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The existence of structures on large (say, 100 Mpc) scales and limits to anisotropies in the cosmic mi-

crowave background radiation (CMBR) have imperiled models of structure formation based solely upon
the standard cold-dark-matter scenario. Novel scenarios, which may be compatible with large-scale
structure and small CMBR anisotropies, invoke nonlinear fluctuations in the density appearing after
recombination, accomplished via the use of late-time phase transitions involving ultralow-mass scalar bo-
sons. Here, we study the statistical mechanics of such phase transitions in several models involving nat-

urally ultralow-mass pseudo Nambu-Goldstone bosons (PNGB's). These models can exhibit several in-

teresting effects at high temperature, which we argue are the most general possibilities for PNGB s.

PACS number(s): 98.80.Cq, 05.70.Fh, 12.10.Gq

I. INTRODUCTION

As the Universe is probed on larger scales, evidence for
very-large-scale structures seems to be emerging. Voids,
filaments, and walls on scales as large as 100 Mpc have
been observed in various redshift surveys [1]. The ex-
istence of these structures, constraints on the anisotropies
of the microwave background temperature [2], and the
existence of quasars at redshifts larger than 4 [3],make it
extremely difficult to understand the origin of large-scale
structure within the framework of the standard gravita-
tional instability theory, i.e., cold dark matter with densi-
ty perturbations coming from inflationary models [4].

Many of the constraints on structure formation models
can be obviated if a mechanism could be found which al-
lows for density inhomogeneities to appear at a redshift z
satisfying z„,)z))1 with 5plp-1 (here z„,-1000 is
the redshift at recombination). In this case, the perturba-
tions will not affect the cosmic microwave-background
radiation (CMBR} directly (but may have significant in-
direct effects) yet structures on large scales will have am-
ple time to grow so as to satisfy the constraint coming
from quasar observations.

Taking our cue from the fact that sources of density
fluctuations may arise from the effects of phase transi-
tions, it is interesting to ask whether phase transitions
could occur at late times (i.e., after decoupling) in such a
way as to generate large density fluctuations. This is not
a new idea. Wasserman [5] showed that the existence of
a first-order phase transition at late times could generate
large fluctuations due to bubble collisions. Hill,

Schramm, and Fry [6] proposed the idea of domain-wall
formation in late-time phase transitions in the context of
ultralow-mass pseudo Nambu-Goldstone bosons that can
readily occur in a wide class of models [7—9]. The impli-
cations of late-time phase transitions with soft domain
walls has been a subject of considerable activity in recent
years [10].

Press, Ryden, and Spergel considered the possibility of
a slow-roll transition in a soft-boson model [11], which
not only drove structure formation, but also implied that
the dark matter is the residual oscillations of the field
about the potential minimum. Schramm and Fuller [12]
have also considered such scenarios within the context of
Majoron models [13]. These different approaches have a
common theme: Ultralow-mass particles, typically spin-0
bosons, are a generic component of all such models.

The most familiar spin-0 particles occurring in nature
are the m mesons. The scale of the masses of the pions in
comparison to the scale of nucleon mass is small:
m (&mz. This is well understood: the pions are pseu-
do Nambu-Goldstone bosons (PNGB's) associated with
the dynamical breaking of fermionic chiral symmetries.
In the limit of vanishing up- and down-quark masses,
m„d ~0, the pion masses go to zero, m ~0, and the
pions become exact Nambu-Goldstone bosons (NGB's}.
Most of our intuition about PNCzB's derives from this es-
tablished system, which is one of the most profound in
elementary-particle physics. We will exploit and develop
the analogy with this system in greater detail in Sec. IV.
The basic lesson is that many continuous (perhaps ap-
proximate) global symmetries may exist in nature that are
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spontaneously broken, and have associated NBG's (or
PNGB's) with phenomenological implications.

One such example is the familiar axion [14], a hy-
pothetical PNGB associated with the Peccei-Quinn (PQ)
U(1) symmetry. The PQ symmetry is broken by QCD in-
stanton efFects and the axion thus develops a small mass,
m;„=O(m f If,„;,„), where one conventionally as-
sumes f,„;,„—10' GeV. Thus, the Compton wavelength
of the axion is measured in centimeters, requiring the
construction of macroscopic microwave cavities as detec-
tors. Of course, since very-low-mass particles such as the
axion are very difficult to detect, few theorists spend their
time trying to invent new ones. However, the axion,
which is a respectable, if not desirable, theoretical entity
portends an important lesson: the physical world may
contain many new phenomena in the far infrared which
are not directly accessible, but nevertheless may play an
important role in nature.

