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Gravitationally compact objects as nucleation sites for first-order vacuum phase transitions
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A characteristic of first-order phase transitions is their ability to be initiated by nucleation sites. In
this paper we consider the role that gravitationally compact objects may play as nucleation sites for
first-order phase transitions within quantum fields. As the presence of nucleation sites may prevent the
onset of supercooling, the existence of nucleation sites for phase transitions within quantum fields may

play an important role in some inflationary models of the Universe, in which the Universe is required to
exist in a supercooled state for a period of time. In this paper we calculate the Euclidean action for an
O(3) bubble nucleating about a gravitationally compact object, taken to be a boson star for simplicity.
The gravitational field of the boson star is taken to be a small perturbation on flat space, and the O(3) ac-
tion is calculated to linear order as a perturbation on the O(4) action. The Euclidean bubble profile is
found by solving the (Higgs) scalar field equation numerically; the thin-wall approximation is not used.
The gravitationally compact objects are found to have the effect of reducing the Euclidean action of the
nucleating bubble, as compared to the Euclidean action for the bubble in flat spacetime. The effect is
strongest when the size of the gravitationally compact object is comparable to the size of the nucleating
bubble. Further, the size of the decrease in action increases as the nucleating "star" is made more gravi-
tationally compact. Thus, gravitationally compact objects may play the role of nucleation sites. Howev-

er, their importance to the process of false-vacuum decay is strongly dependent upon their number den-

sity within the Universe.

PACS number(s): 98.80.Cq, 03.70.+k, 04.60.+n

I. INTRODUCTION

A characteristic of first-order phase transitions in
everyday matter is their ability to be initiated by nu-
cleation sites. An example of this is the preferential for-
mation of raindrops around atmospheric dust particles.
We are therefore led to ask whether such nucleation sites
might occur for first-order vacuum phase transitions in
quantum fields. In particular, could gravitationally com-
pact objects act as nucleation sites for false-vacuum de-
cay?

In the absence of nucleation sites, Coleman [l] has
shown that first-order phase transitions may occur be-
tween a false- and true-vacuum state via the spontaneous
nucleation of bubbles of true vacuum within the medium
of false vacuum. The "rate" of spontaneous bubble nu-
cleation (i.e., the number of bubbles within a unit four-
volume) is given by the expression I =He . The ex-
ponent B in this expression represents the difference be-
tween the Euclidean action for the spacetime with and
without a nucleating bubble. The coeScient A is a func-
tional determinant which is typically of the order of m,
where m is the characteristic mass scale of the field un-
dergoing the phase transition.

Coleman's analysis developed the "thin-wall" approxi-
mation, where the nucleating bubble has a well-defined
core of true vacuum, a thin wall in which the field makes
a rapid transition from the true- to the false-vacuum
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state, and the exterior of the bubble is in the false-
vacuum state. This approximation scheme is applicable
in the limit where the energy-density difference between
the true- and false-vacuum states is small.

Hiscock [2], and Mendell and Hiscock [3], considered
the effects of gravitationally compact objects on false-
vacuum decay within the "thin-wall" approximation, and
further studies have been made by Berezin et al. [4],
again within the "thin-wall" approximation. In particu-
lar, Hiscock [2] considered the effect of black holes, and
Mendell and Hiscock [3] considered the effect of gravita-
tionally compact objects such as neutron stars. Their
"thin-wall" analyses treated the bubble wall as a surface
layer within the Israel [5] formalism, patching together
the false- and true-vacuum spacetimes. Thus, for exam-
ple, when considering the efFect of a black hole on the
false-vacuum decay from Minkowski to anti —de Sitter
space, one would patch together an interior core of
Schwarzschild-anti-de Sitter spacetime to an exterior of
Schwarzschild spacetime. Their analyses found that
gravitationally compact objects have the effect of reduc-
ing B, the difference between the Euclidean action for the
spacetime with, and without, the nucleating bubble. It
would therefore appear that such objects may, in certain
situations, increase the false-vacuum decay rate. Howev-
er, the usual expression for the bubble nucleation rate
must be modified when considering O(3) nucleation about
a specific site, rather than O(4) nucleation in a homogene-
ous spacetime. As a result, a reduction in the value of B
associated with the nucleation of a bubble around a
"star" does not necessarily result in an increase in the
bubble nucleation rate within the spacetime. This issue
will be addressed at the end of this paper.
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These earlier "thin-wall" analyses had the attractive
feature of inherently taking into account the self-gravity
of the quantum field undergoing the phase transition.
Ho~ever, as has been shown by Samuel and Hiscock
[6,7], the "thin-wall" approximation does not usually de-
scribe false-vacuum decay processes very well. There-
fore, by adopting a different approach than the "thin-
wal1" approximation we may be able to gain further in-
sight into the effect of gravitationally compact objects
acting as nucleation sites. Such an approach should also
allow us to confirm and justify some of the predictions of
the "thin-wa11" approximate analysis. As a result, in this
paper we shall adopt a different approximation than the
usual "thin-wall" approach: we shall use a perturbative
analysis to study the effect of gravitational nucleation
sites. The perturbative analysis will utilize exact, numeri-
cally integrated O(4) bubble profiles (i.e., non-thin-wall),
associated with bubble nucleation in flat space, as the ini-
tial background; a (weakly) self-gravitating boson star
will be introduced to act as a nucleation site and the O(3)
perturbation to the O(4) bubble action calculated to
linear order in perturbation theory. Therefore, our re-
sults will be trustworthy only so long as the O(3) pertur-
bation is small; for small perturbations, however, the re-
sults are more reliable than the corresponding "thin-
wall" analysis, which cannot be generally trusted even in
the O(4) case. Our analysis does not take the self-gravity
of the bubble into account; only the influence of the
changing background gravitational field on the Euclidean
action is calculated. The self-gravity effects which we ig-
nore are, however, relevant only when the symmetry-
breaking scale is within an order of magnitude of the
Planck energy.

