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The Arnowitt-Deser-Misner formalism is used to write the Einstein-Boltzmann coupled system of
equations. The sources of gravitational Geld are represented by ordinary matter described by a perfect-
fluid approximation together with a particle gas described by a phase-space distribution function obeying
the general-relativistic Boltzmann transport equation. Through the use of the Liouville operator in

phase space, we obtain a form of the Boltzmann equation that makes it very amenable for numerical
treatment. The resulting system of equations can be used for the numerical study of either massless or
massive particles interacting with ordinary matter.
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I. INTRODUCTION

Until recently, most studies including general-
relativistic effects in cosmology and astrophysics have
been carried out within the context of homogeneous and
isotropic models. This is not dificult to understand,
since the more realistic inhomogeneous models are highly
complicated, and generally require the solution of partial
differential equations, which are far less amenable to ana-
lytic solution than are the ordinary differential equations
encountered in homogeneous and/or steady-state situa-
tions. However, the computational tools available today
are powerful enough for us to consider seriously the nu-
merical study of the inhomogeneous models. The chal-
lenge offered us by these models, together with the desira-
bility of including WIMP's (weakly interacting massive
particles, here understood to include massive neutrinos)
in them, provided the initial motivation for this work. It
is commonly accepted that WIMP's constitute a basic, if
not the most important, component of the often-
discussed "dark matter" content of the Universe [1—6].
It is also thought that these particles played a most
relevant role in the early dynamics of the Universe, with
ordinary matter following the %IMP dynamics during,
e.g. , nucleosynthesis [7,8] and galaxy formation [9—11].

Two distinct types of gravitational field sources are to
be considered in this paper: ordinary matter, which will
be described by means of a perfect-fluid approximation
[12—16], and a gas of particles, either massless (radiation)
or ~assize (e.g. , WIMP's), interacting only gravitational-
ly with the fluid, for which a kinetic-theory approach wi11

be used [17—19]. We propose to treat the gas as a collec-
tion of identical particles, so they can be described by a
phase-space distribution function obeying the general-
relativistic Boltzrnann transport equation, i.e., we use a
kinetic-theory description for their study. This approach
is most suitable when the particles undergo only a few or

no collisions in the processes in which they play a role.
Since WIMP's have very long mean free paths during
both the radiation- and the matter-dominated epochs of
the Universe, as well as in the (noncosmological) astro-
physical situations in which they may take part, the
kinetic-theory description is indeed appropriate. It also
presents a number of advantages over the conventional
fluid description that make its adoption extremely attrac-
tive. For example, it naturally incorporates the particle
structure of matter, allowing a unified treatment of sys-
tems of particles with positive rest mass and those con-
sisting of zero-rest-mass particles (radiation); it ofers a
straightforward way to complete the system of Einstein
field equations with the introduction of the Liouville, or
Boltzmann, equation, in such a way that a deterministic
model for gravitating material is obtained; and, it forms
the basis for relativistic thermodynamics of equilibrium
and nonequilibrium systems, e.g. , transport processes.
Furthermore, the assumptions made in kinetic theory
seem reasonably appropriate for a number of real sys-
tems, from the very large, such as systems of galaxies, to
the very small, such as systems of weakly interacting par-
ticles and radiation.

Different topics in relativistic kinetic theory have been
studied extensively over the years. Synge [20] gives an
exhaustive treatment of kinetic theory in special relativi-
ty. Tauber and Weinberg [21], and, independently, Cher-
nikov [22], develop a coordinate-invariant formulation of
kinetic theory which could be applied to the curved space
times of general relativity. Lindquist [23] develops a
genera1-relativistic form of the Boltzmann equation for
particles or radiation interacting with an external medi-
um. Israel [24] presents a review of the elementary prop-
erties of the relativistic Boltzmann equation and de-
scribes a simple method for the approximate evaluation
of relativistic transport coefficients using the moments of
the distribution function. From a more mathematical
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point of view, Ehlers [17] presents an excellent review of
the general-relativistic kinetic theory of gases.

Other researchers have studied the subject from a more
practical viewpoint. Based on the theoretical framework
of Lindquist [23], Wilson [18] studied some aspects of the
neutrino transport problem in general relativity by solv-
ing the Einstein-Boltzmann equations numerically for ax-
isymmetric space times. Shapiro and Teukolsky [25,26]
investigated the dynamical evolution of a collisionless gas
of identical particles in general relativity by solving the
Vlasov equation for an X-body particle simulation which
involves the computation of moments of the distribution
function, but not the explicit distribution function itself.
More recently, Rasio, Shapiro, and Teukolsky [27] have
introduced a new numerical method for determining the
dynamical evolution of a collisionless system in general
relativity. They solved the collisionless Boltzmann (or
Vlasov) equation coupled to the Einstein equations for
the gravitational field in spherical symmetry. Their ap-
proach is different from that of Wilson [18] in that they
exploited Liouville's theorem to determine the evolution
of the distribution function in phase space, while Wilson
actually solved the full Boltzmann equation numerically.
Mezzacappa and Matzner [19] studied massless particle
(radiation) transport in general relativity by solving the
coupled Einstein-Boltzmann system of equations through
the introduction of a new implicit numerical scheme, the
"implicit bordering" method, which appears to be a very
promising tool for future research in the subject.

The principal results of our work in this field are two-
fold: First, based on the work of Lindquist [23] and Wil-
son [18],we are able to write the Boltzmann equation in a
form that lends itself naturally to numerical treatment us-
ing the well-known Barton method for numerical trans-
port [14,1S]. Our form of the Boltzmann equation will be
discussed in full detail in Sec. IV. Second, we generalize
the results obtained by Mezzacappa and Matzner [19] to
include massive particles. The massless particle (radia-
tion) case can then be easily obtained as a special case
from the resulting equations.

The Boltzmann equation is coupled to the Einstein
equations for the gravitational field so that when the con-
servation laws for energy-momentum and matter are in-
cluded, together with an equation of state for the matter
variables, we obtain a closed, self-consistent system of
equations. The "(3+1)" [or Arnowitt-Deser-Misner
(ADM)] formalism [28] is used to implement Einstein's
equations as a Cauchy problem. For the sake of com-
pleteness, we present a short review of the ADM method
in Sec. II, making no assumptions about the explicit form
of the metric, except that its signature be ( —,+, +, + ).
We also review, in that section, some general geometrical
aspects of space time that will prove useful in the applica-
tion of the (3+ 1) formalism.

In Sec. III both source descriptions, as well as the con-
servation laws the sources must obey, are presented in
their most general form. The general equations obtained
in Secs. II and III are then specialized to the spherically
symmetric case in Sec. IV. The Boltzmann equation is
written in a conseruative form [29] which makes it very
amenable to numerical treatment. Section V contains our

conclusions.
A computer code that can handle both massless and

massive particles was constructed to solve the Einstein-
Boltzmann system of equations in spherical symmetry. A
description of the general structure of this code, together
with a detailed discussion of particular aspects of the
coding and the tests that have been carried out with the
code so far, are the subject of another paper [30].