A generalization of axions to a class of PNGB's with
masses of order m f, ;,„/f has been analyzed in some de-
tail [7]. Remarkably, if one associates m r„;~„
-m„,„,„„,-0.01 eV and f -Moirr —10' GeV, one ar-
rives at a cosmologically interesting scale A, —flm„—1

Mpc. This can lead naturally to a late-time phase transi-
tion.

Embedded into theories that contain NGB's or
PNGB's is our only rational guideline in thinking about
ultralow-mass particles: the principle of "naturalness. "
In this regard, the mass scales of such particles must not
be fine-tuned, and must appear as a consequence of some
plausible mechanism. 't Hooft first gave a concrete
definition of the principle of naturalness: a parameter is
"naturally" small if, when it is set to zero, the symmetry
of the Lagrangian is increased [15]. In this case, the pa-
rameter will be multiplicatively renormalized and will
remain small to all orders of perturbation theory. While
the cosmological applications are insensitive to whether
or not a given model Lagrangian has been fine-tuned, the
form of any given low-energy efFective Lagrangian, or its
finite-temperature corrections, will be strongly influenced
by the symmetries of the interactions of the full theory,
and therefore we focus on natural models.

More generally, there are two versions of the natural-
ness principle: (1) "strong naturalness, " in which the
very-low-mass scales must emerge on the grounds of sym-
metry and dynamics without the input of any large
hierarchy (for example, technicolor theories respect this
principle as a means of generating the hierarchy involv-
ing the lV mass and the Planck mass, Ms /mpi —10
although they have difhculty accommodating the ob-
served large quark and lepton masses); (2) "weak natural-
ness, " in which one inputs a large hierarchy ab initio,
which is then protected by a symmetry in the theory from
being overturned by radiative corrections (for example,
supersymmetry operates in this mode of protecting the
hierarchy Ms lmpi, and "chiral" symmetries protect
small ratios like m„„,„„,/m„„,„~10 ).

The axion falls into the category of strong naturalness,
since it would be an identically massless particle by virtue
of a symmetry principle if it were not for QCD efFects (in-
stantons) which spoil the symmetry and are operant at

energy scales of about 1 GeV [the QCD scale arises natu-
rally from, e.g., any grand unified theory (GUT) upon
specifying a&cD at the GUT scale]. Other kinds of
PNGB's, having masses given by approximate expres-
sions such as m&-m&, ;,„lf, where the decay constant

f can be viewed as large, say 10' to 10's GeV, are techni-
cally naturally low-mass particles [7]. Here, the boson
mass is protected by fermionic chiral symmetries such
that if mfe~jo 0 then m& vanishes to all orders of per-
turbation theory.

Theories with naturally low-mass particles should be
contrasted with theories where a small mass is unnatural.
From a particle theorist's point of view, the model of
Press, et al. [11],suff'ers from being unnatural. The La-
grangian they considered assumes a mass term for a sca-
lar field multiplet that is fine-tuned to be of the order of
(30 kpc) ', yet the field is assumed to have normal in-
teractions with other particles. In any quantum-field-
theoretic version of the model this would lead to an addi-
tive quadratic divergence in the mass term. Thus, to
maintain the small mass term one must fine-tune the
theory in each order of perturbation theory.

As a general laboratory for the statistical mechanical
phenomenology of PNGB's, we will focus on the models
developed by Hill and Ross [7]. These models have a
light PNGB P which couples to fermions. The efFect of
these fermions is to induce a potential for P, which can
lead to a phase transition. These models are very simple,
but we believe that they are sufficiently general to imitate
any kind of PNGB dynamics. For example, the Zz mod-
els for N &2 lead to a phase transition analogous to the
axion case. We remark that in this analysis we will not
include the potential effects of anomalies, aside from
briefly indicating in Sec. IV how they arise in PNGB
physics.