In the absence of gravity, Coleman et al. [8] have
shown that within the O(4)-symmetric Euclideanized
Minkowski space, O(4)-symmetric nucleating bubbles
have the lowest Euclidean action, and hence are the dorn-
inant mode for false-vacuum decay. In this paper we
shall consider the O(3)-symmetric background spacetime
of a static, spherically symmetric star, and assume that a
nucleating bubble centered at the star will have the O(3)-
symmetry of the spacetime.

It is illustrative to consider a simple model which may
help explain why gravitationally compact objects might
act as nucleation sites for false-vacuum decay. The Eu-
clidean action for an O(4)-symmetric nucleating bubble in
the "thin-wall" approximation may be written as

S=o.A —eV, with o,e)0,
where A corresponds to the surface area of the nucleat-
ing bubble and V to its volume (remembering that these
are "three-areas" and "four-volumes" ). It is assumed
that we have a fixed background spacetirne and so the
spacetime does not contribute, as such, to B (i.e., the
difference between the Euclidean action for the spacetime
with, and without, the nucleating bubble); thus we may
write B =S'. The "decay rate, " which is proportional toe, may be enhanced by reducing 8; so if we could find
a way of increasing V while keeping A constant (with cr

and e also constant) then this reduction in B would be
achieved. Obviously, in a flat spacetime once we have

fixed the value of A then V is automatically defined;
however, this need not be true in a curved spacetime.
The familiar embedding diagrams of stars [9] illustrate
this idea by demonstrating that the volume contained
within a fixed proper surface area may be increased by
the curved spacetime associated with the "star, " as com-
pared to the respective contained volume in flat space-
time (the use of the word "star" will generally refer to the
generic group of gravitationally compact objects, e.g.,
neutron stars, planets, boson stars, monopoles, etc.).

We shall consider false-vacuum decay, and bubble nu-
cleation, associated with a quartic polynomial potential
(in a similar manner to Samuel and Hiscock [6,7]). This
potential is given by

U(P)=m P —i)P +A,P

which we shall refer to as a P potential. This poten-
tial has the attractive feature of being the simplest poly-
nomial potential that allows us to independently vary the
relative energy-density separation of the true-vacuum
state from the false-vacuum state, and the field separation
between the true- and false-vacuum states. For an ap-
propriate choice of parameters (including m, 7), and
k )0), this potential will have a false-vacuum state locat-
ed at /=0, with zero energy density. We shall label the
value of the scalar field at the true-vacuum state by P+,
and the dimensionless vacuum energy density of the
true-vacuum state shall be given by —Z.

We use this potential only to obtain the O(4)-
symmetric bubble profiles associated with the false-
vacuum decay in the absence of a nucleation site (i.e., flat
space). These bubble profiles are then utilized as the
background in the perturbative O(3)-symmetric analysis
of bubble nucleation around a "star." For this reason,
the analysis and results of this paper are not really sensi-
tive to the actual form of the potential used, and are quite
general.

The nucleation site introduced in the background flat
space is a simple model of a boson star (for simplicity);
this is assumed to be only moderately gravitationally
compact so that it may be treated as a perturbation on
the background flat-space metric. The Euclidean action
of a bubble forming about the star is then calculated as a
perturbation on the O(4) solution, obtained by insisting
that the bubble have zero total energy and that its action
be minimized. These resulting O(3) Euclidean actions are
then compared to the O(4) action to see if the presence of
the boson star has enhanced the vacuum decay rate.
While our analysis is restricted to weakly gravitationally
compact objects acting as nucleations sites, it does not in

any way depend on the "thin-wall" approximation
scheme.

