classical curvature and stress-energy
tensor have their support on a two-dimensional world
sheet, and the space-time outside the string is Aat. The
only effect of the string is to generate a conical singularity
in the curvature on the two-dimensional world sheet.

More realistically, cosmic strings are formed as topo-
logical defects of a gauge theory, and have internal struc-
ture, characterized by the core radius ro of the string.
The radius ro is the Compton wavelength associated with

the symmetry-breaking energy scale of the theory. Out-
side the core space-time is Bat, just as in the idealized
conical case. However, within the core the stress-energy
tensor and curvature are nonzero.

Because string space-times are Aat outside the string
core, but globally curved, they provide interesting exam-
ples of curved space-time effects on quantum fields that
can be calculated exactly [2-8]. In a previous paper [9],
we studied the properties of quantized scalar fields on
these space-time backgrounds. In particular, we exam-
ined the effects of gRqP couplings between the curvature
R and the scalar field y. In order to make sense of the
coupling term for the idealized string, the tip of the cone
was "rounded off" to distribute the curvature R & &

over
a finite-sized region. We then examined the limit ro~0,
in which the rounded-off cone approached the ideal coni-
cal case. We found that in this limit the Green's function
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G&(x,x') of a scalar field with arbitrary coupling g to the
curvature of the rounded-oF cone approached the usual
Green's function G& o(x,x') on the idealized space-time,
provided the points x and x ' were both outside the region
of support of the curvature.

In this paper we first review the calculation of the sca-
lar Green's function on the space-time generated by an
idealized cosmic string and then proceed to perform the
corresponding calculations of the electromagnetic and
graviton Green's functions, along with their associated
ghosts. To the best of our knowledge this is only the
fourth example of a graviton Green's function that can be
calculated in closed analytic form in a curved space-time
(other examples are (anti —) de Sitter space [10] and cer-
tain Friedmann-Robertson-Walker (FRW) cosmological
models [11]). The results are particularly interesting be-

cause both the Maxwell field A„and the linearized gravi-

tational field h„couple to the curvature. The presence

of these coupling terms requires one to consider the
rounded-off cone in order to perform the calculations.

Because the Maxwell field and linearized gravitational
field have gauge symmetries, one must introduce
symmetry-breaking terms into the action and also the
compensating Faddeev-Popov ghost fields associated with
those terms. The underlying symmetry of the theory re-
quires that the fields and their associated ghosts satisfy a
set of constraint equations known as Ward identities. At
a practical level these identities determine the state of the
ghost field entirely in terms of the physical state of the
gauge field. As a check on our calculations we verify that
the %'ard identities are satisfied. The identities are par-
ticularly interesting in the gravitational case, where they
include a nonlocal term.

It should be stressed that the technique of "rounding
the cone" in these calculations is a necessary complica-
tion. If one were to proceed naively and attempt the cal-
culation of the Green's functions for the graviton and its
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ghost entirely on the idealized conical space-time, by im-

posing the "natural" boundary conditions that the modes
of which they are composed be well behaved at the origin
r =0, then one would find that the resultant expressions
fail to satisfy the Ward identities for the system. The
reason for this failure becomes apparent when the pro-
cedure is repeated on the rounded-off cone. Here the
Green s functions do satisfy the Ward identities appropri-
ate to the space-time (which now contain nonlocal terms
involving the curvature} and, furthermore, have sensible
conical limits which satisfy the appropriate wave equa-
tions on the idealized cosmic string. However, while the
conical limit of the graviton Green's function coincides
with that obtained by the naive procedure described
above, the same is not true of the ghost Green's function.
In particular, the decomposition of the ghost Green's
function on the rounded-off cone contains modes which
in the conical limit are singular at r=0. This correct
ghost Green's function on the ideal cone differs from the
naively obtained expression by a solution of the homo-
geneous wave equation; the difference between the two
may be viewed as a consequence of the fact that the "in-
visible" curvature couples with different signs to the wave
equations for the graviton ghost and electromagnetic
Green's functions on the ideal cone [cf., Eqs. (4.5) and
(5.6)]. Thus, although the rounding of the cone may ap-
pear to be an unnecessary complication at first sight, it is,
in fact, an essential element of the calculations and can-
not be eliminated. As further evidence for this assertion,
we note that, even with the correct ghost Green's func-
tion now in hand, the naive Ward identities on the ideal-
ized cosmic string still fail to be satisfied. This is because
the Ward identities on the rounded-off cone, which con-
tain nonlocal terms involving the curvature, do not have
a well-defined conical limit. It is necessary to round the
cone in order to verify the Ward identities.

In a sense, these issues all arise in connection with the
boundary conditions on the various Green's functions.
In order to determine the correct boundary conditions,
we study a cone in which the space-time curvature is con-
centrated on a ring of radius ro (the "flower-pot" model
of our previous paper [9]). In the interior region r (rs,
space-time is Qat, and the boundary conditions for the
"inner" mode functions 4 & are those of Oat space, name-
ly, regularity at r =0. In this way, the "Gower-pot" mod-
el of the rounded cone narrows the choice of possible
boundary conditions to a unique choice. This ensures
that our somewhat surprising results are not an artifact
of an incorrect choice of these boundary conditions.

An important application for the Green's functions of
a quantum field theory is in the calculation of the renor-
malized expectation value of the stress-energy tensor in
some quantum state of that theory. We perform this cal-
culation explicitly for each of the three theories con-
sidered here in their respective vacuum states, using the
method of Hadamard regularization [12]. We close with
some retrospective remarks concerning a scalar Green's
function which contains a mode which is singular at the
origin.

Throughout this paper we use units in which A'=c =1.
Our sign conventions for the metric and curvature are

those of Misner, Thorne, and Wheeler [13]. Properties
and formulas for Bessel functions used in the text may be
found in Gradshteyn and Ryzhik [14];equation numbers
prefixed by "GR" refer to formulas in that volume.

II. ROUNDED CONICAL METRICS

In this paper we consider the rounded conical metric
studied by Allen and Ottewili [9]. This metric is useful
because it enables us to disentangle the coordinate and
curvature singularities that are conAated in the idealized
conical model usually considered. In the rounded model
the string is treated as static, straight, and infinitely long
but has a finite radial size rather than being
infinitesimally thin as in the idealized case. The line ele-
ment for the rounded model is given in cylindrical coor-
dinates (t, r, P, z}by

ds =dt +P (r)dr +r dP +dz (2.1)

where the range of the angular coordinate is
PE [0,2m. /«), and «=(1—4)u) ', where p is the mass per
unit length of the string. For physically interesting cos-
mic strings @=10 and so ~ is slightly greater than 1.
The function P(r) has the properties

lim P(r)=1/«and
r/r& ~0

lim P(r)=1 .
p/fp —+ oo

(2.2)

(2.3)

Furthermore, the curvature in this space-time is given by

R prs=2R(P(~rp)P(mrs)),

R p= ,'R(P Pp+r r~), —

2 P'R=-
r P3

(2.4a)

(2.4b)

(2.4c}

where the prime denotes d/dr and we have introduced
the obvious orthonormal tetrad t~ =5~, r~ =P5~,
P =r5, z =5 .

Of particular interest to us is a simple model, called the
flower-pot model in [9], in which the curvature of space-

The first condition states that there is no conical singular-
ity at r=0, and the second condition means that, for
large r, the cone has a deficit angle S~p. The function P
should be a smooth monotonic function, and the condi-
tion that the curvature be concentrated in a region of ra-
dius r0 about the string implies that all of the derivatives
of P (r) should be small outside that region.

Throughout most of this paper we work with the Eu-
clidean space-time. Because the space-time is static, the
corresponding Lorentzian space-time results may be ob-
tained by a simple t ~it Wick rotation. We note, howev-
er, that there are subtle issues regarding the choice of
boundary conditions in the two cases; the correspondence
is not one to one because the wave operators in one case
are elliptic and in the other case they are hyperbolic.