The interesting setting for these theories in a cosmolog-
ical context is one in which the fermions are the light
neutrinos and P is a NGB associated with symmetries of
the neutrino masses. We will discuss this below in the
context of PNGB's associated purely with hypothetical
Dirac mass terms, as well as those associated with Ma-
jorana mass terms [13,16]. The critical temperature of
the transition in some cases is either naturally of the or-
der of, or determined by, the small masses of the neutri-
nos, and as such would be rather small compared to the
usual scale of critical temperatures in particle-physics
models.

The purpose of this paper is to understand the statisti-
cal mechanics of PNGB phase transitions. As a "straw
man" the first and simplest case we present in Sec. II is
an unrealistic one. The model presented in Sec. III is
more realistic but technically unnatural; it does however
illustrate several features that will be present in more so-
phisticated models. It is analogous to a Coleman-
Weinberg [17] efFective potential with thermal or finite-
density corrections coming from relic neutrinos, and it
has some striking features in common with slow-roll
inflationary schemes. Section IV contains a discussion of
the motivation for neutrino PNGB models. In Sec. V, we
review the Z2 model where we give a standard compu-
tation of the effective potential in the tadpole formalism
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(which we use throughout) [18]. We then study the
finite-temperature effects for this model. The usual trick
of using the high-temperature expansion in order to
determine T& is unreliable and more delicate methods
must be used. We then generalize the Z2 model to Z&
models, which softens the fermion loop effects in the UV.
We find that these models do not undergo a conventional
phase transition. The potential "turns on" at low tem-
peratures in analogy to the axion case. We summarize
our results in the final section.

II. SELF-INTERACTING SCALAR MODEL
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Let us review a phase transition associated with a sim-

ple model consisting of a single real scalar field P with a
classical potential of the form

Vo(p) = ,'mop—+—,'A,op— (2.1)

The classical potential Eq. (2.1) has minima at P=io,
where cr =/m 0/Ao. The mass of the scalar field is relat-
ed to the curvature of the potential at the minimum:

d Vo(P)
my=

p2
=2m p =2k,pa. (2.2)

This is a very simple model that illustrates the phenome-
na of phase transitions and domain-wa11 production. The
calculation of the critical temperature of the phase transi-
tion in this model is well known and completely straight-
forward. We review it here to establish some notation
and definitions that will be of use in the more complicat-
ed models discussed below.

Questions of symmetry breaking, symmetry restora-
tion, finite-temperature effects, etc., are best studied by
considering the "effective potential. " This will account
for the quantum effects of virtual particle emission and
absorption, as well as the effect of emission and absorp-
tion of particles from the thermal background. Methods
of calculating the effective potential are well developed.
In one prescription the evaluation of the potential in-
volves shifting the field by an arbitrary amount (say
/~/+A), and evaluating the "tadpole" diagram of Fig.
1(a) in the shifted theory. In this formalism the effective
potential to one loop is

V(y) = V,(y) f dy r—'" (2.3)

where I'" is simply a factor of i times the tadpole dia-
gram of Fig. 1(a} in the shifted theory. In the shifted
theory the potential is

Vo(P) = —
—,'mo(P —P) + —,'A, (Q —Q) (2.4)

d k 6Ap
2 (2m ) k' —( —mo2+3AP)

(2.5)

Integrating with respect to P and rotating to Euclidean

which results in a coupling constant for the cubic term of
A,P and a mass squared of —mo+3A, P7. Evaluating the
tadpole of Fig. 1(a), I'" is simply

FIG. 1. Tadpole diagrams used in calculating the effective
potential. Dashed lines represent bosons and solid lines
represent fermions.

momentum k, the one-loop correction to the potential is

d4k
V&(P)= —,

' f ln(k —mo+3AP ) . (2.6)

( —mo+3AQ }+ ln
64

—m +3AP

A
(2.7)

where a and b include terms proportional to A. These
constants will be determined by renormalization condi-
tions, e.g., by the definition of a renormalized mass m and
a renormalized coupling constant A, . After renormaliza-
tion, the zero-temperature, one-loop potential may be ex-
pressed as

MV)(P)= M (P) ln
64m p

(2.8)

where p is an arbitrary mass scale which can be related to
the renormalized coupling constants, and
M (P }= —m o +3k/ is the mass as a function of P.