II. GEOMETRY

A. The ADM formalism

f~g —g g+n nb (2. 1)

where n, is the unit normal vector of the slices with
n, n'= —l; this unit vector is timelike and future point-
ing. The vector cn, where c is the speed of light, can be
naturally interpreted as the four-velocity field of the ob-
servers that are instantaneously at rest in the slices X.
These observers are usually referred to as the Eulerian
observers. The extrinsic curvature is given by

1 c d+ah +n 2Yab ) a ) b ~(c d) (2.2)

where L„ is the Lie derivative along the vector field n. K
may be considered a "velocity" of the spatial metric with

One of the most useful formalisms available to solve
Einstein's equations for the gravitational field, especially
from a numerical point of view, is the (3+1) method
through which one can recast the Einstein equations by
describing space time in terms of a Cauchy, or initial-
value, problem. The gravitational field is then considered
to be the time history of the geometry of a spacelike
three-dimensional hypersurface on which the initial-value
problem is solved; a reference system is prescribed, and
the dynamical equations are then integrated along the
trajectories of the chosen reference system. In addition,
one has to take into account any external sources, their
evolution equations and equations of state that will com-
plete the description of the situation at hand.

In this section, we will review the ADM formalism as
it is used to implement the Cauchy problem for gravita-
tion in its most general form. We will also explore some
geometrical aspects of space time that will be helpful in
the actual application of the formalism. The analysis
presented below follows closely the papers by York [31]
and Holcomb [16]. No approximation schemes will be
used, as the full Einstein equations will be adopted
throughout this work. We will adopt the following con-
ventions: Latin indices from the beginning of the alpha-
bet run from 0 to 3, while indices from the middle of the
alphabet run from 1 to 3; the Einstein summation con-
vention is used.

In the ADM formalism space time is decomposed into
a family of three-surfaces X which are, locally, level sur-
faces of a scalar function, which we can denote by ~.
This family of surfaces is called a foliation, [X] . In order
for us to specify completely the embedding of the folia-
tion within the larger four-dimensional space time, we
need the three-metric on the slices and the extrinsic cur-
vature. The three-metric is defined as



HUGH HARLESTON AND ETHAN T. VISHNIAC 45

respect to the local proper time of the Eulerian observers
on a slice. The triple (X,y, K) represents the initial data
in our initial-value problem. From Eq. (2.2), it follows
immediately that

gabK yabK q n a (2.3)

i.e., the trace of the extrinsic curvature is the negative of
the expansion of the unit normal vector field.

We now bring in the physics through the Einstein
equations,

Y b 2aK b++tjy b (2.9)

and six equations of motion for the extrinsic curvature,
which may be written as

+a[' 'R'b+KK'b —tt(S'b ,'y—'b—S) ~—Kptty b ]

set of twelve first-order equations. We have six equations
of motion for the three-metric, which follow immediately
from the definition of K,b [Eq. (2.2)],

Gb zTb (2.4) +Xt3K 'b, (2.10)

where a=8m. Glc is the gravitational constant and T,b is

the stress-energy tensor for the sources of the gravitation-
al field. In the spirit of the ADM formalism [28], these
equations may be recast into four constraint equations
which must be satisfied on each slice of the foliation, and
six second-order dynamical equations that will refer to
the foliation itself, rather than just to the individual
slices, so we can use them as evolution equations for the
initial data. The constraint equations, which are ob-
tained from the Gauss-Codazzi equations, relate the
geometry of the slices to the gravitational source vari-
ables and may be written as

and

' 'R+K —K =2ap (2.5)

DbK, —D,K =K' (2.6)

where ' '8 is the three-scalar curvature, 0 is the covari-
ant three-derivative operator, and pH =n 'n T,b and

S, —= —y, n'Tb, are, respectively, the "Hamiltonian" en-

ergy density and the momentum flux vector, as seen by
the Eulerian observers. Equation (2.5} is the Hamiltonian
constraint while the three equations (2.6) are the momen-
tum constraints.

The orthogonal proper time interval between surfaces v.

and r+5w is a5r, where a is the "lapse" function, there-
fore N'= an ' is the natural (orthogonal) vector field con-
necting the slices with a=( g,bN'N )'~ .—One can easi-

ly verify that XNy'b=0, and so the time-derivative

operator, Xz, when applied to any spatial tensor, will it-

self be a spatial tensor; here, we have Xz =uL„. Howev-

er, the time vector 1V is not unique. We can choose any
vector t of the form

t '=N'+P'

with

(2.7)

P'n, =0. (2.8)

Hence we have an arbitrary spatial vector, the shift vector

P, that represents the remaining kinematical freedom
available in describing space time, once a foliation is
specified. Since P is spatial, it has at most three nonzero
components, which, together with the lapse function,
represent the four kinematical degrees of freedom avail-
able for us to choose. In view of (2.7}, we have

With all this in mind, the six remaining

(dynamical) Einstein equations may now be written as a

where ' 'R'b is the Ricci three-tensor, S,b=y, 'yb T,d is
the pressure, or spatial stress tensor, as seen by the Eu-
lerian observers, and S—=y'S,b=S', . By taking the
trace of (2.10} and combining it with the Hamiltonian
constraint, (2.5), we obtain

L,K= —ha+a(K + 2ttp~)+P'D, K, (2.11)

where 6:—D'D, is the three-dimensional covariant La-
placian operator, and the quantity p

—=S+pH is known
as the lapse density. This is a useful equation which can
be viewed as an evolution equation for the trace of the ex-
trinsic curvature tensor K. Alternatively, if this trace is
given as an initial datum, then (2.11) together with the
equations for the shift P' obtained from (2.9}, become a
system of coupled equations for a and P' that must be
solved simultaneously. However, if we choose
K =constant, these equations become uncoupled and we
can then separately compute first a and then P'. The
choice K =0, which is called "maximal slicing, "was first
studied by Lichnerowicz [32] in 1944, while the more
general K =constant slicings have been used extensively
more recently [31,33]. In this work we shall adopt a
K=constant slicing. Equation (2.11) is then an elliptic
equation for the lapse function which is usually referred
to as the "lapse equation. "

B. Bases and frames

n, =( —a, 0,0,0), (2.12}

so, for any vector V, we have n, V'=no V = —a V; in

particular, if V is spatial, then n, V'=0 by definition, and

so VO=O. The shift vector is spatial, so P =0, and thus

Of all the possible reference frames that one can define,
two have proved to be particularly useful: the coordinate
frame and the Eulerian-orthonormal frame; the latter will

be referred to simply as the "normal" or "Eulerian"
frame. A most natural choice is to let the vector t be the
time leg of the coordinate basis [e, ], which defines the
coordinate frame; the basis vectors must be such that
(e„eb ) =g,b. We can then write the components of the
coordinate basis vectors simply as (e, ) =5, and

(e, )b=g,b. In the coordinate frame, the Lie derivative

along t becomes simply the partial derivative with respect
to t, the coordinate time: X,~c '8, .