The results of this work show that gravitationally com-
pact objects can definitely enhance the bubble nucleation
rate in a first-order vacuum phase transition. Whether
the enhancement of the nucleation rate is physically
significant is found to depend on the relative sizes of the
O(3) and O(4) Euclidean actions and the number density
of nucleation sites available of appropriate size for a par-
ticular transition. For at least one example we have ex-
amined, namely, the possible decay of the present vacu-
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um due to a heavy top quark (or other as yet un-
discovered heavy fermionic species), it appears that O(3)
nucleation would dominate over the O(4) process only if
the mass density of the universe were strongly dominated
by ideal nucleation sites, an unlikely scenario.

II. EUCLIDEANIZED SCALAR FIELD
EQUATION IN THE PRESENCE OF

A GRAVITATIONALLY COMPACT OBJECT

The scalar field equation in Euclidean signature space
may be expressed in the general form

tions, with the O(3)-symmetry of the metric; and even
solutions where $~(false-vacuum value) as
r~(+/' —)oo (for all values of r), where the solution
would again have the O(3) symmetry of the metric. In
this last situation the nucleating bubble might look like a
prolate or oblate spheroid with rotational symmetry
about the v axis. Each of these possibilities would corre-
spond to different sets of boundary conditions.

III. A PERTURBATIVK ANALYSIS OF THE
EFFECT OF A GRAVITATIONALLY COMPACT

OBJECT ON THE NUCLEATING BUBBLE

g
1 /2$(g 1

/2gpvg)p
dU

(3) The line element corresponding to the metric of Eq. (4)
may be written

where g is the determinant of the metric. The solution to
Eq. (3) provides us with the scalar field profile for the nu-

cleating bubble; this solution may then be used to calcu-
late the Euclidean action.

The Euclideanized metric for a static, spherically sym-
metric spacetime containing a gravitationally compact
object may be written (in a [r, r, 8,$] coordinate system)
as

g„„=diag[f(r), h (r),r, r sin 8],
with the determinant

g
1/2 (fh }i/2r 2sin8

(4)

This metric does not in general possess the O(4} sym-
metry of Euclideanized Minkowski space, though it is
O(3) symmetric about the origin of the spatial coordi-
nates. Therefore, the proof of Coleman et al. [8] which
shows that O(4)-symmetric bubbles have the minimum
action in Euclideanized Minkowski space no longer ap-
plies. However, it seems reasonable to believe, and it
shall be our assumption, that the bubbles with the small-
est Euclidean action will have the O(3)-symmetry of the
metric. If we insert the expression for the metric into Eq.
(3) for the scalar field equation, and assume that the sca-
lar field configuration is spherically symmetric (P depend-
ing only upon r and r), we have

18$ 1BQ+1 2 1 df
fag hgr2 h r 2f dr

1 dh BP dU
2h dr Br dP

(6)

This equation is substantially more dificult to solve nu-
merically than any of the equations involved with the
O(4) analysis [6,7], being a nonlinear partial differential
equation rather than an ordinary differential equation.
There is additionally uncertainty about the appropriate
boundary conditions necessary to solve the equation: we
would expect that as r~ oo the field P should return to
the value corresponding to the false vacuum (i.e., $~0
for the P model). However, the boundary condition
for finite r, as r~ oo [and similarly, r—+( —) oo], is uncer-
tain. A "cylinder" solution with the O(3) symmetry of
the metric may have (BP/Br)=0 for all values of r,
which would complete our required boundary informa-
tion. We may also consider oscillating cylindrical solu-

ds =f(r)dH+h(r)dr +r dQ (7)

where dQ is the line element on the unit two-sphere. If
f (r) =h (r) = 1 (i.e., in the absence of a star) the spacetime
returns to its O(4)-symmetric state, and the analysis of
Samuel and Hiscock [6,7] is appropriate for determining
the exact field profile, and Euclidean action of the nu-
cleating bubble.

Consider the situation where we have a star, which is
not too compact, in our spacetime (this would rule out
black holes for example). We may put this notion on a
more precise footing by writing the metric f(r) and h (r)
functions as

and

f(r) =1+F(r) (8)

h(r) =1+H(r),
and demanding that ~F(r)

~
&& 1, and ~H(r)

~
&& 1, for all r.

The star then acts as a weak O(3} perturbation on the
background O(4)-symmetric Minkowski space.