The finite-temperature [19]corrections to the potential
arise from the interaction of the P field with the ambient
background. To calculate the effect of the background,
one computes the quantum corrections to the tree-level
potential of Eq. (2.1}, taking into account the fact that
the background influences the P propagator. That the
background should have an effect at the one-loop level is
easy to see, since evaluation of the effective potential in
the one-loop approximation involves evaluation of the
tadpole diagram of Fig. 1(a), which in turn involves the P
propagator. The P propagator is influenced by the distri-
bution of real particles in the background.

If the phase-space density of the P's is denoted by
f&(k), the P propagator (in the real-time formalism) be-
comes

This expression of course is divergent and it is necessary
to cut off the integral at k =A, with the result

V(p) = Vo($)+ V)(p)

= ——m P + AP +—aP +bP1 2 2 1

2 ' 4
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V(P) = Vo(P)+ V)(P)+&Vr(P) . (2.10)

The temperature-dependent part of the propagator adds
to I'" a term

d kI '"=——f 6A$2nf (k)5(k —
(
—m +3K@7)) .

(2.1 1)

Following through the integration with respect to P, rota-
tion of Euclidean momentum k, and integration over d k,
one obtains the (finite) result

T4
AVr($)=, f dx x'

2m'

Xln[1 —exp[ +x +M (P—)/T ]],
(2.12)

where again, M (P)= —mo+3A, P .
To demonstrate that there is a phase transition and to

calculate the critical temperature is straightforward. At
zero temperature the minima of the potential are P=+o,
and the curvature at /=0 is negative (i.e., /=0 is a local
maximum). At high temperature b, Vz (P) can be expand-
ed in P, with the leading-order P-dependent term propor-
tional to + T P . Clearly at high temperature the curva-
ture of the potential at /=0 is positive, and indeed /=0
is the true minimum of the theory at high temperature.
We will denote the temperature at which the curvature of
the high-temperature minimum vanishes as the critical
temperature Tc. In the above theory, 8 V/BP evaluated
at /=0 changes sign at a temperature Tc =2cr.

Domain walls are usually formed in phase transitions
where a discrete symmetry is spontaneously broken. The
standard picture for domain-wall formation assumes the
scalar field is zero above Tc. This is because at high tem-
peratures /=0 is the global minimum of the potential,
and furthermore, the mass of the field at high tempera-

Dr(k)=&(k M—) '+2mfp(k)5(k M— ) .

Consider the part of the momentum integration of the
tadpole diagram for emission and absorption of a particle
on shell (k =M ). There is no way to diff'erentiate be-
tween the possibility that the absorbed particle is the vir-
tual particle emitted, or the absorbed particle comes from
the background. The second term in Eq. (2.9) accounts
for the latter possibility.

Clearly the effect of the background particles depends
upon their phase-space density. If the P's are in thermal

equilibrium, they will be distributed in phase space ac-
cording to the Bose-Einstein distribution
f&(k)=[exp(E/T) —1] ', where E=+~k~ +M For.

the moment, we will make the assumption that the
phase-space distribution of the P's are described by the
equilibrium expression.

In the one-loop approximation, the potential is a sum
of the tree-level potential Vo(P) given by Eq. (2.1), a
zero-temperature one-loop correction V&(P) of Eq. (2.8),
and the temperature-dependent one-loop potential
b, Vr(P) [20]:

ture is large (of order A. T). It is the large mass that pins P
to the high-temperature minimum. Then below T& ran-
dom thermal fluctuations will kick the field either to the
right or to the left. The direction is uncorrelated on
scales larger than the correlation length given by the in-
verse of the (temperature-dependent) P mass. It is possi-
ble that after the phase transition there are fluctuation re-
gions in which the field will undergo a transition between
vacua. However for the weakly coupled fields we will
consider this will not occur. After the transition is com-
plete, regions of the Universe in different minima will be
separated by a domain wall. This scenario depends upon
the fact that as the phase transition starts, P is localized
at a low-temperature maximum, which is also a high-
temperature minimum.

Note that Tc/m&=v'2/A. . Thus, it appears that by
making A, suSciently small, one might have a late-time
transition generating soft walls. Let us explore this
scenario.