The components of the unit normal vector n in the
coordinate frame are
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P'=(0,P') . (2 13) four-velocity cn', is given by [35]

From the fact that n, n'= —1 and in view of (2.12), we
obtain n =a ', hence, from the definition t'=an'+P',
together with (2.13), we have

n'=(a ', —a 'P') . (2.14)

Recall that cn is the four-velocity of the Eulerian ob-
servers. The previous result then offers an interpretation
of the shift vector: the quantity ca 'P' is simply the spa-
tial velocity, measured in proper time adt, of the triad
[e;} relative to the normal direction.

Another very useful basis is the Eulerian orthonormal
basis, [es },which defines the Eulerian frame of reference.
In this case ( es, eb ) =11,b, where rt, b is the "Minkowski"
tensor. To construct this basis, we require that the unit
normal vector be the time leg of the basis, a=co, or

—cn,p'=cap (2.19)

i.e., 2 is the energy of the particle in the normal frame.
The magnitude of the particle three-momentum, as mea-
sured by the Eulerian observers, is

P =(P.)"bP')'"

so we can write [34]

p'=( v /c ) 'pa ',
p'=(v) 'pa 'V '=(u/c) 'pa '(au'/c —P'),

(2.20}

(2.21a)

(2.21b)

where V '=c(p'/p ) is the "transport velocity, "
u'=a 'V ' —cn' is the particle three-velocity, and

(eo)'=n'=(a ', —a 'P') . (2.15)
v pc
c g

p
( m 2c 2+p 2)1/2

(2.22)

Since (e;. ) =0, we have

g;, (e~ )'(e;)'= &«, (2.16)

U =cUa
U'= cUa ' V'= cUa '(av '/c —P'),

(2.17a}

(2.17b)

where U is the boost factor between the normal and the
coordinate fratnes, V'—=cU'/U is the "transport veloci-
ty, " and v' is the particle three-velocity in the normal
frame, or the boost velocity of U' relative to n'. %'e can
define V =v'v, = u 'u;, so we find that

V (U2 1)1/2

c U
(2.18)

Let us now consider a particle with four-momentum p,
and components p' in the coordinate basis. The normali-
zation condition for the four-momentum is
p,p = —m c, where m is the mass of the particle. The
energy of the particle, as measured by an observer with

which is a system of linear equations that can be solved
for the nine coefficients (e;.}J in terms of the metric com-

ponents g; . These coefficients are the (space) com-
ponents of the three-vectors e;..

The coordinate basis and the normal basis are related
by a linear transformation: the components of the nor-
mal basis vectors in the coordinate basis (es ) are precise-

ly the transformation coefficients to go from the normal
basis to the coordinate basis: es =(es ) eb and, converse-

ly, eb =(eb ) e2, so it is evident that (e, )b(e~)'=5, '. It is

easy to prove that scalar products of four-vectors are in-
variant under basis transformations of this kind and, in
particular, the transformation preserves the norm of a
vector, i.e., if a vector is normalized in one frame, it will
also be normalized in the other.

The (3+1) quantities can now be used to write the
four-velocities and four-momenta of particles. Suppose
that U, the four-velocity of a particle, has components
U' in the coordinate frame and is normalized, such that
U, U'= —c . Then we can write [34]

with v =v, u'=u;u'.
We end this section with a short digression about the

treatment of the four-momentum when describing mass-
less, as opposed to massive, particles. Note that if m =0,
then Eqs. (2.19) and (2.22) yield, respectively, E =pc and
u/c = l. In this case it seems natural to parametrize the
four-momentum components (2.21) with the energy of the
particles in the Eulerian frame, P, where 0 &P & ao . For
m %0, however, we can introduce a dimensionless
"momentum parameter, "

W, such that p =mc W, and so

P=mc (I+ W )'

with 0 & W & ao. Equation (2.22) then becomes

v 8'
c (1+8' )'

(2.23)

(2.24}

The factor (v/c) 'p appearing in (2.21) can then be writ-
ten as

(u/c) 'p =mc(1+ W )'~ (2.25)

These parametrizations turn out to be very useful in the
numerical treatment of our equations.

III. SOURCES OF GRAVITATIONAL FIELD

When several sources are considered, each may be
characterized by its own distinct stress-energy tensor
,T', where S labels the di5'erent sources and, if we as-
sume the validity of a superposition principle for the
sources, the total stress-energy tensor entering the Ein-
stein equations, T', is simply the algebraic sum of the
difFerent source tensors, thus

Tab y ( Tab}
S

(3.1)

In the present work, we shall consider two types of dis-
tinct sources; on one hand we have ordinary matter, de-
scribed by a perfect-Quid approximation and, on the oth-
er hand, a particle gas described by a phase-space distri-
bution function which satisfies the general-relativistic
Boltzmann transport equation. We shall now present the
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relevant details of these two descriptions within the con-
text of the ADM formalism.

A. The perfect-quid approximation

In this approach, which has been dealt with extensively
in the literature [12—16], matter is characterized by a
rest-mass density p, sometimes also referred to as the
baryon mass density, a specific internal energy per unit
mass c., an average isotropic pressure P, and a bulk, or
average four-velocity U'. These quantities are defined in
the fluid rest frame; we define the relativistic enthalpy 0.
in terms of the rest-frame quantities, as

tions to define a "mass density" D, and an "internal ener-

gy density" E:

D=Up,
E—= Ups .

(3.8a)

(3.8b)

A complete description of the fluid must also include
the temperature T and the entropy 4, or equivalently, the

specific entropy (entropy per unit mass), s. The relation-
ship between these quantities and the "basic" fluid quan-
tities (p, e, P) is fixed by the second law of thermodynam-
ics, which can be written either as

c P
0 =p+p +

c c
(3.2)

Tds =d e+Pd(1/p),

or as

(3.9a)

This quantity plays the role of the "effective inertial
mass" of the fluid. The energy-momentum tensor for a
perfect fluid is given by

Tab Ua Ub+ Pg ab (3.3)

however, in the (3+ 1) formalism the Einstein equations
are written in the Eulerian frame; hence it is necessary to
boost FT' from the fluid frame into the Eulerian frame.
For the Eulerian observer, the fluid stress-energy tensor
is given by

nb+n Sb+nb S + (3.4)

FpH=c U(Uo ) P, —

FS'=c( Uo )( Uu'),

(3.5a)

(3.5b)

The Hamiltonian density (FpH), the momentum flux-

density vector (FS ), and the spatial stress tensor (FS' )

for the fluid, as measured by the Eulerian observers, are
obtained by projecting FT' as given by (3.3). We obtain

Tds =c dh —(1/p)dP, (3.9b)

dE,
V (3.10a)

so that

c'v (3.10b)

In some applications, a barotropic equation of state is
quite suScient, and in such a case, the pressure is unique-
ly deterinined by the density, i.e., P =P(p) In this w.ork
we shall adopt an adiabatic equation of state, which may
be written as

where h =0./p is often referred to as the "specific enthal-
py.