One can show by direct calculation that the only non-
vanishing Christoffel symbols associated with the line ele-
ment (2.1) are
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time is concentrated on a ring of radius ro. This corre-
sponds to the choice of P,

tion satisfied by g„z(r,r ) is found by substituting the
above trial solution into Eq. (3.1); we obtain

(2.5)

r 8
iver P Br

sr—P — —2g'
~ g„q(rr')(na. ) P P'

= —5(r r—'), (3.4)

for e/ro infinitesimal. The function P(r) is assumed to
vary smoothly in the region ~r

—
ro~ & e. In the limit as

e~O, the scalar curvature R approaches
[2(x—1)lrP]5(r —ro).

where s = ~k~.

In the standard way we can now write

g„q(r,r')=%((r()%)(r) ), (3.5)

III. THE SCALAR FIELD

In this section, we briefly recall the results of Ref. [9]
to establish our method and notation. The Green's func-
tion

where r & =min(r, r') and r & =max(r, r'). Here the func-

tions 4& and 4& satisfy the homogeneous version of Eq.
(3.4). 4 & is taken to be regular as r ~0 and 4 & to fall off
as r ~ m. Equation (3.4} gives the normalization condi-
tion

G (x,x') =i(0~ T[p(x)y(x')]~0) qI') (r)qi&(r) qi'&(r—)qI) (r) = P(r)—
(3.6)

for a massless scalar field with arbitrary coupling to the
scalar curvature R satisfies the equation

8 8 1 8
(Cl —(R)G(x,x') = + +—

2 g 2 „2gyz

1 8 r 8
rP Br P Br

G(x,x')2 P'
r p3

= —5 (xx') .

Here the covariant 5 function is

54(x,x') =P 'r '5(b t )5(br )5(bg)5(hz ),

(3.1)

(3.2)

G(x,x')=
3 f dke'"' * g e'"" ~g„z(r,r'),

(2m. )

(3.3)

where hx=(bt, b,z}, and k&R . The differential equa-

with coordinate difFerences At =t —t', hr =r —r', and so
on.

The cylindrical and temporal symmetries of the cosmic
string background suggest that we seek a solution of the
form

The function 4 & is determined by choosing the solu-

tion of Eq. (3.4) which is well behaved at r =0 and in-

tegrating it out. The resulting function is, of course, con-
tinuous. In the case of the flower pot, the gR term in the
equation of motion is nonzero only in the infinitesimal re-
gion ~r

—
ro~ &e. In the limit as e vanishes, the effect of

this gR term can be seen by integrating Eq. (3.4) through
the point r = ro. One obtains the relation

lim %&(r) —a lim 4&(r)d
T~ro+ r f' —+ 1'o r

which implies that the mode function 4 & is continuous
at r = ro but has a discontinuity in its slope at r = ro.

The homogeneous solutions of Eq. (3.4) are Bessel
functions. The regularity condition as r~O gives, as
solutions for '0 (r),

I~„~($ /Kr) for r & ro
%'((r)= '

A ~I„~„~(sr)+BOK„~„~(sr) for r ) ro . (3.g)

The ratio of the constants Co= Bo/Ao is dete—rmined by
the jump condition (3.7) and continuity of qi

& at r =ro to
be Co(sro, n, g), where

XI'„)„)(x)I~„((x/v) xI„~„~(x)II„)(x /z—) —2g(z —1)I„)„)(x)I~„((x/v)
Co(x, n, g}=

xK„)„((x)I j„~(x /v) xK„'~„((x )I~„~(x /z—)+2g'(a —1)K„(„~(x)I~„)(x/sc)
(3.9)

The solutions for 4& (r) are determined by the condition that they fall off when r ~ ~. Together with the normaliza-

tion condition (3.6) this yields

(3.10)

The Green s function on the four-dimensional flower pot is now given by the expression
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K
G(x,x') =

3 g e'"" f dk e'" *'E„i„i(sr)}[I„i„i(sr& )+Co(sro, n, g)E„i„i(sr& )]
(2m )

e'"" & f ds s go(sltxl)E„i„i(sr )[I„i„i(sr)+Co(sro, n, g')E„i„i(sr )] .
(2m }

(3.11)

In this expression we have assumed that both r and r' are greater than ro. The only dependence upon g and ro here is

through the function Co.
We may now consider the limit to the idealized cone which may be obtained for fixed r and r by taking the limit

ro/r & ~0 or, loosely speaking, ro~0. From (3.9) one can show that, in the limit as x ~0, for /%0 and x. & 1,

Cc(x, n, g)-

2 (a —1)
2$(a —1)[ln(x /2)+ 8]—1

for n=O,

—2 g(1~—1)
1(~lnl+1)l (~lnl) ~lnl+P~ I}—

2~in/
X

2
for n%0,

(3.12a)

where C is Euler's constant. When (=0 (and a & 1) one
can show that

(3.12b)

in the same limit. Thus, in all cases Co~0, although for
/%0 the n =0 term does so logarithmically slowly.
Denoting quantities in the ideal cone limit by the sub-
script C, we therefore have

Gc(x,x')= g e'"" ~ f dss Jo(slhxl)
(2n )

XE„i„i(sr,)

XI„i„i(sr& ) . (3.13)

This expression can be written in closed form. First the
integral is computed using the identity (cf., GR 6.578.11,
GR 8.754.4)

00 e Irf ds s Jc(as)E„(bs)I„(cs)=
o " " 2bcsinhy

'

Re(p}& —l, a &O, Re(b) & IRe(c)l, (3.14)

where y is defined to be the positive solution of
2' coshy =tz +b +p, to give

Gc(x,x') = K 1
e i«~P —~Inly

8~2 rr'sinhg
„

with g defined to be the positive solution of

(At) +(hz) +r +r'
cosh'= 2rr'

(3.15)

(3.16)

Co(x, n, /=0}
2~In I+2

2 K—1 x
r(alnl+2)l. (~lnl+ I) ~(lnl+ I) 2

EK 1 sinhvq
g~~ rr'sinhri coshart cosirb, g —' (3.18a}

where g is defined to be the positive solution of the equa-
tion

—(b,t) +(hz) +r +r'
cosh'= 2rr'

(3.18b)

The conclusion is that the coupling term gR y in the ac-
tion has no effect on the Green's function for fixed r, r' in
the ideal conical limit ro ~0.

Given the Greens function (3.18) it is a straightfor-
ward matter to determine the renormalized vacuum ex-
pectation value of the stress-energy tensor for the scalar
field in the vicinity of an idealized cosmic string, using
the Hadamard regularization scheme outlined in Ref.
[12]. The first step is to isolate the regular part W(x, x')
of the Green s function, which, in this case, is given by
the formula

W(x, x') = gnij G—c(x,.x') —[Gc(x,x') ]„&] (3.19)

(since the regular part of the Green's function for a mass-
less theory in Minkowski space is known to be zero).
Next we insert (3.18) for Gc(x,x') into (3.19) and expand
the result to second order in powers of the coordinate
differences b,x"=(x —x ')"; the expansion

rt =r [ (bt) +(br) +(M) ]+O—((bx") )

is useful in this regard. We obtain

(3.20)

which is independent of the value of g. In Lorentzian
space-time, one thus obtains the following expression for
the scalar Green's function on an idealized cosmic string:

G (x x')=i&0IT[q(x)q(x')]I0)

G ( ')= ~ 1 sinhKq
g~~ rr'sinhg coshari cosvhP—(3.17)

By splitting this into two sums, one from —~ to —1 and
the other from 0 to 00, GR 1.461 can be employed to
yield the closed form

6r 60r

+1
(b,r ) + (&$)60'' 20

+O((bx") ) . (3.21)
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The Taylor coefficients of W(x, x') required for the com-
putation of the renormalized stress-energy tensor may
now be determined by substituting (3.21) into the formu-
las