Let us assume a generous range for Tc, say
To & Tc & T„„where To is the present temperature,
Tp =2.7 K 2.4 X 10 eV, and T„, is the temperature
at recombination, T„,=0.3 eV. Let us also assume that
the boson has an ultralow mass„m~~10 eV. The
combination Tc~ TO and m&&10 eV leads to the
constraint A. &10 . If this constraint is satisfied, the
model as presented will lead to a late-time phase transi-
tion, and contains soft domain walls with thicknesses of
order m&

' —1 pc.
However, there are two serious problems with the

model. The first problem is that it is unreasonable to as-
sume that a fundamental constant, such as A, , has a value
of 10 without some deeper underlying motivation.
Such a value is unnatural in the technical sense [15] and
is arbitrary. A second diSculty is that with such a small
value of A, it is unlikely that the P s were ever in equilibri-
um and the assumption that they are present in a thermal
phase-space density cannot be justified. Unless the poten-
tial of Eq. (2.1) is augmented by some additional interac-
tion terms, the only processes leading to thermalization
of the P's are P self interactions. The cross section for
these processes in the relativistic limit is
N jflt X /s —k / T, where the last approximation as-
sumed that the average energy of the P is characterized
by a temperature T. If P is in equilibrium and relativistic,

n&
—T, so the interaction rate of the P's is

I;„,-n&o. ;„,-A, T. In the radiation-dominated era, the
expansion rate is H —T /mp&, so I,„,/H-X mp&/T. If
A, =10, the I;„,/H 1 or T 10 mp~ ((To. A
similar conclusion follows for the expansion rate ap-
propriate to a matter-dominated era.

Clearly the assumption that P's exist as a thermal
background cannot be justified. Of course, one might im-

agine that the background is not established through
self-interactions, but rather is the result of some non-
standard (but reasonable) process such as primordial
black-hole evaporation, quantum effects during inflation,
or other such processes.

We will now turn our attention to developing models
where the phase transition is driven not through P self-
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interactions with a background, but rather by P interac-
tions with a background of some other field g, typically a
fermion. The virtue of this complication is that it is pos-
sible to have P-g interactions weak enough to provide a
late-time, soft-wall transition, but the g can have addi-
tional interactions that can establish the background by
thermal interactions.

III. SCALAR FIELDS WITH YUKAWA INTERACTIONS

To the classical potential of Eq. (2.1) we add a Yukawa
coupling of P to a fermion field f [21]:

Vo(0 4)= ,'mo—0'—+ (3.1)

where mp Ap and h are the unrenormalized mass and
coupling constants [22].

Before turning to the temperature-dependent effects,
consider the zero-temperature radiative corrections. The
one-loop correction involves calculation of the tadpole di-
agram of Fig. 1(b) in addition to the scalar tadpole of Fig.
1(a). In the following we will assume that the fermion
loops dominate, which will be true if h &)Ao and ignore
the boson tadpole. The effect of the P-g interaction on
the effective potential is evaluated by calculating the tad-
pole as discussed in the previous section. Upon shifting
the field /~/+A, the mass of the g is M&=hg, and the

P+P vertex that appears in the tadpole is proportional
to h. Thus I'" is obtained from computing the one-loop
tadpole diagram of Fig. 1(b):

1(i) .f d k
Tr h

(2m') k' —h P
(3.2)

Following a procedure similar to the one outlined in the
previous section, one obtains terms in the one-loop
effective potential that are infinite (proportional to a
cutoff A) and terms that are finite. The infinite terms are
dealt with by some renormalization prescription, and the
renormalized, one-loop effective potential is simply

2

2 (hp) ln
16m. p

(3.3)

where p again is an arbitrary mass scale related to the
values of the coupling constants.

Now the effect of a background of real P's on the
effective potential is calculated along the same line as the
previous section. Again the tadpole of Fig. 1(b) is calcu-
lated replacing the fermion propagator by its finite-
temperature expression:

Sr(k)=i(g M~} ' 2v—rf~(k)(@+M~)5(—k M~), —

(3.4)

Z4
bVz.(P)= —4

2 f dxx
2m

X in[1+exp( —Qx +M&/T )] .

(3.5}

In comparison to Eq. (2.12) several differences are obvi-
ous. The overall sign is opposite because there is an
overall sign difference between fermion and boson loops.
The sign difference in the argument of the logarithm
arises from the sign difference in the Fermi-Dirac versus
Bose-Einstein distribution functions. Finally the overall
factor of 4 owes to the trace over y matrices involved in
the fermion loop.