" In addition, we must supplement our equations with
a constitutive relationship between the fiuid variables,
i.e., an equation of state such as P =P(p, s ) or
P=P(p, T); we also require an auxiliary equation deter-
mining either the specific entropy or the temperature.
For example, we could introduce a specific heat at con-
stant volume, usually defined as

and
UP =(I —1)E, (3.11)

zS'b = U( Ucr )u'ub+ y'bP (3.5c)

where (see Sec. IIB) U is the boost factor between the
normal and the coordinate frames and v' is the particle
three-velocity in the normal frame, or the boost velocity
of U' relative to n'. The Quid lapse density Fp is

Fp =c (Uo)(2U —U ')+2P . (3.6)

From the normalization condition U, U'= —c and the
definition of FS, we can obtain an "implicit" equation for
U that is useful as an auxiliary equation:

1/2
FS;FS'U= 1+

c (cUcr)
(3.7)

We note here that the quantities FpH and Fp are always
given by (3.5a) and (3.6), regardless of the explicit form of
U', since they only depend on U' through the factor U.
The quantities FS' and FS'b do depend, however, on the
explicit form of U' through the three-velocity v '. Of
these two quantities, only FS is used explicitly in the
(3+ I) Einstein equations. Following Wilson [12], it will

be useful in the development of the hydrodynamics equa-

where I is the adiabatic index. %e could still use this
equation of state even if the processes being studied were
not adiabatic, but in that case, Eq. (3.11) must be con-
sidered as the de+ning relationship for I, and we would
also need an extra equation for P. The choice of Eq.
(3.11) is by no means exclusive: other choices may be
perfectly feasible depending upon the particular type of
problem being studied.

With Eq. (3.11), the "redshifted" enthalpy (Uo ) ap-
pearing in Eqs. (3.5)—(3.7) can now be written as

Uo =D+FE/c

Notice that with (3.11) and (3.12) we can write fpH, FS',
FS, and Fp in terms of D, E, I, and U, while U, in turn,
is determined by FS;FS', D, E, and I . So if there is some

way for us to choose the initial values for D, E, I, and
FS', then the initial values for FpH, FS, Fp~, and U would
be determined. Alternatively, we could initially choose
D, E, I, U, and two of the three components of FS', and
then determine the third component plus the other fluid
quantities. Once the initial values for these quantities are
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set, the values they take on future slices will be deter-
mined by the evolution equations; these will be discussed
in Sec. III C.

B. General-relativistic kinetic theory

We begin by defining the distribution function for par-
ticles, which forms the basis for their kinetic-theory
description. We then proceed with the construction of
the relevant quantities that characterize a system of par-
ticles. Next, we introduce the Liouville vector, or opera-
tor, in phase space; this operator will enable us to write,
following Lindquist [23], the relativistic Boltzmann equa-
tion in a very compact and elegant form. In a broad
sense, this equation describes how the number density of
particles belonging to a given species and having a given
four-momentum changes as one follows the particles.
The number density, as we shall see, is directly related to
the distribution function.

T' =n'n p +n' S +n S'+~S' (3.16)

with

pa=c 3 ffp (vlc} dP,
Q

3 (3.17a)

AS'=c ', ffp'(vlc) '(v'Ic)dP, (3.17b)

and

xS' =c '3 ffp (vlc) (v'Ic)(v Ic)dP, (3.17c)

where p and v are given, respectively, by (2.20) and (2.22),
while v' is the particle three-velocity. The lapse density
for particles is then

The stress-energy tensor for particles as seen by the Eu-
lerian observers takes the form

1. The particle distribution function xp~=c 3 ff(2p +I c )dP . (3.18)

dN=
3 f(x,p)( n, p')dV—dP, (3.13)

where g, is the so-called "Lande" spin factor, or degen-
eracy index [35,36] and h is Planck's constant, which is
introduced so that the distribution function is rendered a
dimensionless quantity. The factor ( n,p') is—necessary
in order that f(x, p) be independent of the orientation of
d V, i.e., independent of n. Finally, the invariant volume
element d V and the invariant momentum three-surface
element dP are defined as

The invariant distribution function for particles f(x,p}
may be defined as follows [17,22—24]: consider a thin
tube, or beam, of particle world lines, in space time. The
particles have four-momenta p such that p,p'= —m c,
where these momenta lie within a three-surface element
dP in momentum space. The momentum vectors inter-
cept a three-volume element d V at the event x on some
hypersurface X with normal unit vector n'. lf the num-
ber of particle world lines in the beam is dN, then

3. The Liouville operator in phase space

The path of a particle with mass m & 0 which moves in
a gravitational field g,b is described by the geodesic equa-
tions of motion

dx =p (3.19a)

and

These results are well defined for both massive and mass-
less particles; in the latter case the factor v lc is equal to
unity. The knowledge of f(x,p) alone determines all the
quantities needed for the (3+ 1) field equations; therefore,
we will need only one equation (per particle species) to
determine the evolution of the distribution function
f(x,p), and this determines the values of xp~, xS', and

zp, as well as zS', at any time. This equation is the
general-relativistic Boltzmann equation, which must be
satisfied by f(x,p) (see below).

and

dV=& —g nod3x (3.14a) d'P I-a pbpcbc (3.19b)

dP =& gdp 'dp 'd—p ',1

po
(3.14b)

where g is the determinant of the metric g,b. The prod-
uct (

—n p)d VdP is an invariant, and therefore, since dN
is an invariant, the distribution function itself is also an
invariant.

ET' =c ' ffp'p "dP .
h

(3.15)

2. The stress-energy tensor in kinetic theory

The distribution function defined by (3.14) can now be
used to define the stress-energy tensor describing the par-
ticles. In any given basis, we can write

except, of course, at the collision points, where the slope
is discontinuous. We define the affine parameter s by the
requirement that p' is the four-momentum, both for
m =0 and m & 0; in the latter case ms =~ is the proper
time. We can see then from (3.19) that the instantaneous
state of a particle is determined uniquely by its four-
momentum p' at an event x'. The set

M:=[(x,p): xEX, pET„, p ~0, p future directed],

(3.20)

is the one-particle phase space for particles of arbitrary
rest masses. In (3.20), X is, in the language of differential
geometry, the four-dimensional, oriented, connected,
difFerentiable Inanifold we usually call "space time, "
while T is the tangent space to Xat x.
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The equations of motion (3.19) define on M a vector
field

ds
(3.26)

bL P I acP bBx Bp
(3.21)

which is known as the Liouuille operator, or vector. The
directed (or "coordinatized") and parametrized (through
s) integral curves of L, i.e., (x'(s),p (s)), form a
congruence in the phase space M. We ca11 this
congruence the phase Pow generated by L, and it
represents the set of all test-particle motions which are
possible in the gravitational field "occurring" in M.

The rest mass of the particles is given by

where f=f(x',p') is the particle distribution function
and the collision term (Df /ds)„ii denotes the change in

f due to particle interactions such as scattering, absorp-
tion, or emission.