We are now forced to make an important assumption
about the nucleating bubble in the spacetime of the star.
As F(r) and H(r) move away from zero (i.e., from a flat
spacetime to a spacetime corresponding to a very "di-
lute" star), we assume that the nucleating bubble will
move away from its O(4)-symmetric state to an O(3)-
symmetric state, corresponding to the O(3) symmetry of
the metric, in a continuous manner. What we mean by
this is that when ~F(r)~ and ~H(r)

~
are very small, the nu-

cleating bubble will have the form of either an oblate or
prolate spheroid (i.e., we shall consider the lowest, non-
vanishing, multipole perturbation of the O(4) bubble,
which will correspond to the "quadrupole" spherical har-
monics). The perturbations are required to have the O(3)
symmetry of the metric (i.e., the r axis shall be the axis of
rotational symmetry for the spheroid). This assumption
appears to be reasonable as it would seem unlikely that
the O(4)-symmetric bubble corresponding to F=H=O
would, for example, suddenly transform into an infinite
cylinder around the ~ axis, for an infinitesimally small
F(r) and H(r) Such a scenario. would perhaps imply an
instability of the O(4)-symmetric, flat-spacetime bubble to
fluctuations in the metric.

The O(4)-symmetric bubble in the background Min-
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44=4(p» (10)

kowski space (i.e., I' =H =0) has a field profile given by sponds to the nucleating bubble.
The Euclidean action for the nucleating bubble is given

by

with p, the O(4) radial variable, being defined by

p =r+r
We shall now consider the prolate/oblate spheroidal solu-
tion

S,=f d g' [ ,'g—"a„ya„y+U(y)]
2

=8~ h r —— +——1 1 BP 1 1 BP
0 0 2f Br 2h Br

2

(j}3=4[p] (12) + U($) dr dr . (18)

with

p =p + Ap cos 0+Bp sin 0 (13)

T„,=a„kaA ,'g„„g e.4aP——g„.U . —

Taking X to be the ~=0 hypersurface, we will have
do"=(f '~, 0,0,0)der, where do is the three-volume
element, i.e., do =(h ' r sine)dr d8dg, and
t =(1,0,0,0). The expression for the energy then
reduces to (after integrating over the angular coordinates)

E=4vr f r (fh )'~ + U dr . (16)
o 2h Br

As we have taken X to be the ~=0 hypersurface then
the (BPIBr) term vanishes due to a reflection symmetry
of the bubble profile about this hypersurface. The energy
will thus be a function only of the parameter w„, and the
requirement of zero energy (i.e., E =0) will therefore al-
low us to fix this parameter. With w, known, the Eu-
clidean action will now be a function only of the parame-
ter w . Therefore, by evaluating the Euclidean action for
a series of values of w„we may determine the value of w

which extremizes the Euclidean action, and hence corre-

where 0 small be the angle measured from the r axis in
the two-dimensional (r, r) space; i.e., H=arctan(sir).
Thus the solution to the perturbative analysis will require
the determination of the two coefficients A and 8. It will
be convenient for us to rewrite Eq. (13) as

p =w, r +w„r, requiring the determination of the
coefficients w, and w„.

The two constraints which allow us to determine the
coefficients, w, and w„are the requirements that the nu-

cleating bubble have zero energy, and that the Euclidean
action for the nucleating bubble be an extremum. The
energy of the nucleating bubble evaluated on a spacelike
hypersurface X is given by

E=f T„,t'do", (14)

where T„ is the stress-energy tensor for the scalar field,
do." provides the measure for the "surface" integral
(reinembering that this is a three-surface) and is a normal
vector to the hypersurface X, and t" is the time-
translation Killing vector field. The energy defined in
this way is conserved, even for time-varying stress-energy
tensors, so long as the background spacetime contains a
timelike Killing vector field [10].

The stress-energy tensor for a minimally coupled scalar
field takes the form

This expression is considerably simplified for the O(4)-
symmetric bubble, where we may express the Euclidean
action in terms of a one-dimensional integral, associated
with the O(4) radial variable, p. This gives

S@[O(4)]= 2m—fp U(P)dp . (19)

The O(3) Euclidean action for a bubble may be calculated
using Eq. (18), and the value of w, fixed by minimizing
the Euclidean action. The resulting zero-energy, mini-
mized action O(3) bubble may then be compared with the
"background" O(4) bubble, with action calculated using
Eq. (19). If the O(3) action is smaller than the O(4) ac-
tion, then the "star" is successfully acting as a nucleation
site for the vacuum phase transition.

Thus we have a framework by which we may perform
a perturbative analysis of the effects of a gravitationally
compact object on false-vacuum decay. In order to per-
form an actual calculation, however, it will be necessary
to have the metric functions f (r) and h (r) for the star.

IV. THE METRIC FUNCTIONS FOR
A "TOY"BOSON STAR

It would not be sensible to construct a realistic stellar
model as a first step in an attempt to model the effects of
a gravitationally compact object on false-vacuum decay.
This is because the determination of the metric functions

f (r) and h (r) for a realistic stellar model is quite a com-
plex task, requiring a knowledge of the equations of state
for the matter that comprises the star, for example.
While we have some knowledge of the nuclear equation
of state at densities relevant to neutron-star models, we
have little detailed knowledge of the equation of state for
possible microphysical compact objects, such as boson
stars or monopoles. What we require is a simple model
star, ~here we are not overburdened by a large number of
free, stellar parameters; thus a simple model which would
only have two parameters such as the mass of the star
and the "compactness" of the star would be appropriate.