IV. THE ELECTROMAGNETIC FIELD

In terms of the vector potential, A„,the Maxwell ac-
tion is

w(x) = lim [ W(x, x')]
X~X S = —

—,
' f d'x&lglF„„F~", (4. 1)

w„(x)= lim [—g„~(x,x') W(x, x'). ],
X~X

w„(x)= lim [g„~(x,x')g„(x,x') W(x, x'). q] .
X~X

(3.22)

Here g„"(x,x') is the bivector of parallel transport,
which, for the idealized cosmic string space-time, is given
by

Sos= —
—,
' f d x& gl(A„'") (4.2)

where g =det[g„„]and F„—:2V(„A ). The field strength
is invariant under the gauge transformation

A„~A„+V„Afor an arbitrary scalar field A. To quan-
tize the theory, one must introduce a gauge-breaking
(GB) term into the action; the standard term is

1 0 0 0
0 cosh/ r'sink/ 0

0 r'sink—P r'r 'cosh/ 0
0 0 0 1

We find that the only nonvanishing coefficients are

v —1
2

W=
6r

v —1
W r

(Ir —1)(a. +11)
W]t= W ~—

180r4

(~ —1)(a —49)
W„»—

180r

(Ir —1)(lr —9)
60r

(3.23)

(3.24)

(g„—R„")A„=o. (4.4)

The remaining equations of motion are c =0 and c =0
for the ghost and antighost fields.

The Lorentzian Feynman functions of the vector po-
tential and ghost field are defined by the time-ordered ex-
pectation values

G" =i&OIT[A "(x)A"'(x')]IO)

and

The ghost action needed to compensate for this choice of
gauge-breaking term is

S,„=f d'x&lglcOc, (4.3)

where c and c are the (scalar) ghost and antighost field,
respectively. For the purposes of quantization, the total
action is then S~+SG~+Szh. The action gives the fol-
lowing equation of motion for A, :

It is reassuring to check that these coefficients satisfy the
identities [12]

w„"=0,

6=i(0 T[c(x)c(x')]lo),

respectively. In Euclidean space-time, the corresponding
Green's functions satisfy

w„,"=
—,'(Clw ).„,

W — —W.1

P 2 ~P

(3.25)
and

(g„,Cl —R„)G"~ (x,x') = —g„~5 (x,x')

OG(x, x')= —5 (x,x') .

(4.5)

(4.6)
[the first two of which follow from substituting the Ha-
damard form of the Green's function into the wave equa-
tion (3.1) and the last from the symmetry constraint
Gc (x,x ') =Gc (x ', x )]. Finally, substituting expressions
(3.24) into the formula in [12] which gives the renormal-
ized vacuum expectation value of the stress-energy tensor
for a scalar field on an arbitrary background directly in
terms of Taylor coefficients, we find that

2

(Ol T„"lo)
1440~ r

Comparing (4.6) with (3.1), we see that the ghost Green's
function is equal to the scalar Green's function with
(=0: G=G~=O ~

An important check on our results is given by the
Ward identity which may be derived from the Becchi-
Rouet-Stora (BRS) invariance of the total action under
the perturbations 5A„=(V„c)g',5c =( A„' )5g, 5c =0,
where g is tl;e infinitesimal anticommuting scalar BRS
parameter. This invariance implies the Ward identity

X [(a +1) diag (1,1, —3, 1)„
G" (x,x').„+G(x,x')' =0. (4.7)

+10(6$—1) diag (2, —1,3,2)„]
(3.26)

in precise agreement with the result of Frolov and Sere-
briany [5] obtained previously using a more traditional
renormalization procedure.

It is this identity which ensures us that we are dealing
with electromagnetism rather than an uncoupled vector-
scalar theory.

The most efficient way to determine the above Green's
functions on a cosmic-string background is to express
everything in terms of a null complex tetrad for the cor-
responding Euclideanized background. A natural choice
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is given by

e~(, )
= —(it"+z")= —(i,0,0, 1)",1 ~ 1

())

e" = —(it" z—")= —(i 0 0 —1)"1 . 1
(2) 7 7 t 7

e ~~)
= —(r"+i P4) = —(0, 1/P, i /r, 0))',1 . 1

(3) v'2

e" = —(r" iP—")= (0 1/P i/—r 0)" .1 . 1
(4)

(4.8)

tions (4.12a) and (4.12c) is zero. Furthermore, up to a
sign, Eq. (4.12b) is just the scalar equation (3.1) with
/=0, and so the appropriate solution is G"" '= —

G&

It remains to find the solution of Eq. (4.12d). As before,
we seek a solution of the form

g (~)(b')( x )

d k ik ilx y einvhgg(a)(b')(r r ) (4 13)
(2n )

and find that g„'k" '(r, r') must satisfy

For later convenience we note that the only nonvanishing
e~(, )., are

r
Br P Br

—s rP (—nap —1) — g' "1 34
rP n, k

(3)'y (3) (4)'y (4)
P (4.9) = —5(r —r') . (4.14)

and that the only nonvanishing ej(",
) are

(4.10)

Because ei("3) and ei("4) are interchanged by complex conju-
gation, the tetrad components of any real tensor are com-
plex conjugated under a complete (3)~(4) replacement.
This symmetry reduces the number of components of the
Euclidean Green's functions that need to be determined.
Substituting

g())(2') — ~ ~ + ~ g
Bt Bz Bt' Bz'

(4. 15a)

and

At this point we digress briefly to examine the form of
the Ward identity (4.7) on the cosmic-string background.
Substituting the tetrad form (4.11), we find that the tetrad
components of the photon Green's function are related to
the ghost Green's function according to

6)"v =e)" ev', G(a)(b')
(a) (b') (4.11)

1 8 i (3 1 (3)(4 )

p(.) a. +
~ a((' +.p(.)

6 (1)(1')—0 (4.12a)

into the Green's function equation (4.5) and using Eqs.
(4.9) and (4.10), we find that the tetrad components6'" ' of the EucHdeanized photon Green's function
satisfy the differential equations

a i a
p(') a'+' ay

(4.15b)

Introducing the obvious representation for the ghost
Green's function, these become

with similar equations for G"" ' 6' " ', and G' "
(and hence by symmetry for G"" ', and G' " '),

ag""2')=64(x x') (4.12b)
a

P(r) Br
n imp (r) 1—

rP(r)

g(1)(2 )(r r~) —
g (r r&)

(3)(4')(r r~)gn k rqr

(4.16a)

with a similar equation for 6' " ' ',

2i 8 1

r'P &P r'P'
p/ 6 (3)(1')—0
rP

(4.12c)

G = —fi(xx )
2l 0 1 P (3)(4') 4

r2P &P r P rP

with similar equations for G' " ', and G' " ' (and hence
for G' "' ', G' alld G " ' ), alld

1 8 nK

p (
It) Q

It I gllyk (4.16b)

We immediately see that Eq. (4.16a) is in agreement with
our previous choices G" ' '= —

G~ p and G=Gg —p.
To proceed further we need to make a specific choice

for P and choose to work with the flower-pot model. In
that case we can immediately solve Eq. (4.14) to yield the
interior solution which is regular at r =0 as

I(„)((sr/ir) for r (ro,
(4.12d)

(with a similar equation for G' ' ' ). In Eqs. (4.12), is
the scalar wave operator.