4. The collision term

Following Wilson [18] and Mezzacappa and Matzner
[19), we will treat the collision term phenomenologic»iy
by writing it as a combination of an emission term and an
absorption/scattering term, i.e.,

m c = —g,&(x)p'p (3.22)

and it is a scalar function on M, constant on each phase
orbit, i.e., L(m) =0. The set of phase orbits belonging to
a certain mass value m =constant generates a hypersur-
face on M, the mass shell M; this mass shell is then the
phase space for particles of mass m, it has dimension
seven, and it is clear that L is tangent to M . We take
(x',p') to be the coordinates of M . The restriction of L
to M,

, D, 8.=p'
Bx Bx

i b—I,bp
Bp

(3.23}

and

Bp

ps,
(3.24a}

is the Liouville operator associated with M; in (3.23) we
use the subscript "p.s." to stress the fact that these opera-
tors "live" in phase space and may be different from the
usual 8/Bx ' in space time. Also, it is important to stress
the fact that (3.23) is coordinate invariant despite the ap-
pearance of the Christoffel symbols, since for any func-
tion f=f(x,p), L f is the directional derivative of f
along the phase flow, which was defined above. The fact
that x' and p' are the coordinates in phase space means
they are independent in phase space and therefore

=e-
collds

(3.27)

h c 1

g, E' (3.28a)

Similarly, the invariant opacity is defined in terms of a
matter opacity y and the particle energy E as

E0=
c

(3.28b)

with y= 1/A, , where A, is the mean free path of the parti-
cles. The collision term (3.27) then becomes

Df E hc 1

, ri
—Xf

, coll

(3.29}

In some applications, one can define a local thermo-
dynamic equilibrium [37] (LTE), and in that case the em-
issivity g can be written as

ri=yBE( T), (3.30)

where e is the invariant ernissivity, o is the invariant opa-
city, and f is the particle distribution function. In any
particular frame, we define the invariant emissivity in

terms of a matter emissivity g and the particle energy E,
both measured in the same frame, as

Bx

Bp
(3.24b)

This has the effect that, for a function which depends
only on the space-time coordinates x ' or on the momenta
p', the operator L reduces to the usual space-time
operator d /ds. In particular,

where T is the temperature of the matter, and

BE(T)= E fp(E;T),'c2

with

ft, (E;T)= 1

exp(E /T ) —e

(3.31a)

(3.31b)

and

b BX dX a

ds
(3.25a) In the above, BF(T) is the blackbody distribution func-

tion and ft, (E;T) is the inuariant Planck equilibrium dis-

tribution function, such that

t

pt pa p = —I I papb=
m

g a ab (3.25b)

In (3.25) we have used the equations of motion (3.19).
The Liouville operator is particularly useful in writing

the relativistic version of the Boltzmann equation
[17,22 —24]; the equation becomes simply

+1, bosons (e.g. , photons),

e= ~ 0, Maxwell-Boltzmann distribution,
—1, ferrnions (e.g. , neutrinos).

(3.32)

Notice that in (3.31b) we have set the Boltzmann con-
stant kz equa1 to unity so that the temperature is mea-
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sured in energy units. If the LTE conditions are met, the
collision term then takes the simple form

, x—(fp f—);
coll

(3.33)

E2 (El)2 EI (3.34a)

and

this form for the collision term was adopted by Wilson
[18],among others.

Consider now two frames F and F ' which can be re-
lated by a Lorentz transformation A. From the invari-
ance of the emissivity e and the opacity o, we can easily
obtain relationships between quantities measured in F
and those same quantities measured in F'. In what fol-
lows, primed (unprimed) quantities will denote those
measured in F ' (F}.Equations (3.28) then imply that

r 2

Lorentz transformation between the Eulerian and fluid
frames in order to be able to write the collision term in
the Eulerian frame, but in terms of quantities measured
in the fluid frame. If we use hatted quantities to denote
those measured in the Eulerian frame and primed quanti-
ties to denote those measured in the Quid frame, the col-
lision term (3.29) may be written as

Df P hc 1

ds ii c g g 3e X

0
E'=

CXP

r 3
h'c2 1 g

g 3 Et 1 Xf
S

(3.39)

where we have used Eq. (2.19) to write P/c=ap, to-
gether with (3.34a), (3.34b) to write the Eulerian frame
quantities in terms of those measured in the Quid frame.
If LTE can be assumed, the collision term reduces to

El
EX=E'X'=X= X' (3.34b)

dS

EI=ap' y'(f p f } . — (3.40)

Furthermore, notice that in the LTE case we have

(3.35)

In Sec. IV we will obtain an explicit expression for the ra-
tio (E'/P ) in the spherically symmetric case.

C. Conservation laws for the sources
so it is clear that, as was previously claimed, fz is an in-
variant; from (3.31b) we then see that the ratio E/T must
also be an invariant, so

r

E E'
T T'

E
Et (3.36)

Since the opacity g is nothing more than the inverse of
the mean free path A, of the particles, it is often expressed
in the literature as

We shall assume that the law of baryon conservation
for the fluid holds, i.e.,

V, (pU') =0, (3.41)

where p is the rest-mass density of the fluid and U' is the
normalized fluid four-velocity; Eq. (3.41) is also known as
the continuity equation. In addition, the conservation
laws for energy and momentum are contained in the four
equations

(3.37)
V T'=0 (3.42)

where K is the absorption coefficient per unit rest mass,
with units of area per unit mass (not to be confused with
the gravitational constant), and p is the proper rest mass
density, a relativistic scalar by definition, with units of
mass per unit volume. Since p is a scalar (and therefore,
an invariant), combining (3.26}and (3.34b) yields V' ( T' )= —V ( T' )

' (3.43)

where T' is the total stress-energy tensor for the sources.
In our case, it is the sum of the fluid and the particle
stress-energy tensors: T =FT +z T . We can then
write (3.42) as

El
K=

E K (3 38) if we define

If the explicit form of the Lorentz transformation A be-
tween the frames F and F ' is known, we can use the fact
that E=cp in any frame in order to obtain an explicit
expression for the ratio (E/E') which appears in
(3.34)—(3.38), thereby allowing us to translate quantities
measured in one frame into their counterparts in the oth-
er frame.

The usefulness of these relationships becomes evident
when we realize that the emissivity g, opacity y, tempera-
ture T, and absorption coefficient K are usually measured
physically in the rest frame of the matter (or fluid), while
the (3+1) field and evolution equations are written from
the Eulerian obseruers' point of view. Thus we need the

V', ( T' }=7
then (3.43) becomes

P ( Tab) gb

(3.44)

(3.45)

The quantity J appearing as a source term in (3.45) can
be interpreted as the particle four-force density vector, so
that J is related to the net rate of energy transfer, per
unit volume per unit time, while J is related to the net
rate of momentum transfer, per unit volume per unit
time, between the fluid and the particles.