Further, we may expect (and this will later be verified)
that if a star is going to have a significant effect on the
nucleating bubble, then the size of the star would have to
be comparable to the size of the nucleating bubble. In a
cosmological setting this would imply that the star would
have to have a size corresponding to a "grand unified
length scale"; thus we are dealing with "stellar" candi-
dates such as boson stars and monopoles. The model star
should also be a reasonable model for these candidates.

One exact analytic solution to the Einstein equations
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which is an obvious candidate for our model is the interi-
or Schwarzschild solution, which represents a constant
density star. These solutions are, however, undesirable
for our model "star" because they do not act as good
models for boson stars and monopoles. Also, the radial
derivatives of the metric functions f (r) and h (r) are not
continuous at the stellar boundary; this may lead to com-
plications in the numerical analysis, which would not be
an attractive feature in an initial model.

The following functions will be used for the metric of
the "model star":

M(r) =a 1 —exp
r

2Ky

3

(23)

where M (r) is the usual mass function defined in terms of
the metric function h (r) by M(r) =r(h —1)/(2h ). This
expression gives the mass of the star contained within the
radius r, so

M(r~ as )=a. ,

and the fraction of the mass contained within the
"boundary" of the star is given by

h(r)=
2K

1 — 1 —exp
y

2K
1—,r &2Ky,

y

r
2Ky

3 (20)

(21)

M(r=2ay)=(1 —e ')=63% . (25)

The (t, t) component of the stress-energy tensor for the
metric provides the information about the local energy
density for the matter which comprises the star. This
may be expressed in terms of the metric h (r) function us-
ing the Einstein equations

f(r)= .
e 1/2

1 — exp
y . 2 2Ky

'2

r &2Ky . (22)
E 1 dA 1 1—8m T,'= + 1 ——

yh2 dr y2 h

For the metric under consideration this reduces to

(26)

These metric functions are desirable because they possess
a simple algebraic form; they are continuous, together
with their derivative functions (i.e., suSciently smooth to
realistically model a boson star); they have a small pa-
rameter space (i.e., only two parameters a and y); and
generally provide a qualitatively reasonable and tractable
model for a stellar candidate such as a boson star (see, for
example, Seidel and Suen [11] for a discussion of boson
star metrics).

The mass of the star is given by the parameter K, and
the parameter y represents the compactness of the star.
As is typical of boson stars, this model does not possess a
well-defined boundary; however, a characteristic size of
the star [as we may observe below in Eq. (23)] is given by
2Ky; this illustrates the role that y plays in representing
the compactness of the "star."

We may write the mass function for the star as

3—T,'=P=
2 3exP

32&K y

y

2Ky

'3

(27)

where p represents the energy density of the stellar mod-
el. This tells us that we have an exponentially decaying
positive energy density as we move away from the center
of the star. Figures 1 —3 display the metric function f (r),
the mass function M(r), and the corresponding energy-
density function p(r) for the model star as functions of r,
with parameters K= 1, and y =5.

The metric function f (r) is piecewise constructed such
that "outside" the star (i.e., r )2ay) the metric function
corresponds to the exterior Schwarzschild solution.
[N.B. The metric function h(r) does not correspond to
the Schwarzschild solution "outside" the star; thus the
exterior is not described by the vacuum Schwarzschild
solution. ] At r =2ay an interior function which is
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FIG. 1. Metric function f(r) for a model boson star with
metric parameters re= 1.0 and y =5.0; this would result in a di-
mensionless stellar radius r„„=10.
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FIG. 2. The stellar mass function M(r) with metric parame-
ters re=1.0 and y=5.0.
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FIG. 3. The energy density for the matter comprising the
star as a function of radius, with metric parameters ~= 1.0 and

y =5.0.

V. RESULTS

Figure 4 shows the ratio of B3 to B4 (evaluated numer-
ically) as a function of the stellar mass a for a series of

analytically simple and roughly appropriate to the
description of a boson star is joined to the exterior
Schwarzschild function so that the overall metric func-
tion f (r) together with its derivative df /dr are continu-
ous at this point. The form of the interior function is
such that it admits a minimum value for the y parameter,
beyond which the perturbative analysis intrinsically
breaks down. This value occurs at y=e' =-1.65, for
which f(r =0)=0 [i.e., F(r) = —1, which strongly
violates the condition, ~F(r)

~

&& 1, necessary for the per-
turbative analysis]. Of course, the validity of the pertur-
bative analysis will be brought into question before this
value of y is reached.

values of y; the scalar field potential parameters are held
fixed at the values of 8= 1.0 and P+ = 1.0. B3 is the Eu-
clidean action for the bubble in the spacetime of the grav-
itationally compact object and B4 is the Euclidean action
for the bubble in the background Qat spacetime. Note
that, as the analysis adopts a fixed background spacetime,
there is no contribution from the spacetime, as such, to
the value of B (the difference between the Euclidean ac-
tion for the spacetimes with and without the nucleating
bubble); we may therefore write B3=S3 and B4=S~.