The only regular solution of the homogeneous equa-
I

qi(3 )(4')
( r )

where

(4.17)

A(I(«)((sr)+B)K(«)((sr) for r ) ro,

lim )P' " '(r ) —~ lim qi' " '(r ) = 'P' " '(r )
r~ro+ dr r~ro — dr rp

and the properly normalized exterior solution which dies at infinity as

(4.18)
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(3)(4')'(r)= K(„„)((sr)for r &ro .) ~ nK— (4.19)

As in the scalar case, the jump condition (4.18) and continuity of (p(&" ' at r = ro determine the ratio
C)(sro, n)=B) /A). We obtain

xI(„„)((x)I(„)((x/a)xI(+„)((X)Ij„)((x/a) (a 1)I(„„)((x)I(„(((x/a )
C, (x, n)=

x In~ (l—(x)I(n —)((xla) xKj—n~ (((x)—I(n —)((x/a)+(a —1)K(n~—)((x)I)n —))(x/a)
(4.20)

The required solution of (4.14) is

(3)(4') —gy(3)(4')(r ))I((3)(4')(r )gnk & r( ) r)
=K(„„)((sr))

X [I(„„)((sr)+C((sro, n)K(„„))(sr)]
(4.21)

I

in the Feynman gauge on the Lorentzian ideal conical
space-time are found to be

6 tt' 6zz'
C C

lK sin hKg
8~2 rr'sinhr) coshar) co—sa5P

for r, r' & ro. The Ward identity (4.16b) now reduces to

C, (x, n ) = Co(—x, n, /=0) (4.22)

when a & 1, which is readily verified using (4.20) and (3.9).
At this point one can take the limit of an ideal cone,

corresponding to x =sr0~0. One finds from (4.20) that,
as x —+0,

Gc' =rr'G$~

EK 1

8~ rr'slnh'g

X sinhr) cosa b,P+ sinh(a —1 )rl

cosh)rr) —cosa', (()

(4.26)

1 2(1 —a) x
C, (x, n)-

I'(alnl+2)1 (alnI+ I ) a(lnl+1) 2

2KJ nJ+2

(4.23)

iK 1 sinhr) sinai/
8~~ rr'sinhrl cosharl cosa'—p

provided a. & 1. [Note that this result is consistent with
(4.22) and (3.12b).] It is then clear that C) ~0 as x ~0.
(The case 0 & a & 1, though unphysical, is interesting from
a mathematical viewpoint and we shall return to it
presently. ) In the ideal conical limit, one therefore ob-
tains

g„')I' '( r, r') =I(„„)((sr )K)„„(((sr) .

Substituting this expression into the representation (4.13)
and computing the integral and sum as for the scalar
case, we obtain first

where Gc is the scalar Green's function (3.18) on the
ideal cone. To the best of our knowledge this is the first
time that the electromagnetic propagator on an idealized
cosmic string has been determined in closed form.

We now return to the case 0 (K (1. Let the positive
integer N be defined so that 0& 1/(N+1) & a. & 1/N & l.
Provided either n (1 or n & N, one can take the x ~0
limit of (4.20) just as before and obtain (4.23); but, when
1&n ~N, the lowest-order term in the denominator of
(4.20) vanishes and the resulting behavior of C) for small
x differs from (4.23) in this case. In fact, we find that

G(3)(4 ) = K 1 ~ »tKhy ~nK 1

8~ rr'sinhq
„

0 for n &1or n &N,
C((x,n)~

2 fo 1 N
(4.27)

0
inKAQ+(nK —1)qe

8~2 rr'sjnhg

inKay (nK 1)7/~e
n=1

(4.24)

as x ~0. This limit could also be derived from the Ward
identity which now takes the form

—Co(x, n, g=O) for n &1 or n &N,

and then

G (3)(4')
C 8~ rr'sinhq

e' ~sinhq+sinh(a —1)g
coshaYJ COSKEQ

(4.25)

C, (x,n)= . Co(x, n, g—=O)+2 sin(1 —na)m.

for 1~n ~N .

It follows that, in the ideal cone limit, for 1 ~ n ~ N,

(4.28)

Finally, the tensor components of the electromagnetic
Green's function

(r)= A) I)„)((sr)+2 K(„„,(sr)(3)(4') sin( 1 na )vr—
(4.29)
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pr(a)(b)( i) —g(b) (X Xi) gr( )(ab')(X Xi) (4.30)

where g' '(b ) are the tetrad components of the bivector of
parallel transport, given by

Hence, 4'&" '(r) diverges at the origin, although only
ever as r '+' .Equation (4.29) is precisely what is re-
quired to ensure that the summed form for the Green's
function in the ideal cone limit is unchanged. Thus, even
for 0&»&1, the closed forms (4.25) and (4.26) given
above are correct.

It is a valuable check on the above calculation to deter-
mine the renormalized stress tensor from this Green's
function according to the Hadamard renormalization
scheme of Brown and Ottewill [12]. One starts by finding
the regular part of the Lorentzian Green's function given
above. It still proves most economical to work with the
tetrad components; i.e., we will determine

and expanding the result as a power series in the coordi-
nate differences hx". A straightforward though tedious
computation produces the result

p7( & )(2) pr(2)( & )— (4.33a)

where His the scalar expansion (3.21},and

g' '~b, ~(x,x')= diag (1, l, exp(ikey), exp( —id'))' '~b.
~

.

(4.31)

8"" ' is obtained by substituting the tetrad components
of G,"" ' into the formula

W'" '(x x') = —8&ig'"' (x x')

X j 6,'""(x,x') —[6"""(x,x')]„,j
(4.32)

2
~(3)(4) ~(4)(3)a»—1

( 5)+( 5)
hr + (»+ 1 }(» —19)

[(& )z (& }2]
6r2 r 60r

2 (br) 1 3 2

60
(» +» —79»+281) + (» +» —29»+31)(bg)r2 20

i(» 1)(»——2) &~+ hrbp +0((& „)3)
3r 2 r

(4.33b)

with all other components vanishing. The next step is to
determine the first three coefficients occurring in the co-
variant Taylor expansion of W'" ' by substituting (4.33)
into the formulas

w' " ' =w' " ' = — (»—1)(»—2)y=w y„— K K
3r

(»—1 )(» +» —39»+ 81 )
1

60r'
W(a)(b)(X) lim [ gl(a)(b)(X X')]

X~X

w"" ' (x)= lim [ —g P(x,x')8"""'(x,x'). ],P ;p

W(a)(b) (X)pv

(4.34)

with the only other nonvanishing components being
w' " ' . . . &=w' " ' . . . &*. At this point we can simul-
taneously revert to tensor indices and compute the sym-
metric and antisymmetric coefficients required for calcu-
lating the stress tensor using

We obtain

= lim [g„P(x,x')g„'(x,x') W"""'(x,x'). , ] .
X~X

Spv e(p &
v) W(a)(b)

p . 7 (a) (b) p.

a pv —e Ip e v] W(a)(b)p. 7 (a) (b) p

(4.36)

( )( ) ( )( )~. . . p
—W ~. . . p W~. . .p )

where w . . . i3 are the scalar coefficients (3.24), and

(4.35a)
One may now verify that the coefficients above satisfy the
identities [12]

a" P. =0
;p

(3)(4)w' " '= (»—1)(»—5),
6r

sPVP =0
p 7

sP~P' = 'Q(sP";P). —
;7 4

(4.37)

(3)(4)w = (»—1)(»—5)1
6 3 7

w""" = — (» —1)(»—2),l

3 2

)( ) — ( )( )
ZZ

1
(» —1)(» —19),

180r
(4.35b)

which arise from the wave equation (4.5). Finally, insert-
ing our expressions for s" . . .„a". . . , into the relevant
formulas of Ref. [12], we find that the vacuum expecta-
tion value of the renormalized stress-energy tensor for the
electromagnetic field in the vicinity of an idealized cosm-
ic string is

» —1 + ll
720m. r

1
w pp (K 1}(» +» —79»+281)

180r in agreeinent with Refs. [5] and [15].
(4.38)
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V. THE LINEARIZED GRAVITATIONAL FIELD

We write the metric as g„+h„,where g„is the clas-
sical background metric and h„will be treated as a small
perturbation. We expand the Einstein-Hilbert action

(without cosmological constant) in powers of h„„andas-
sume that the cosmic string is made of a classical matter
field, whose classical stress-energy tensor cancels the
first-order term in the expansion [16]. Then keeping only
terms quadratic in h„,our action is given by

S~= g d x —,'h" hpv 4h h+ V'"h„——,'V~h
1

+h" R„„,h '+h "Q h„hh"—"R„, ,'R—h"—"h„„+,'Rh —] (5.1)

where h =g~'h„ is the trace of h„.
To quantize the theory we must add a gauge-breaking term to the action and compensating complex, anticommuting

vector ghost and antighost fields c"and c":

Sot)= — f ~g~d x(V"h„„—,'V h—)
1

(5.2)

Ssh = J &~g~d xc„(g"'Cl+R"")c„.l
(5.3)

The total action is S=S2+SGz+Sgh.
In Lorentzian space-time, the graviton and ghost Green s functions are defined by the time-ordered expectation

values

, (x,x') = (0I T[h„(x)h,~(x')] 10),
32~G

g„,(x,x')= '
(O~T[c,(x)c,, (x')]~0) .