Equations (3.41) and (3.45) provide us with the evolu-
tion equations for D, E, and FS; (see, e.g., Wilson [12]
and Centrella and Wilson [14,15]), with the source term
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J . Now, since the particle stress-energy tensor is a func-
tion of the space-time coordinates only, we can use the
properties of the Liouville operator together with the ex-
plicit expression for x T', Eq. (3.15), to write

J"=V, c Jfp'p "dP

=c
3 f(L f}p dP. (3.46)

In view of the Boltzmann equation (3.26), we then get

h ds
(3.47)

where (Df Ids ),»~ is given by expression (3.39), or (3.40)
if we assume LTE.

IV. SPHERICALLY SYMMETRIC SPACETIMES

Up to this point, all the equations we have obtained are
completely general as far as the metric tensor g,b is con-
cerned. In order to advance further in our search for a
solution to the equations, we must choose the metric ten-
sor and the coordinates to be used. Once this is done, the
necessary vector bases and other geometric objects can be
constructed explicitly. The Geld sources must also be
specified, and this is done by constructing the stress-
energy tensor that describes them. The (3+1) field equa-
tions are then cast in their "final" form, ready to be
solved. In this section we carry out the steps to fulfill this
program in the special case of spherical symmetry; we
shall focus our attention, however, around the Boltzmann
equation. The coordinates will be labeled in the usual

way: x:=ct, x:= r, x:=0, and x:=y. The metric0 1. 2. 3.—
will be assumed to be a function of the time t and the ra-
dial coordinate r, i.e., this will be an inhomogeneous,
one-dimensional model.

Vy= AB r sin8 . (4.5)

At this point we may use our coordinate freedom to im-
pose the "isotropic" gauge developed by Wilson [38] and
Dykema [39] and used by Evans [40,41], Shapiro and
Teukolsky [25,26], Holcomb [16], and Mezzacappa and
Matzner [19],among others. This gauge is set by simply
requiring that A =B. For the sake of generality, howev-
er, we shall obtain all of our equations for A WB.

The unit normal vector, given by (4.4), defines the time
leg of the Eulerian basis, i.e., n=eo. Now, using the nine

equations (2.16) we obtain the nonzero components of the
other three vectors, e-, , of that basis. The transformation
matrix to go from the Eulerian basis to the coordinate
basis, L, is simply formed by the components (es ) of the
Eulerian basis vectors, we get

c—(e )b
b

a ' —a 'p

o

(Br)
(Br sin8)

U'=(U', U', 0,0), (4.7)

that is, only radial motions are allowed for the fluid. In
view of (2.17), we have

U =cUa (4.8a)

and

(4.6)

while the inverse transformation, L, with coefficients
Lb~=(eb ), is obtained from ea eb =5s

We will be dealing with two kinds of sources: ordinary
matter with a bulk four-velocity U' and particles with
four-momentum p'. In spherical symmetry it is usual to
require that ordinary matter should have a four-velocity
U in the form

A. Geometry

The most general three-dimensional line element con-
sistent with spherical symmetry [16,25,26] is given by

( U2 1)1/2
U'=cU (4.8b)

dl = A dr +B r (d8 +sin 8dy ),
while the shift vector takes the form

P'= (O,P, O, O };

(4.1}

(4.2)

The Lorentz transformation between the fluid rest
frame and the Eulerian frame can now be obtained quite
easily. If we write the four-velocity of the fluid in the Eu-
lerian frame by applying the transformation defined in
(4.6)—(4.8), we obtain

this is so because it is the only form for the shift vector
with which the three-metric wi11 be kept diagonal
throughout the evolution. Therefore, our full (3+1) line
element is

( U2 1)1/2U'= UbLb' ——cU 1, ,0,0 (4.9)

ds = —(a —A P )c dt +2A Pc dt dr

+ A dr +B r (d8 +sin 8dtp ) . (4.3)
and

y, —= U

so we immediately recognize that

(4.10a)

n'=(a ', —a 'P, O, O) . (4.4)

The unit normal vector in spherical symmetry is given by
( U2 1)1/2

V=—c
U

(4.10b)

The three-metric can then be constructed using Eq. (2.1);
its determinant, y, is found to be

are the boost factor and velocity that define the Lorentz
transformation, A, between the Eulerian frame and the
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fluid rest frame. Thus, the components of a four-vector v
in the Eulerian frame, v, are related to its components in
the fluid rest frame, v', by

We stress the fact that p, p, and A, are quantities mea-
sured by the Eulerian observers.

v =A v'
a (4.11)

B. The sources in spherical symmetry

where

A a'

3 v

y„V/c
y V/c 0 0

0 0V 1)

0
0

1 0
0 1

(4.12)

V= Aa '(cP+ V'), (4.13)

where V' is the only nonzero component of the transport
velocity.

We now move on to the particle four-momentum.
Since we are considering spherically symmetric space
times, it is only natural that we introduce spherical coor-
dinates in momentum space as well. We define the
"cosine angle parameters" p and A. in the Eulerian frame
as

and

p =cosOp (4.14a)

due to the fact that the fluid is moving only in the radial
direction. The inverse Lorentz transformation is ob-
tained simply by letting V—+ —V. The boost velocity V
may also be written in terms of the coordinate-frame
quantities as

1. Ordinary matter

While the Hamiltonian density and the lapse density
for the fluid are given directly by (3.5a) and (3.6), respec-
tively, the only independent nonzero component of the

.momentum flux vector in the coordinate basis is

FS„=c (UCT)A(U —1)' (4.17)

with FSo=p(+S„} and zSs=FS =0. With (4.17), Eq.
(3.7) becomes

(FS„)U= 1+
c (cUcr) A

1/2

(4.18)

The only nonvanishing component of the transport veloc-
ity is, in this case,

V'=cU'/U =c(av'/c —P), (4.19)

with v
' =c( U —1)' /A U. The equation of state is

specified, we recall, by (3.11) and the "red-shifted"
enthalpy, Ucr, is given by (3.12).

We now proceed to write the results obtained in Sec.
III for the source quantities in the special case of spheri-
cal symmetry.

k =cos+p (4.14b) 2. Weakly interacting particles

(4.15b)

while the normalization condition p pz
= —m c, togeth-

er with (2.19) and (2.22), give

where O& and y are the usual polar and azimuthal angles
of spherical coordinates in momentum space. Using the
"e; axis" as the polar axis instead of the more usual "e3
axis" the components of the three-momentum ' 'p, as
measured by the Eulerian observers can be written as

p =pp~ (4.15a)

p
2 —p( 1 p2)1/2g

p
3 —p( 1 2)1/2( 1 g2)1/2 (4.15c)

In spherical coordinates, the momentum three-surface
element, (3.14b), can be written as

dP =p(v Ic )dp d}M, dy~, (4.20)

where y is the azimuthal angle in momentum space.
With this expression for dP, the particle stress-energy
tensor, (3.15), becomes

xT' =c ', ffp'p p(vlc)dp dpdtp~ . (4.21)

The (3+1) particle quantities xpH and xp [cf. Eqs.
(3.17), (3.18)] then become

p0=(m 2c2+p2)1/2= =p(v lc )
1

c
(4.15d) xpH=2n. c ffp (vlc) 'dp dp (4.22a)

With the transformation (4.6} and the expression (2.22)
for v, the components of the four-momentum in the coor-
dinate basis become

and

xp =2irc
3 ffp(v/c)(2p +m c )dpdp, .