Now let us consider the phase transition. Let us as-
sume that the zero-temperature one-loop potential has a
negligible effect and the curvature at /=0 remains nega-
tive. Expanding Eq. (3.5) for large T,
6Vr((())=+h P T /3. Clearly at high temperature the
curvature of the potential at /=0 will be positive, and
again it will be the global minimum of the potential. %e
again define the critical temperature for the phase transi-
tion to be the temperature where 8 V/BP evaluated at
/=0 vanishes. This results in a critical temperature of
Tclm&=h &3. This expression is very similar to the
critical temperature in the model of the previous section
with the replacement h ~&A,.

Clearly by making h sufficiently small it is possible to
have Tz )&m& for a late-time, soft-wall phase transition.
However the present model is superior to the previous
mode in one important regard: Although the g field driv-
ing the transition must be very weakly coupled to P, it
may have stronger couplings to other fields. These other
(yet unspecified} couplings can be sufficiently strong to es-
tablish g in thermal equilibrium. Therefore, although (()

may be completely decoupled from the thermal bath, its
interactions with the thermal background of f's can re-
store the symmetry at high temperature and lead to a
phase transition.

The model still suffers from the ugly feature of very
small, unnatural dimensionless coupling constants. In
the next section we will describe the physical motivation
for the origin of such small dimensionless coupling con-
stants. The model will have some of the features of the
model of this section. Before proceeding, let us restate
the parameters of the present model. The model has a
scalar field P with mass m& ~ 10 eV. The vacuum ex-
pectation value of the scalar field is o.. The Yukawa cou-
pling of P to a fermion field P results in a mass M& = her.
If h is much larger than the scalar quartic self-coupling,
the phase-transition temperature will be T&-m&/h. If
we want Tc to be larger than Tp, then h ~ 10 . How-
ever we are free to choose u to be as large as desirable,
and to have the g field coupled to other particles with
sufficient strength to establish it in equilibrium.

where here f&
is the phase space density for P. Again let

us assume the phase space density for g is that of a
thermal distribution (i.e., a Fermi-Dirac distribution with
temperature T}. This adds to the one-loop effective po-
tential a temperature-dependent term

IV. PSEUDO NAMBU-GOLDSTONE BOSONS
A. Chiral Lagrangians

The model discussed in Sec. III most simply demon-
strates the basic idea of a late-time phase transition, but it
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suffers from the lack of symmetries that can naturally
give a soft boson mass scale for P without fine-tuning.
Let us now consider models in which these constraints
are implemented [23].

Consider first the low-energy effective Lagrangian
which contains a neutrino field v:

,'a-~pa„y+v, iyv, +V, igv,

+(evt vie'~ f+H c .),. (4.1)

vL, ~e' vL, , vg~e ' vg, P~f+2af . (4.2)

We emphasize that the symmetry is not broken, and is
properly said to be "nonlinearly realized" ( this is often a
confusing point: spontaneously broken symmetries are in
fact equivalent to nonlinearly realized symmetries and are
not really broken symmetries). We remark that chiral
Lagrangians have several important and weil-known
properties: (1) as stated above, they can be embedded
into a fully renormalizeable theory in which, e.g., a U(1)
complex field develops a vacuum expectation value,
( 4 ) =f/&2, and P is then the residual Nambu-
Goldstone boson; (2) X can itself be viewed as renormal-
izeable for a small cutoff A (&f up to suppressed coun-
terterms of order A/f; (3) P will be identically massless
unless terms are introduced which explicitly break the
chiral symmetry; (4) P satisfies "Adler decoupling, " i.e.,
we may replace v everywhere by v':

where vL (vz ) is the left-handed (right-handed) projec-
tion: vL =(1—y5)v/2 (vz =(1+y5)v/2). The factor of
ee'~ can be viewed as arising from the vacuum expecta-
tion value (VEV) of some U(1) complex scalar field 4 that
is coupled as gvL vz4+H. c. In a U(1)-invariant poten-
tial V(4) we assume that 4 develops a VEV of
(4)=fe'~~ /&2, and e=gf /&2 [the factor V 2 assures
that ((} has a properly normalized kinetic term of (BP) /2
coming from the kinetic term of 4,

~
B@~ ].