32m G

(5 4)

As before, we will calculate these quantities in Euclidean space-time, and then Wick rotate back to the Lorentzian re-
sult. The Euclidean graviton Green's function satisfies

I I

gppgvr + ppvr+ p(pgr)v pvgpr prgpv gppgvr+ zRgpvgpr)

= —
—,'(g pg, +g,pg ' —g,gp )5 (x,x') (5.5)

and by definition possesses the symmetries G" ~ ' =G'" ")' ' '. The ghost Green's function satisfies the equation

(g„,CI+R„,)G "P (x,x') = —g„P5(x,x'), (5.6)

which is similar to the electromagnetic equation (4.5) except for a crucial change of sign in the Ricci tensor term.
As for electromagnetism, the gauge and ghost fields are connected by a set of Ward identities. The situation is more

complicated in this case, however. The total action (Sz+Soi)+S h) for the linearized gravitational field is invariant un-
der the infinitesimal BRS transformations

5h„,=(c Big„+g„B„c+g ()„c)5g,

5c"=c Bzc"5g,

5c"=(V'h" ,' V"h )5—g—.

(5.7)

Here g is an infinitesimal anticommuting scalar parameter. From this invariance one may derive Ward identities for
the Green s functions of the linearized theory. However, owing to the fact that S2 is invariant under infinitesimal gauge
transformations h„,~h„,+g(„.„)only when the Einstein tensor of the background space-time vanishes, the Ward iden-
tities are nonlocal when R"'——,

) Rg""%0. (Note that the two-dimensional Gauss-Bonnet theorem requires the existence
of curvature in any cosmic-string space-time. ) The Ward identities on a general background are given by [17]

6" P '.„(x,x') —
—,'G„"P"(x,x')+ G"'P ' '(x, x')

= 1 v'~g" Id x "6' (x,x")[R~r (x")——,'R(x")g~r ](g V "—25 -V)r )Gs -p'(x", x')

As in the electromagnetic case, we shall obtain the gravitational Green's functions by expressing the equations in
terms of the null complex tetrad (4.8). We find that the only nonzero tetrad components of the graviton Green's func-
tion are g ( 1 )( I )(2')(2') —g (z)(z)( I')(1') 6( 1)(z)(3')(e') g (3)(4)( (')(z' g ( i )(3)(z')(4') g (z)(3)( i')(4') and 6(3)(3)(4')(4') [plus all others

7

obtainable from these by the symmetries 6""""'" '=6'('" '"' " " or by interchange of (3) and (4) under complex
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conjugation]. These are solutions of the equations

/

G(1)(1)(2')(2')— g4(x x ~

)
rP

~G(1)(2)(3')(4')— & g4(x x ~

) 3

(5.9a)

(5.9b)

2l
r'P &P

1

2p2

p/ G(1)(3)(2')(4') ] g4(x x~)
p3 X,X (5.9c}

4i 8 4 G(3)(3)(4')(4') — g4(x x &

)
rP

(5.9d)

%'e conclude that certain components of the graviton Green's function are equal to scalar or electromagnetic com-
ponents previously determined:

g (1)(1)(2')(2') g
G(')( )( )( )=-'G g=p

g (1)(3)(2')(4')— 1 g (3)(4')
2

It remains to find the solution of (5.9d}. Substituting

(5.10)

(5.11)

(5.12)

G(3)(3)(4')(4')(x x~) — + f di eik hx y einns(()g(3)(3)(4')(4')(r r~)
(21r)

for G' " """ ' in (5.9d) results in the radial equation

(5.13)

p/
srP —(maP ——2) — g„'„"" " '= —5(r —r') .

Br P Br rP p2
(5.14}

Similarly, from the ghost wave equation we find that certain components are given in terms of the scalar Green s func-
tion

g"" '=g' ""=—g g=p

while the radial part of the remaining nonzero component g' " '= g' " ' satisfies the equation

(5.15)

8 r 8
Br P Br

p/
srP (naP— 1) —+ —g' " '= 5(r r')—, —

rp p
(5.16)

which differs in the sign of the final (curvature) term from the corresponding electromagnetic equation (4.14).
Next we examine the tetrad form of the Ward identities (5.8). We begin by noting that the Einstein tensor may be ex-

pressed as

R ~ 'Rg ~= 'R(e—(—))e~( )2+e —e~ )2 2

The tetrad components of (5.8) are then found to be

G(1)(2)(3')(4') 1
1.

() + () G(1)(2')
Bt Bz 2 dt' Bz' (5.17a)

a i a+ 1 g ()(')() 1 1 8+1 9 g()(
P(r) Br r B((} rP(r) 2 P(r') Br' r' B(()'

(5.17b)

a + l a + 2 g(3)(3)(4')(4')
P(r) Br r BP rP(r)

1 8 i 8
P(r') dr' r' BP'

g (3)(4')
r'P (r') (5.17c)

g
Bt Bz Bt' Bz'

T

G"" ' —f d x "v'~g" ~G"" "'R(x")G" "'"" '" ' (5.17d)

8 8 g «8 8
Bt Bz Bt Bz'

—G' " '+ f d x "~~g"~G' " 'R(x")G" " )( )( )

2
(5.17e)
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1

P(r) Br
G (1)(2)(3')(4') I 1 8 8 —(3)(4')

ray 2 P(r') Br' r' BP' r'P(r')

d4 ~( (g(3)(4")R 1 1 ' g(1")(2")(3')(4')
P(r") Br" r" BP" (5.17fl

Owing to the symmetry of the space-time and vacuum state, all Green's functions depend only on the differences
(z —z') and (t —t') so that

e(a) G =
e~a) ~ G a =1 2,8 ~

X X

where ~ indicates zero, two, or four indices. It follows that Eqs. (5.17a), (5.17d), and (5.17e) reduce to

G (1)(2)(3')(4') ] G (1)(2')
2

G""'" '" '= —G' " '+ d x" g" G"" "'g /" G""'('"" '" '
g(1)(3)(2')(4') (g(3)(4') d4 ~~ i (g(3)(4")R( )g(1")(3")(2')(4')

2

(5.18)

(5.19a)

(5.19b)

(5.19c)

It is immediately clear that Eq. (5.19a) is satisfied, because of Eqs. (5.11) and (5.15). It is also reassuring to see that Eqs.
(5.19b) and (5.19c) are consistent with Eqs. (5.9a) and (5.9c), respectively. For example, operating on Eq. (5.19b) with
the wave operator at x and using (5.15), (3.1) we recover Eq. (5.9a):

g(1)(1)(2')(2') $4(x x )+Rg(1)(1)(2')(2') (5.20)

This consistency depends crucially on the nonlocal term in the Ward identity. Introducing our standard representa-
tions for the Green's functions, the Ward identities (5.17b), (5.17c), (5.17fl, (5.19b), and (5.19c) take the form

a
P(r) Br

(1)(3)(2')(4') 1 1 3 + nK
r rP(r) 2 P(r') Br' r' (5.21a)

a
P(r) Br

+ (3)(3)(4')(4')—
r rP(r)