A
(4.22b)

p'=p(v/c) 'a ',
p'=p(vlc) 'a ' (v lc)—P

A

2
( 1 2)1/2)(1

Br

p
3 —p ( 1 2)1/2( 1 g2)1/21

Br sinO

(4.16a)

(4.16b)

(4.16c)

(4.16d)

The only independent, nonvanishing component for the
particle momentum lux vector is

zS„=2m.cA ffp dp pdp, (4.23)

with xSO=P(xS, ) and zS&=kS& =0. Since in sPherical
symmetry f cannot depend on the azimuthal angle y, we
were able to carry out the qr integrations in Eqs. (4.22),
(4.23) immediately.
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C. The field equations

In spherical symmetry the system of equations
simplifies considerably. The only equations that remain
are the Hamiltonian constraint, one momentum con-
straint, the lapse equation, and two "auxiliary" equations
obtained from the definition of the extrinsic curvature.
Now, the three-metric is not only diagonal, but at most
only two of its components are independent, with only
one independent component if the isotropic gauge
( A =B} is imposed. In view of equations (2.10) (which
may be considered as the definition of the extrinsic curva-
ture in terms of the time derivative of the three-metric),
the extrinsic curvature itself will also have at most only
two independent components. Let us begin with the ex-
trinsic curvature: its two independent components will
be represented by the trace of the extrinsic curvature, I(:,
and an extrinsic curvature variable defined as
E*=—E', ——3'. Explicitly, they are given by

and

K—=K';= —(A b, ~+2B b~) (4.24)

K'—= ——'(A 5 Bb, —
) (4.25)

where

A A A'
P —P—'—

a A A
(4.26a)

and

8 2

a
B B' P
8 8 r

(4.26b)

(4.27)—( AB )+ ( cPr AB ) = caK——
i3t 2 Br

here a dot means d/c dt and a prime means d ydr
We will assume that E is a given datum initially and

also that it is a function of time only, so that K=K(t);
i.e., it is a constant on each slice of the foliation [X].
This condition is known as constant-mean-curvature slic-
ing. Physically, it simply means we are effectively
demanding that all Eulerian observers, who are at rest in
the slices, measure the same Hubble constant at a given
time; thus, in the absence of anisotropy and inhomo-
geneities, the metric reduces to the Friedmann-
Robertson-Walker metric. With this choice the lapse
equation, (2.11), uncouples from the equations for the
three-metric, (2.9), and thus these equations can be solved
independently for the lapse function a and for the shift P.

Using the explicit forms of A~ and A~, equations
(4.24) and (4.25) may be written, after some algebra, as

that (4.27) is clearly an evolution equation (in the form of
a transport equation, with transport velocity "—cP") for
the conformal factor (AB ), with source term c—aK.
The fluid evolution equations are actually written for con-
formalized quantities, e.g. , D =( AB )D, etc , so that the
solution of (4.27) would allow us to recover the "bare"
quantities after the evolution has been carried out. In or-
der to make any further progress with Eq. (4.28), we must
fix the gauge, i.e., we need a relationship between the
metric functions A and B. For the simple choice (of
which the isotropic gauge with A =8 is, of course, a spe-
cial case)

B=f„(r}A, (4.29)

a 8 ar&—Br
Br A Br

=—' A (Br )
~ [(Br ) + 'K '(K" )

——~pH
—]—, (4.31)

which is a differential equation for the quantity 8r; of
course, some kind of knowledge about A and 8, e.g. , a
gauge condition, would be necessary in order to make
progress towards its solution [16,30]. Of the three-
momentum constraint equations, only the one for S„ is
relevant in spherical symmetry, the other two being trivi-
al identities. From (2.6) we obtain an equation for K
which can be integrated to yield

Sr' S,dr'
(Br )

where f„(r) is a well-behaved, known function of the ra-
dial coordinate only, we would have AB '=f„',while
the conformal factor is AB =A f, . Equation (4.28)
then becomes an ordinary differential equation for P on
each slice which may be readily integrated to yield

P= ——23(rf„)f a(r'f„) 'K dr' . (4.30)

To summarize, the auxiliary equation (4.27) gives us the
evolution of the conformal factor A8, provided that the
trace of the extrinsic curvature K =K(t) is a given initial
datum, while the auxiliary equation (4.28), together with
a gauge choice of the type (4.29), gives us an expression
for the shift P.

The field equations remaining to be recast into spheri-
cal symmetry are the Hamiltonian constraint, (2.5), the
momentum constraint equations, (2.6), and the lapse
equation, (2.11). We stress the fact that, in these equa-
tions, the quantities p~, p, and S~ are the total source
quantities formed with a fluid part and a particle part.
The Hamiltonian constraint equation becomes

and

a 1, l 8, , 1cPAB ————(AB )=—32ca —(AB )K* .
Br r r Bt r

(4.28)

In (4.27) we have defined K—:( AB )K. These are the two
auxiliary equations that were mentioned above. Notice

+—,J (Br')3, K dr' .
3 (Br )3 o dr'

(4.32}

Notice that we did not restrict ourselves to a constant-
mean-curvature slicing to obtain (4.32); when we do, the
last term on the right-hand side drops out, and we obtain
an expression for K* in terms of the momentum flux S„.
Finally, the lapse equation (2.11) becomes
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1 i} B 2 i}r a
r2 Br A dr

=
—,'aAB [—', K +3(K') +~p ]—AB ——K —P K

c dt dr
(4.33)

again, if we assume a constant-mean-curvature slicing, i.e., K =K(t), the last term on the right-hand side drops out.

D. Evolution equations for the sources

The evolution equations for the matter "density" D, the matter "energy" E, and the matter momentum flux FS; in
spherical coordinates, which can be obtained from Eqs. (3.41) and (3.45), have been already worked out elsewhere (see,
e.g., Ref. [19])so we shall not repeat those calculations here. On the other hand, the Boltzmann equation, which is real-
ly an evolution equation for the particle distribution function and is given in its most general form by Eq. (3.26}, togeth-
er with the definition of the Liouville operator specified by (3.23), may be written in a form that turns out to be highly
amenable to numerical treatment. Using the properties of the Liouville operator we can write the Boltzmann equation
in "conservative" form, in the sense defined by, for instance, Mihalas and Mihalas [29], meaning that each term in the
resulting equation vanishes when integrated over its full range. To that effect, it will prove useful to define

I

&~—:p '(p ) '(L p)= — (vlc) '+a[ —,'K+ ,'K'(3p —1)]— (4.34a)

and

I

p)=(1—
p ) — (v~c) +3apK'+a(v/

A Br
(4.34b)

where L p and L I are computed by expressing p and p in terms of the four-momentum components p as given by
Eqs. (4.16) and using (3.25). The quantities &, and &„turn out to be the "advection velocities" in the momentum and

angle "transport" terms, respectively, in the conservative form of the Boltzmann equation.
In terms of the conformalized distribution function, the left-hand side of the Boltzmann equation, (3.26), is given by