Equation (4.1) is a "chiral Lagrangian, " possessing the
continuous chiral U(1) symmetry:

X'=X+m cos(tI)/f +8) . (4.S)

By expanding the cos(P/f +8) term about a local
minimum we infer the mass of the P boson,

we include the effects of generic gauge fields that may be
coupled to v (for example, the vt couples to the elec-
troweak gauge fields} then the divergence of the axial-
vector current will contain an axial anomaly
d"vy5y„v=cFF+. . ., and therefore we find that P cou-
ples to the gauge fields through this anomalous term:
—(2f) PcFF. This is an explicit symmetry-breaking
effect coming from quantum loops and it generally leads
to important consequences. For example, the decay
~ ~2y involves this term; the gluon field enters the
divergence of the PQ current ultimately giving a mixing
of the axion to the m, g, and g' from which the axion
mass derives. In principle we should include potential
anomaly effects in our effective potential analysis; howev-
er, we will not do so for a reason: the phase transitions
we consider here occur at very low temperature (or finite
density) and arise from other explicit symmetry-breaking
effects. It is hard to see how anything but the elec-
tromagnetic anomaly could play a role at these low-

energy scales. It is conceivable that an electromagnetic
effect, e.g., in a plasma, might trigger a late-time transi-
tion through the anomaly, but we will not consider this
possibility in the present paper.

Let us now consider the explicit breaking of the sym-
metry by effects other than anomalies. By this we mean
the addition of new terms to Eq. (4.1) which explicitly
violate the nonlinearly realized symmetry of Eq. (4.2).
For example, to the Lagrangian we may add a small mass
term for ((} of unspecified origin. Usually this comes from
some deeper symmetry breaking in the theory which
breaks the continuous U(1) down to a discrete subgroup
Zz. For example, let us break U(1) to its trivial center by
adding a "soft-breaking" term, which is a cosine potential
for P. This implies that P —+P+2nm f remains an invari-
ance. So we now have

i P/2f ~ —i P/2f

and our Lagrangian becomes

(4.3) m~=m /f (4.6)

and there are also further interaction terms such as a A,P
term where

8"Pd P+vL—i jvL+vtI i8v„'
2 A, =m /12f (4.7)

+e(vL vR+H. c. )+ 8 4v'ysy„v
2

(4.4)

and we thus see that P disappears in the mass term but
couples derivatively to the neutrino as 8"Pvy &y„v.
Therefore, for small P momentum q„, P emission or ab-
sorption amplitudes will tend to zero as q„~0 ("Adler
zero"). An implication of this is that P will not mediate a
long-range 1/r force as a consequence of this decoupling
theorem (when the symmetry is broken by a nonchirally
invariant mass term as discussed below, then the Adler
decoupling can be violated and P can mediate a long-
range force, though this requires CP violation [7]).

We remark that at this stage on yet another branch of
NGB or PNGB physics. If we integrate the last term of
Eq. (4.4) by parts we obtain —(2f) 'PP'vy~y„v. Now if

The physical values of A, and m& are proportional to the
ratio m/f, and can be almost arbitrarily small, while

remaining stable under quantum radiative or thermal
corrections. This is "natural" in the sense of 't Hooft
[1S],and is due to the fact that m =0 is a symmetry limit
of the full theory [in which we recover Eq. (4.2}].

For example, with f—10' GeV and m —10 eV we

have m
&
—10 eV, or a Compton wavelength,

fi/m c —10 Mpc. The incoherent particle interaction
rates will be negligible since A, —10 ' ! The Adler
decoupling theorem still holds with soft breaking since it
follows from redefinition of fermion fields. In general, re-
action rates involving P coupled incoherently to matter
will be suppressed, since the cross sections are necessarily
proportional to a power of 1/f . Thus it is difficult, if



45 STATISTICAL MECHANICS OF SOFT-BOSON PHASE TRANSITIONS

not impossible, to excite P in the laboratory, just as the
detection of invisible axions is difFicult. Since reaction
rates that maintain thermal equilibrium of P are of order
T /f, in a radiation-dominated Robertson-Walker
phase we see that the condition that P be in equilibrium is
T /f ~T Imp, or T~f /mp&. Hence, a pure PNGB
such as P decouples very early in the evolution of the
Universe.