1 8 nK

P(r') Br' r'
-(3)(4')

r'P(r') (5.2 lb)

1 8 + n K (1)(2)(3')(4') 1 1 8
P(r) ar 2 P(r') Br'

n K 1 (3)(4~)
r' r'P(r')

dr"r"P(r")R(r")g' " a + nK (1')(2 )(3 )(4')

P(r") Br" r" (5.21c)

(1)(1)(2')(2') -(1)(2') 1 a ~«r nI tt s n I rr~ i-(1)(2") (1")(1")(2')(2')

(1)(3)(2')(4') ( —(3)(4') ~ st ss~g ts)n( ir) —(3)(4") (1")(3")(2')(4')

(5.21d)

(5.21e)

(5.22)

Again to proceed further we need to make a specific choice for P and choose to work with the flower-pot model. For
simplicity, we shall henceforth restrict ourselves to the range 1(K&2, which includes the realistic case of a cosmic
string for which ~=1+4X 10 . We can then solve Eq. (5.14) to yield the interior solution which is regular at r =0 as

I(„-2(sr/~) for r &ro,
qp(3)(3)(4')(4')(r) —.

A2I(„„-2(sr)+B2K „--2)(sr) for r) ro

where the jurnp condition at radius r0 is

qy(3)(3)(4')(4')(r) ~ 11m qp(3)(3)(4')(4')(r) —2
~ qp(3)(3)(4')(4')(r

)0r~ro+ dr r~ro — dr ro
(5.23)

The exterior solution which dies at infinity is

'(r) = K (sr) for r & rI«—21 0
2

Thus, in the region r, r' ) rQ,

(5.24)
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(3)(3)(4')(4') —q/(3)(3)(4')(4')(r )11/(3)(3)(4')(4')(r )gn, k )
=K~„2)(sr )[I~„„2~(sr)+C2(sro, n)I(. )„2((sr }], (5.25}

where, as before, the ratio C2(sro, n) =B2/A2 is determined by the jump condition (5.23) and continuity of q/(&" "
at r =ro to be

XI~na. 2) (X)I(n 2)(x IK) XI~n„2~(x)I~n 2~ (X /K) 2(K 1 )I~n„2~(X)I)n 2 (X IK)
C2(x, n) =

XK(n„2((X)Ijn 2( (x /K) XK(n„2((X)I(n 2( (X /K)+2(K 1)E nn 2((x)I(n 2( (X/K)

Turning now to the ghost equation (5.16), we find that the interior solution which is regular at r =0 is

I„,((sr IK) for r (ro,
11/(3)(4')(„)

A, I)„„)~(sr)+B,I( ~„„,~(sr) for r &ra,

where the jump condition at radius ro is

(5.26)

(5.27)

lim q/'&" '(r} —K lim q/'&" '(r)
r~ro+ dr T~fp dr

The ghost exterior solution which dies at infinity is

t& (r)= I(.'~n„)(sr) for r & ro .(3 )(4') 1

A)

K 1 1I/(3)(4 )(
ro

(5.28)

(5.29)

Note that the ghost jump equation (5.28) is identical to the electromagnetic jump equation (4.18) except for a change of
sign on the right-hand side. Thus, for r, r'& ro,

-(3)(4') —4/(3)(4')(„)CI(3)(4')( )gnk ( r( ) r)
=K~„„,~(sr )[I~„,(~( +, o, K~„„)~(sr)]

with C, (sro, n) =B, /A1 determined by the jump condition (5.28) and continuity of 4"&" ' at r = ro to be

xI ~n„)((x)I~n (~(x/K) XI)nn 1~(—x)I~n 1~(x/K)+(K —1)I~n„)~(x)I~n 1~(x/K)
C, (x,n)=

XI(.'~nn 1~(x)Ijn )
~

(x/K) —XI( ~n„)~(x)I)n 1~(x/K) —(K—1)I(.'~n„,
~

(x)I~n ) ~(x/K)
(5.30)

The ghost and graviton Green's functions have now been completely determined on the flower pot. For the flower-pot
model the Ward identities (5.21) take the form

8 + 1 nK (1)(3)(2 )(4 ) 1 (} + nK (])(2')
(5.31a)

8, 2 —nK' (3)(3)(4')(4') 8 nK 1 (3)(4 )
, +, g (5.31b)

T

(} + nK (1)(2)(3')(4') 1 (} + (1 nK) (3)(4')
)

Br r 2 Br' r'

—2(K —l)g' " '(r, ro) lim
r"~rp+

(1)(1)(2')(2')(r r )
-(1)(2')(r ri)+2(K 1)g(1)(2")( )

(1")(1")(2')(2')(r r )

(1")(2")(3')(4')
)g ~gr, r

or r

(1)(3)(2')(4')(r i) — -( )( ')(r r~) 2( 1)-(3)(4")(r r )
(1")(3")(2')(4')( ~)r, ro g ro, r

(5.31c)

(5.31d)

(5.31e)

for r, r' & ro [where we have used R (r) =2(K—1)r 'P '(r)5(r ro }]. Rep—lacing the radial Green's functions occurring
in (5.31) by their explicit representations in terms of Bessel functions [see, e.g., (5.25)] and making use of the relation-
ships

+—I (z)=I„+1(z),V

dz z
+—K„(z)= —I(.'„+,(z),d v

dz z
(5.32)

we find that the Ward identities (5.31) reduce to the readily verified identities
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C, = —Co(/=0), (5.33a)

—C1 for n&1,
C2=,

sin(x —1)~
1

7T
for n =1,

(5.33b)

Cp(/=0): C )+2(K 1 )[I )I srp) Cp((=0)K~ ) (srp)][I~„„)~(sro)+ C)K „„)~(sro)]

Co(g'= 1)=Cp(/=0) —2(a —1)[I ~„~(srp )+Cp(s = 1)K,~„(srp ) ][I„~„)(sro)+Cp(/=0)E„~„~(sro ) ],
C, =C) —2(a —1)[I[„,) (sro)+C)E „„))(sro)][I„,)~(sro)+C)K „,, (srp)],

(5.33c)

(5.33d)

(5.33e)

These equations are not independent, and Eq. (5.33a) was already noted in connection with the electromagnetic Ward
identity.

We now evaluate the graviton and ghost Green s functions in the limit as r0~0 corresponding to the idealized coni-
cal space-time. From (5.26) and (5.30) we deduce that in the limit as x —+0, for 1 & a. & 2,

Cz(x, n )- '

for n ~1,

for n)1,

2(2 —n ~)
1 4()r —1) x

I (3—n)~)l (2 ns—) )r(n —2) 2

2(n~ —1)
1 2()~—1) x

I (n)r)I (na —1) a(1 n) —2

(5.34)

and
2(2 —nx)

1 4(a —1) x
for n (1,I (3 na)I (2 —n)r—) Ir(2 —n ) 2

sin(a —1)m
C, (x, n)- 2 for n =1,

' 2(n~ —1)
1 2(a.—1) x

for n)1,
I (na)I (n)r . 1) a.—(n —1) 2

(5.35)

where the n =1 term in (5.35) has arisen from a circumstance identical to that discussed at the end of Sec. IV. [Note
that (5.34) and (5.35) are consistent with the Ward identity (5.33b).] It is now clear that, although Cz vanishes for all n

in the ideal conical limit, the same is not true of C, ; as a direct consequence of the crucial change in sign of the Ricci
tensor term of the ghost equation (5.6) as compared to the electromagnetic equation (4.5), we see that for n = 1 (only) C,
tends to the nonzero quantity

sin(a. —1)~
2 (5.36)

in the limit as x —+0. Hence, for n = 1,

= A )I),(sr) (5.37)

in the ideal cone limit, which diverges at the origin as r ' ". Bringing together these results one may now determine
the graviton and ghost Green's functions in the ideal cone limit. In the graviton case one has

g(3)(3)(4')(4')(r r~) —I (sr )It (5.38)

and so we obtain

/ (3)(3)(4 )(4 ) K inabP —~nx —2~g~c e
&~2 rr'sinhg

„

( oo

e inxhP+(nx —2)g ) ~ invAP —(n~ —2)g+~e
&~2 rr'Sinhg

(5.39)

assuming 1 & K (2. Performing the sum as before we finally find
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0 (3)(3)(4')(4')—
g~ rr'sinhg

e'" ~sinh2(a —1)g+e '" ~sinh(2 —a)g
cosh~q —cos~b t))