L f=(AB) ' L f f — + —— (4.35)

where

f=f(t, r,p, p)=AB f, (4.36)

since in spherical symmetry the distribution function cannot depend on the azimuth A,. Now, applying the Liouville
operator to (4.36), we can write

L f=p (f)+p' (f)—+—(L p) (f)+(L p) (f),
c Bt Br Bp

Ng
(4.37)

where we simply used the chain rule, along with (3.25a). Using the definitions (4.69) and combining Eq. (4.3'7) with Eq.
(4.35), the left-hand side of the Boltzmann equation now becomes

1 8 a
L f= (f)+—

2
r —f—+ (p9fpf )+ (%g}

p f 1 3 p' 1 i} ~) B(~) 1 1 dA 1 21B
r Br p p Bp Bp p 3 c& p B ds

(4.38)

It can be shown that the second term in square brackets on the right-hand side of (4.38) is identically zero; this calcula-

tion, although tedious, is rather straightforward so it will not be repeated here. The Boltzmann equation, (3.26), finally

takes the simple form

(f)+—
z (r V~'f—)+ z (p cJV~f)+ (c&g)=c (AB )

p coo
(4.39)
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where

V '=cp'/p =c (v/c) —P (4.40)

Let us now take a closer look at the matter opacity g'.
This opacity may be written in terms of an absorption
coefficient, ~', and the invariant proper rest mass density
of the matter, p [cf. Eqs. (3.37) and (3.38)], as

From Eq. (4.39), it now becomes clear that ff and &„,
which are given explicitly by Eqs. (4.34), in effect play the
role of "advection velocities" in, respectively, momentum
and angle, as was previously stated. Equation (4.39) is

the conservative form of the Boltzmann equation in spher-
ical symmetry. In the isotropic gauge, (A ~B), it is a
straightforward exercise to prove that for massless parti-
cles and maximal slicing, i.e., m =0 and K =0, Eq. (4.39)
can be recast into the form used by Mezzacappa and
Matzner [19].

The collision term appearing on the right-hand side of
Eq. (4.39) is given, in general, by (3.39) or, if LTE is as-

sumed, by (3.40). In order to specialize this term to
spherical symmetry, we need to obtain an explicit expres-
sion for the factor (E'/P) appearing in (3.39) and (3.40).
This can be easily achieved through the use of the
Lorentz transformation between the fluid and Eulerian
frames, which is specified by (4.12) with V~ —V, togeth-
er with the components of the particle four-momentum in

the Eulerian frame, as given by Eqs. (4.15); we also use

the facts that E'=cp and E =cp . We then have

I
O' PO' pa

c

—KP (4.46)

a'=~, (E')

where a, is a constant. In this case, (4.46) becomes
'2

2
E'

y'=a, p(E') =a,pE

(4.47)

(4.48)

Now, the absorption coefficient ~' in the fluid proper
frame can be written as [23] ~'=cr, (E')+cr, (E'), where

o, (E') and o, (E') are, respectively, the absorption and
scattering cross sections per unit mass. Notice that in
this frame, a' is a function of only the particle energy E',
not of direction. The angle dependence of the absorption
coefficient ~ in an arbitrary frame can be obtained
through the invariant combination p U„where U, is the
four-velocity of the external medium (e.g., fluid) and p' is
the four-momentum of the particles; we would then get
the relationship (3.38), i.e., x=(E'/E)a'', which we had
obtained by using invariance considerations. In some ap-
plications, such as neutrino opacities [42], the cross sec-
tions are proportional to the square of the energy, so we
can write

E Vv=—U 1 —p ——
c c c

(4.41)
In light of (4.42) and the definition for the matter "densi-
ty, "D = Up, we then get

'2

whence we find g'=z, D& U 1 —p ——~2 Vv
c c

(4.49)

E' Vv=U l —p ——
c c

(4.42)

c (AB )

P ds
11

Recall that the boost velocity of the fluid, V/c, is given
by (2.18), while the three-velocity of the particles, v/c,
with respect to the Eulerian observers, is given by (2.22).
The right-hand side of Eq. (4.39) then becomes

This expression can then be used to compute (and update)
the matter opacity y'. Finally, in the Eulerian frame the
mean free path will be given by

(4.50)

where [cf. Eq. (3.34b)]

(4.51)

E'=ca
3

h c 1
rl

' y'f, (4.43—)
g, p E'

L

is the opacity as measured by the Eulerian observers.

where, as usual, we have defined r) '—:AB rl', f is the con-
formalized distribution function, and (E /2) is given by
(4.42). In the LTE case, (4.43) reduces to:

V. SUMMARY AND CONCLUSIONS

(4.44)c o(AB )
coll

[see Eq. (3.33)]. With (3.39) and (3.47), together with

(4.16a), the conformalized four-force density vector J, is

given by
3

h c 1

gs
r'f—I

J, =2~c

(4.45)Xp p dpdR.

We have written the general-relativistic Boltzmann
equation in its most general form within the context of
the (3+1) formalism. The sources of gravitational field

were taken to be a perfect fluid, representing ordinary
matter, interacting gravitationally with a particle "gas,"
described by a distribution function obeying the general-
relativistic Boltzmann transport equation. We then spe-
cialized this equation to the spherically symmetric case.

Ultimately we wrote the Boltzmann equation in a con-
servative [29] form which can be used for both massless
and massive particles. This was achieved by first express-

ing the spacelike components of the particle momentum
in spherical coordinates, i.e., p'~(p, p, A, ), where p is the
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magnitude of the three-momentum in the Eulerian frame,
and JM, A, are the angle cosines of the polar and azimuthal
angles in momentum space, respectively; then, using the
Liouville operator in phase space, as described in Secs.
III B and IV D, we obtain the final form for the equation.
It was found that, in this form, the Boltzmann equation
lends itself naturally to numerical treatment through the
use of well-established radiation-hydrodynamics tech-
niques, together with a new "implicit bordering" method
due to Mezzacappa and Matzner [19].

The fact that Wilson [18] obtained a "conservative"
form of the Boltzmann equation in axisymmetric space-
times, even though he used a parametrization for the par-
ticle "momentum" that does not have a direct physical
interpretation (as does our choice of the variable p) leads
us to believe that the Boltzmann equation can always be
written in conservative form by following our method for
the application of the Liouville operator, regardless of the
(momentum) coordinates used. Further investigation is
required about this point.

Among the problems that can be studied with this
model, the cosmological collapse of a combination of

weakly interacting massive particles and a Quid presents a
most interesting challenge. Also, from the purely numer-
ical point of view, other gauge choices for which AAB
should be investigated, since the equations, as we present
them, are "gauge ready, "so to speak, in this respect.

A description of a computer code for the Einstein-
Boltzmann system of equations in spherical symmetry us-
ing the isotropic gauge, i.e., with A =8, that can handle
both massive and massless particles, together with the re-
sults obtained so far with this code, is the subject of a
separate paper [30].
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