We observe a phenomenon which may be described as
a "resonance" for the B3/B4 curves. As the mass of the
star goes to zero the Euclidean action of the nucleating
bubble approaches the O(4)-symmetric value, as would be
expected. Similarly, for large mass stars, with a constant
value of y (e.g., this might correspond to microscopic
bubble forming at the center of the Earth), the Euclidean
action for the nucleating bubble approaches the O(4)-
symmetric value. However, there is a range of masses for
which the O(3) Euclidean action of the nucleating bubble
drops significantly below the O(4)-symmetric value. The
prominence of this drop away from the O(4)-symmetric
value increases with a decrease in the value of y; i.e., the
effect increases with an increase in the compactness of the
star. The value of ~ at which the minimum in the Eu-
clidean action occurs is dependent upon the compactness
of the star, i.e., upon y; we shall later find the exact rela-
tionship between ~ and y for the minimum in the Eu-
clidean action.

Figures 5 and 6 show the m, and m„values correspond-
ing to the metric and potential parameters of Fig. 4.
These curves imply that the minimum action O(3) nu-
cleating bubble is a prolate spheroid [prolate in the rr-
Euclidean space; the bubble is of course still O(3) spheri-
cally symmetric]. The O(3) radius (i.e., the size of the
bubble on the r=0 slice) is slightly less than the corre-
sponding radius for the O(4)-symmetric bubble (i.e.,
w„) 1). We may think of this as the effect of the gravita-
tional field of the boson star "pulling in" the bubble wall.
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FIG. 4. The ratio of the O(3) to O(4) Euclidean actions
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(83 /B4 ) against (2ay ) to provide some insight into the
relationship between the stellar size and the minimum
Euclidean action O(3) bubble. Figure 8 provides such a
plot in which we have superimposed the solution curves
corresponding to two sets of potential parameters: name-
ly, K=1.0 and 8=0.2, both with it+=1.0. The first
thing that is noticed from Fig. 8 is that the maximum de-
crease in the Euclidean action always occurs at roughly
the same value of (2~y) for a given set of potential pa-
rameters. In particular, if we refer to the size of the
O(4)-symmetric bubble for the given set of potential pa-
rameters, we notice that the maximum decrease occurs
when the star is roughly half the size of the nucleating
bubble. This is roughly what one would expect from gen-
eral intuitive arguments. Again, as with Fig. 4, the max-
imum decrease in the O(3) Euclidean action increases
with an increase in the compactness of the star; this also
agrees with general intuitive arguments.

For the scalar field potential parameters under con-
sideration, a stellar compactness of y=5 results in a
characteristic 4% to 5% reduction in the Euclidean ac-
tion of the nucleating bubble, as compared to the O(4)-
symmetric bubble action. This is in qualitative agree-
ment with the predictions of the "thin-wall" analysis. It
is not possible to make a direct quantitative comparison
between the perturbative results and the "thin-wall" re-
sults due to fundamental differences in the approxima-
tions used in the formulation of the two analyses. How-
ever, the "thin-wall" analysis of Mendell and Hiscock, in

which the effect of a neutron star on false-vacuum decay
was considered, resulted in values of B3 which were
characteristically 30% to 50% lower than 84. If we con-
sidered smaller values of y in the perturbative analysis
(i.e., more compact stars) then we might expect reduc-
tions in B3 which would be closer to the "thin-wall"
analysis. However, the validity of the perturbative ap-
proach may then be brought into question.

The "thin-wall" analysis of Hiscock, and Mendell and
Hiscock, considered solutions to the coupled Euclidean-
ized scalar field and Einstein equations (via the Israel for-
malism) which had the form of infinite, oscillating
cylinders, where the ~ axis was the axis of symmetry.
The perturbative analysis has shown that the nucleating
bubble, at resonance, takes the form of a prolate spheroid
[Fig. 7 illustrates the evolution of the O(4)-symmetric
bubble in the flat spacetime to the form of a prolate
spheroid in the stellar spacetime]. The extent of this pro-
lation is increased with an increase in the stellar com-
pactness. It is therefore conceivable that a transition
takes place where the nucleating bubble transforms from
a prolate spheroid to an oscillating cylinder of the "thin-
wall" analysis for a sufficiently compact star.

We may now address the question of whether gravita-
tionally compact objects will have a significant effect on
false-vacuum decay.