(5.40)

For the ghost field we have

I( „(sr&)K( „„(sr&) for n ~1,
—(3)(4')( i) I„,)(sr& )I(.„„((sr&) for n ) 1

(5.41)

and so

1 00
(3)(4')

Z, e invbP+(nv —1)g ( ~ invbP —(n~—1)g+ Z, e
8~ rr'sinhg

(5.42)

Comparing with (4.24), we see that the graviton ghost and electromagnetic Green s functions differ as follows:
T

G (3)(4') 6 (3)(4')+C C 4

e" ~sinh(a —1)g
rr'sinhg

K 1

8~ rr'sinhg

e" ('sinh(2t(. —1)q —e " ~sinh(t( —1)g
cosht~q —cos~b, t)It

(5.43)

We stress that had we attempted the foregoing calculation without ever smoothing the conical singularity we would
have obtained an incorrect graviton ghost propagator identical to the electromagnetic propagator and become unstuck
when the Ward identities for the theory failed to be satisfied. One can perform this calculation only on a rounded coni-
cal metric.

For completeness we recall from Eqs. (5.10)—(5.12) and (5.15) that the other independent, nontrivial tetrad com-
ponents of the graviton and ghost Green's functions in the ideal conical limit are

6 (1)(1)(2')(2') 26 (1)(2)(3')(4') 6 (1)(2') Gc c C C ~

G (1)(3)(2')(4')— 1 G (3)(4')c 2 C

(5.44)

where Gc and Gc " ' are given explicitly by (3.17) and (4.25), respectively. Although these equations were derived un-

der the assumption that 1 (K & 2, they satisfy the appropriate boundary conditions and are valid solutions to the gravi-
ton and ghost equations of motion for the entire range of K.

We conclude this section by tabulating the Lorentzian space-time components of the graviton and ghost propagator
in the ideal conical limit ro —+0. The 64 nonzero components of the graviton Feynman propagator

G" t' '(x,x') = (Ol T[h"'(x)it '(x') ]10 &
32m.G

are given by

6 ttt't' 6 ttz'z' 6zzt't' 6zzz'z'
G

ttr'r' G rrt't' 2G PPt't' ~2G ttP'P'c c c c c c " c " c
~ tzt'z' ~ tzz't' ~ztt'z' ~ztz't' ~ rrz'z' ~ zzr'r'

& 2G Pz'z' &t2G zzP'P' — ) g tt' sinhKg

16~~ rr'sinhg coshtrri cosa' p—
G~" =G~ =G "" =G " " =77'G~ ~ =7I'G~ '(I =pp'G

I& Gzgz'P' Gtrt'r' Gtrr't' Grtt'r' Grtr't'
&&

Gtgt'P'c c c c c ~~ c
I &iGtpp't' I &iG&tt'p' I &iG&tp't' 1 Grr'

itt 1 sinhg cost(A P+sinh(t~ —1)g
rr'sinhg cosh'. ri —cos~hP

& g rzt(t'z' g rzz'P' g zrP'z' g zrz'P' g tPt'r' g ter't' g hatt'r' G)tr't'

egtrt'P' — && tGP' t' —t&egrtt't(t' &sgrtf't' — &G)
r' ' z—z&Gfz'r'

I

6zPr'z' 6zPz'r' 6 rP'
c ~ c c2

LK 1 sinhg sin@ 6(()

16~~ rr'sinhg coshtrri costi)tp—
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r rrr'r' 2 2ggtpp'p' i~rpr'p' i~rpp'r' ig)rr'p' ig)rp'r' i2grrp'dp' 2G)pr'r'

ice 1

rr'sinhg
sinh2(» —1 }gcos»AP+ sinh(2 K—)ricos2»hg

cosh»g —cos»b, {I)

igrrr'tj' ig rrP'r' i2G rgb'P' i2g erg'P' G rPr'r' G)rr'r' 2 G)gr'p' 2 ig)PP'r'

i It' 1

rr'sinhg
sinh2(a —1)g sin»b P+ sinh(2 —K)ri sin2»b {t}

coshag —cosa' P

where Gp" is the electromagnetic Green's function (4.26). The nonzero components of the graviton ghost Feynman
function

G "~ (x,x') = (0~ T[c "(x)ct' (x')]~0)32+6
are

r rG" = —6"= —6 iv 1 sinh~g
8~2 rr'sinhg cosh»ri cos»—b p

6 rr' t 6 tIIP

8~ rr'sinhg
sinh(2» —1)g cos»b(t. —sinh(a. —1)g cos2»h(}}

cosh»g —cosa.hP

i» 1 sinh(2a —1)ri sin»b, p
—sinh(K —1)g sin2»i(), ((}r'Gc = —rGc" =

8~2 rr'sinhg cosh»ri —cos»b, P

where Gc is the scalar Green s function (3.18). Note that, in these Lorentzian formulas, ri is given by Eq. (3.18b).
Having obtained the above explicit formulas for the Lorentzian Green s functions, it is a straightforward, if labori-

ous, procedure to determine the renormalized vacuum expectation value of the stress-energy tensor for the system. As
before, it proves most economical to return to the tetrad formalism in order to compute the regular parts of the Green's
functions

and

IrI( )a(b)( )c(d) 8~2) (c) (d) (g(a)(b)(c')(d') (g(a)(b)(c')(d'))
(c' (d')[ C C x.=1& (S.4Sa)

IIr( )( ba) 8 2 ~ (b)
[g (a)(b )(g '( a)(b')

) (5.45b}

The next step is to determine the first three coefficients occurring in the covariant Taylor expansion of each of
W""""'" ' and W"" '. This task is facilitated by first writing (5.45} as a power series in the coordinate differences hx";
we obtain

W(1)(1)(2)(2) W(2)(2)(1)(1) 2 W(1)(2)(3)(4) 2 W(3)(4)(1)(2) W 7

W(1)(3)(2)(4)—pr(2)(3)(1)(4)— 1 W(3)(4)
2

(S.46a)

W( " " " '= 60(13a.—23)+60(13a—23) +240i(K —2)(3»—4)b{()
360r r

—ht + bz 2

+(119a —601» +829» —251) +(119a —601» + 1609»—1631)
2 r

+240i (a 2)(3a —4)— —3(119a —601»2+959»—481)(bp) +O((i()x") )
r

and

W( )( ) = W( )(1)

Jr{3)(4) IIr(3)(4)+ 2K(K 1 )
1 + b r + .

( 1 }&~+ ( }
(b t ) +(bz)—

r r 6r

(5.46b)

(Q 2

+ [K(a —2)+6] +i(» 1) —(a.—1) — +O((hx") )6r2 r 2

with the only other nonvanishing components being those obtainable from symmetries W""""'" '= W" " '"""" and
the interchange of (3) and (4) under complex conjugation. In (5.46), Wand W( " ' are to be replaced by the expansions
(3.21) and (4.33b), respectively. By substituting these power series into the formulas
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(a)(b)(c)(d)( }» [ W(a)(b)(c)(d)(X XI)]
X ~X

(a)(b)(c)(d) (X)—»m [ g p'(X X
~

) W(a)(b)(c)(d)(x X
~

) ]
t p ) ) p

(5.47a)w""""'""'„(x)= lim [g„P(X,X')g„'(x,x')
X ~X

(3)(4) (3)(4) 2)K(K 1 )
W y=W y+

$ ( )( ) - ( )( )
ZZ

2K (K—1)(K—2)
tt 4

(5.48b)

and

x w""'"'""(xx') ];pg )
(3)(4) (3)(4) 2»(K —1 )(K —2»+ 6)

rr N rr + 4 )
3T

(T)'"")(x}=»m [ W'""(x x )]
X ~X

(I)'"b)„(x)= lim [ —g„P(x,x') W'" '(x, x').
p ]

X ~X

(I)""b)„„(x)= »m [g„p'(x,x')g„'(x,x')
X ~X

X W"""(X,X'), ]

we quickly find that the required coefficients are

W ( )( )( )( ) =W
( )( )( )(

a o ~ o p W a o ~ t p

—2W ( & )(2)(3)(4)
a p

2W (3)(4)( 1 )(2)a. . . p
—Wa. . . p

W ( )( )( )( ) =W ( )( )( )(a. . . p
—W a o ~ ~ p

W
(3)(4)

a p )

u)( )( )( )( ) — (K 1)(13» 23)
1

6r

u)( )( )( )( ) — (» 1)(13» 23)
1

3

(5.47b)

g (3)(4) —g(3)(4) —~ (3)(4)

(3)(4) (3)(4) 2K(K—1)(K —2»+2)
W yy=W

P ( ( ) (b) ( ) (d)+ ( ) (b) ( ) (d)}

X W
(a)(b)(c)(d)

a . p )

p 2( ( ) (b) ( ) (d) ( ) (b) ( ) (d)}

X W
( )( )( )( )

a . p )

-pv i g p v ~ v p q —(a)(b)S a p 2 ~ (a) (b) + (a)e(b) ~W a p )

~pv ) ( p v v p q —(&)(b)
a P 2 (a) (b) (a)e (b) gW a P

(5.49a)

(5.49b)

check that all is well by verifying the identities [18]

[with the only other nonvanishing components being
those obtainable from the above via

W
(t2)(b)(c)(d) —

W
((a)(b))((c)(d) )a. . . p

—W a p

and complex conjugation which interchanges (3) and (4)].
It remains to determine

w = (K —1 )(K—2)(3K 4)
(qN5 3 2

W
(3)(3)(4)(4) —

W
(3)(3)(4)(4)

ZZ

4 (K 1)( 119» —601K
180r

+829»—251)

(5.48a)
s pvpra & pvpwa 0a ;a

SpvpcaP 1 g~ ~pvpr a
);p 4

-pva -pvaa;a
-pvaP ) p(-pv;a)S ~p= 4 S

(s.soa)

(5.50b)

and

u) „„—(K 1 )( 1 19» —601»1

180r

+ 1609»—1631)
(')(')(')(') =w ""'"'""

y
—W

4i
(K 1)(K—2}(3»—4}

3T

w' " " " ' = — (K—1)(119» —601
1

60 2

+ 1089»—711)

)( ) —( )( )a. . .p
—W a. . . p

— Wa. . .p)

[which arise from the wave equations (5.5) and (5.6)], and
finally insert our explicit expressions for the coefficients
(5.49) into the relevant formulas of Ref. [12] for the re-
normalized stress-energy tensor, being careful to choose
those formulas which have not yet been simplified by
means of Ward identities (since as we have seen these
identities are invalid on the idealized space-time) ~ We
find that the renormalized vacuum expectation value of
the stress-energy tensor for the linearized gravitational
field in the vicinity of an idealized cosmic string is given
by

4 diag [f(K),g(K), —3g(K),f(»)]„
72O r4

(5.51a)

W =W
(3)(4) (3)(4) 2K(K 1 )

2

(3)(4) (3)(4) 2K(K 1 )Wr=Wr+
3 )

T

where f (K) and g(K) are the polynomials

f(K)—121» + 121» + 1421»—1459,

g(K)= 121» + 121» —829»+251 .
(5.5 lb}
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VI. THE SCALAR FIELD REEXAMINED

We have seen in the preceding two sections that we can
be forced to introduce solutions of the wave equation
which are singular at r =0. In light of this, it is worth
reexamining the case of scalar fields on the idealized
string space-time allowing such behavior. In particular,
let us allow the n =0 mode of the Green's function on the
ideal cone to have the form

where g is the non-negative solution of

(bt) +(bz) +r +r'
cosh'=

2fP'
(6.3)

G "(x,x')=G (x,x')+A
8~ rr'sinhg

(6.4)

A straightforward calculation (using GR 6.578.10 and
8.715.1) then reveals that

go k(r, r') =Ko(sr & )[Io(sr & )+ AKO(sr & ) ], (6.1)

where A is a constant that does not depend on k. For
K= 1, A@0 is ruled out by regularity, but for K%1 we
have seen above that there is no reason not to allow such
(mild) singular behavior.

Let us denote the corresponding Euclidean Green's
function by 6"and recall from Sec. III that ( 2)A —( 2)0+A K K +6AK —1

877 I" 48m r
(6.5)

sinh~g
G X,X

8~2 rr'sinhri coshKrl cosKb,—p
(6.2)

and that the renormalized stress tensor is

In contrast with the case when A =0, for AAO this
Green's function diverges logarithmically when one of
the points approaches the string.

It is again straightforward to determine that the renor-
malized expectation value of p is

(T„")"=(T„")+A (6g —1) diag (2, —1,3,2)„"

1440~ r
[(K —1) diag (1,1, —3, 1) '+10(K +6AK —1)(6(—1) diag (2, —1,3,2) "] .7 0 9 p 7 7 P (6.6)

For A =0 this is in agreement with Eq. (3.26).

VII. CONCLUSIONS

The major lesson of this work is that the 5-function
curvature singularities present in the space-time.
geometry of an ideal cosmic string cannot be ignored in
certain cases of physical interest: they can couple to the
quantum fields around the string.

For the case of a scalar field propagating with equation
of motion ( —

+gR )y=O in the vicinity of a cosmic
string of finite thickness, the effects of the coupling term
do disappear in the limit as the core radius ro tends to
zero, albeit much more slowly than might naively be ex-
pected [9,20]. More precisely, for all values of the cou-
pling constant g, the Feynman two-point function G& be-
comes independent of g in the limit as ra ~0.

The same is not true of the vector wave equation
( —CIA„+JR„'A,)=0 for all values of g however.
Whereas the g= 1 case (corresponding to the electromag-
netic field} does yield the same Feynman propagator as
the case (=0 in the ideal conical limit, we have shown

that, when g= —1 (corresponding to the graviton ghost),
the coupling of the ghost field to the background curva-
ture changes the Green's function from what it would be
for /=0 euen in the limit as ro~O. This change is shown

explicitly in Eq. (5.43) and would have been missed had
we not carried out our calculations as the limiting case of
a rounded cosmic string.

Finally, it is instructive to compare the expressions we

I

have obtained for the renormalized stress-energy tensors
of all three quantum fields considered in this paper.
Realistic cosmic strings have mass per unit length
p-10, so we can write K=(1—4Lt) '=1+4@ in Eqs.
(3.26), (4.38), and (5.51) and obtain the following approxi-
mate results for the energy densities of the quantum
fields:

1 spin 0 (g= —,'),
—(O~T, '~0)~= — '12 spin 1,

102 p' 2

This result lends further weight to the conjecture that the
influence of nonconformally invariant quantum fields

strongly dominates that of conformally invariant fields as
one approaches a space-time singularity (see [19] for al-
ready existing evidence of this conjecture} and so en-

courages an investigation of the behavior of the linearized
gravitational field in the neighborhood of other physically
interesting space-time singularities, such as the spherical
singularity formed by a collapsing star or the initial
singularity occurring in cosmological space-times.
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