VI. FALSE-VACUUM "DECAY RATE"
IN THE PRESENCE OF A

GRAVITATIONALLY COMPACT OBJECT

In an O(4)-symmetric spacetime, the nuinber of O(4)-
symmetric nucleating bubbles per unit four-volume, asso-

ciated with false-vacuum decay, is given by

I =He (31)

where B4 is the difference between the Euclidean action
for the spacetime with and without the nucleating bubble.
The coefficient 3 typically has an order of magnitude
given by the field mass to the fourth power, i.e., m .

For example, if we had a square box with sides of
length L, and volume L, the characteristic time that one
would have to wait for a nucleating bubble to appear is

T=L m e
B

4 (32)

B3
T3 =Ce (33)

where the coeScient C typically has an order of magni-
tude given by m '. If there is more than one star in the
spacetime then we may make a "dilute-gas" approxima-
tion in order to calculate T3. The dilute-gas approxima-
tion basically assumes that the stars do not interfere with
one another, with regards to the bubble formation pro-
cess. This requires the typical distance between the stars
to be much greater than the characteristic size of the
stars, and also much greater than the characteristic size
of the nucleating bubbles. Thus the spacetime "between
the stars" is also approximately flat.

If there are X similar stars (i.e., same values of x and y
within our stellar model) in an otherwise empty space-
time, and B3 is the Euclidean action associated with the
formation of a nucleating bubble around a star, then the
characteristic time for a single bubble to form around one
of the stars is

T =N 'm 'e B
3 (34)

To address the question of whether gravitationally
compact objects play an important role in false-vacuum

decay, it is necessary to compare to characteristic times
for nucleating bubble formation, i.e., T3 and T4. Thus, if

Of course, the nucleating bubble may appear anywhere
within the box; there is no preferred location for the for-
mation of the bubble. However, when we consider the
effect of a gravitationally compact object on false-vacuum
decay, we make the assumption that the bubble will be
forming around the compact object. The nucleating bub-
ble field profile and Euclidean action are obtained under
this assumption. We must therefore use a modified form
of Eq. (32) to calculate the characteristic time associated
with the formation of a nucleating bubble around the
compact object. Of course, the nucleating bubble could
form anywhere within the stellar spacetime. However,
the Euclidean action B3 and the associated "decay rate"
formula relate to the formation of the bubble around the
star. We may use, as a good approximation, Eq. (32) to
estimate the rate of bubble nucleation in a stellar space-
time for bubbles not forming around the star.

If we place one compact object (star) into our originally

fiat, O(4)-symmetric spacetime, where the Euclidean ac-
tion for a nucleating bubble around the star is given by

B3, then the characteristic time associated with the for-
mation of the nucleating bubble around the star is



GRAVITATIONALLY COMPACT OBJECTS AS NUCLEATION. . .

T3 4 T4 then bubbles formed about gravitationally com-
pact objects will dominate the false-vacuum decay pro-
cess. However, if T3 & T4 then gravitationally compact
objects will not play an important role in false-vacuum
decay. It is not sufhcient merely to compare the values of
B3 and B4 in order to determine the dominant mecha-
nism for false-vacuum decay.

Consider a spacetime with three-volume V and N simi-
lar stars. The ratio of T3 to T4 is given by

T3

T4

Vm
exp(B3 —B~) . (35)

83=(1 a)B4 . — (36)

The perturbative analysis performed within this paper re-
sulted in deficit parameters in the region of a=0.05,
whereas the "thin-wall" analysis of Hiscock resulted in
larger deficit parameters (e.g. , a=0.25) associated with
black holes. The analysis of Mendell and Hiscock was
able to generate even larger deficit parameters, within a
"thin-wall" analysis, but the model "star" that they used
would be a very unrealistic model of a "microscopic"
gravitationally compact object.

For known values of m, 83, and B4, this expression pro-
vides us with the number density of "stars" needed for
the gravitationally compact objects to play the dominant
role in false-vacuum decay [i.e., stars will play the dom-
inant role in the decay mechanism if (N/V)
& m exp(B3 —B4)].

As an example, we may apply the above analysis to
possible first-order false-vacuum decay associated with a
phase transition at the electroweak scale. The form of
the electroweak potential is strongly dependent upon the
mass of the top quark (see, for example, Mahanthappa
and Sher [12], and Flores and Sher [13]). For a
suSciently "light" top quark, our current vacuum state is
a true-vacuum state, and therefore stable. However, for a
more massive top quark, our current vacuum state is ren-
dered a false-vacuum state, and therefore unstable to
quantum decay.

As the shape of the electroweak potential is a function
of the top-quark mass then the lifetime of a possible
false-vacuum state will be a function of the top-quark
mass. We know that our current vacuum state has been
in existence for about 10' yr, and so this allows us to
place an upper bound upon the mass of the top quark
(e.g., the mass of the top quark cannot be so large that it
would have resulted in a false-vacuum decay after a few
seconds).

We may therefore ask whether nucleated false-vacuum
decay is likely to play a dominant, or important, role as-
sociated with a possible false-vacuum decay at the elec-
troweak energy scale, at this current epoch within the
Universe, if the mass of the top quark is assumed to be
large enough that we are currently living in a supercooled
false-vacuum state.

Let us write the Euclidean action associated with a
bubble nucleating around a gravitationally compact ob-
ject [an O(3) bubble] in terms of the Euclidean action for
an O(4) bubble, and a "deficit" parameter a:

(37)

where n,„ is the maximum allowed number density of
nucleation sites.

For the nucleation process to dominate over the spon-
taneous creation of bubbles, we require a number density
of nucleation sites given by

n„q &m exp( aB4) . — (38)

Inserting m =10' cm ' and a=0.25 (from the "thin-
wall" analysis of Hiscock) into Eq. (38), and setting
B&=400, the value associated with O(4) spontaneous
bubble nucleation and false-vacuum decay at the present
epoch [i.e., from placing T~=10' yr into Eq. (32), and
solving for Bz], we find

n„q) 10 cm (39)

which is much greater than the observationally allowed
value of 10 cm . Thus we conclude that nucleated
electroweak false-vacuum decay at this current epoch
within the Universe is far less likely than spontaneous
false-vacuum decay. It should be pointed out that this
sort of conclusion is very strongly dependent on the par-
ticular value of a; if we had assumed that an O(3) action
decrease corresponding to a=0.5 were possible in this
case, then the limit would be much weaker: n„& 10
cm . This strong dependence illustrates the need for
further exact O(3) Euclidean action calculations (without
the use of the "thin-wall" or any other approximation)
for physically interesting vacuum phase transitions.

VII. CONCLUSIONS

We have found that gravitationally compact objects
such as "stars" can have the effect of reducing the Eu-
clidean action for the nucleating bubble of a first-order
phase transition, as compared to the Euclidean action in
the absence of the star. Thus, such objects will act as nu-
cleation sites. Within the perturbative analysis, the
reduction in the Euclidean action is seen to be at its

We shall assume an optimal scenario where the entire
mass density within the Universe is in the form of "op-
timal" nucleation sites, and where the deficit associated
with the nucleation sites is a. To obtain an estimate of
the mass of a nucleation site we shall assume that it is a
black hole, with a Schwarzschild radius equal to the
characteristic length scale of the field undergoing the
phase transition (i.e., the electroweak scale). Thus the
gravitationally compact object mill be comparable in size
to the nucleating bubble, which is required for it to act
ef6ciently as a nucleation site. As the size of the black-
hole nucleation sites are known, then their mass is also
known (i.e., a characteristic length scale =10 ' cm, giv-
ing a characteristic mass for the nucleation sites
M„„,=10' g).

The maximum allowed mass density of the Universe,
within observational constraints, is p,„=10 gem
this gives a bound on the maximum number density of
nucleation sites:
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greatest when the size of the compact object is compara-
ble in size to the nucleating bubble, and the reduction in
the Euclidean action increases with an increase in the
compactness of the star. As characteristic sizes of nu-
cleating bubbles are given by the characteristic mass scale
of the field undergoing the phase transition, for any real-
istic cosmological phase transitions, possible candidates
for nucleation sites would have to be microscopic in di-
mensions. For example, if the electroweak phase transi-
tion was a first-order transition, then the most effective
nucleation sites would have a size corresponding to an
energy scale of 10 GeV, i.e., of the order 10 ' cm. Bo-
son stars, topological defects such as grand-unified-theory
(GUT) monopoles, and microscopic black holes seem to
be the only plausible candidates for such nucleation sites.
The importance of nucleation sites to false-vacuum decay
is strongly dependent upon their number density within
the Universe. Bubble nucleation associated with false-
vacuum decay may occur anywhere within the Universe;
however, nucleated decay may, by definition, only occur
at the nucleation sites. It may often be the case that,
though bubble nucleation is more diScult without a nu-
cleation site, there is far more empty "space" for an O(4)
bubble to nucleate in than the corresponding few number
of nucleation sites for O(3) bubbles (i.e., there is a com-

petition between "ease of nucleation" and "available
space" for nucleation). Certainly, for false-vacuum decay
at the electroweak scale in the present epoch (caused by
heavy fermions), the number density of nucleation sites
required so that nucleated decay would be the dominant
process is such that we would have to have more than the
observed mass density of the Universe within nucleation
sites.

The results of this work, obtained using perturbation
theory about the O(4)-symmetric Euclidean bubble solu-
tions, but without using the generally suspect "thin-wall"
approximation, show that gravitationally compact ob-
jects can definitely enhance the bubble nucleation rate in
a first-order vacuum phase transition. Further work, in
which the full O(3) scalar field equations are solved nu-
merically (i.e., without using perturbation theory or the
"thin-wall" approximation), is clearly called for.
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