What kind of deeper structure can give rise to a mass
term for P? In the case of QCD the proton and neutron
are analogues of the v field, and the pion is the analogue
of P. The deeper structure that breaks the chiral symme-
try is the presence of light-quark masses, which are not
chirally invariant. This leads to the nonzero pion mass
term. However, it is unlikely that the only manifestation
of a deeper symmetry breaking term is merely a mass
term for P. Indeed, in the case of the nucleon-pion sys-
tem, the finite quark masses also lead to a small chiral-
symmetry-breaking term in the proton and neutron
masses (known as the cr term). We can make a strict
analogy to this situation in the present case by adding an
additional neutrino mass term to the Lagrangian, which
explicitly breaks chiral symmetry, in analogy with the
QCD 0 term. The low-energy Lagrangian then becomes

X—28 QdpP+vr IBvr +va lslva

+(evr vie'~ f+mvr va+H. c. )+m cso(glf +8),

)I:me~~'

FIG. 2. Loops that 1ead to induced PNGB mass terms in (a) a
chiral Lagrangian scheme of Eq. (4.8) and (b) the Majorana
scheme of Eq. (4.15).

N —
E

+ g (m+ee'& f+ 'J )v v +H. c.jL jR
j=0

(4.11)

The continuous U(1) chiral symmetry is broken down to
a residual ZN discrete symmetry:

Consider the following Lagrangian containing X Dirac
neutrino species and invariant under a ZN discrete sym-
metry:

(4.8)
vj —+vj+& vN &~vo, P~P+2rrf/N . (4.12)

where the term involving m explicitly breaks the symme-
try of Eq. (4.2). Now, if m ~0 we must also set m ~0 to
recover the symmetry limit of Eq. (4.2). However, a
nonzero m will always be induced by the presence of a
nonzero e and m. For instance, the diagram of Fig. 2(a)
with a cutoff A &f gives an induced term in the Lagrang-
ian

meA
cos(P/f) .

16m.
(4.9)

In the present case we see that the induced scalar mass
will be of the order of

m&-me(A /f )-me . (4.10)

We can view this as the origin of the scale of
m -&meA. The mass can be naturally small in the
technical sense since we can tune the symmetry-breaking
parameter m to be arbitrarily tiny for large e so that the
observed neutrino mass is, e.g., m -mo-1 eV, while
m&-(100 Mpc) ' with m —10 eV, and the symmetry
will guarantee that we do not have to worry about radia-
tive corrections changing this result. This is arbitrary,
however, and this is not the ultralow-mass case we seek
for application to a late-time phase transition.

In the Lagrangian of Eq. (4.9) we observed the appear-
ance of a ("large" ) quadratically divergent contribution
to the induced mass of P. Can we somehow reduce the
degree of divergence of this induced term? The answer is
yes: residual symmetries can readily control this.

N —
E

V(P)= —g 2 1n(M~ )+const .
j=o 16m

(4.14)

Hence, in ZN models we can view the symmetry breaking
as soft and the potential of P is calculable.

These models can be further generalized. In Ref. [7]
the effects of CP violation are also included to construct
models in which the Adler decoupling theorem is violated
and the pseudo Nambu-Goldstone bosons develop CP-
violating Yukawa couplings. This is analogous to includ-
ing a 0 term into QCD (without an axion to kill it). The
net effect is the possibility of weak, subgravitational
strength long-range forces in a natural model. This is a
further complication of the model which we will not in-
clude at present.

B. Majoron models

In discussing neutrino masses the most sensible frame-
work is that of the "seesaw" mechanism [16]. Here one

If one now computes the induced P mass term, one ob-
tains the P-dependent term

N —
E M

2
ln(A /MJ ),

o 16m

where MJ =m +e +2mecos(plf +2jrrIN) Notice.
that the potential retains the discrete symmetry
P~P+2j m f /N. Now, it is readily seen that Q~MJ is a
constant independent of P for N&2. Therefore the A
dependence in Eq. (4.13) is illusory; the P-dependent part
is A independent, and for N & 2 we may write
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attempts to explain the comparatively tiny values of neu-
trino masses relative to their charged-lepton counterparts
by invoking ultralarge Majorana masses for the right-
handed neutrinos. In short, one needs only to assume
that (i) all neutrinos have Dirac mass terms (perhaps of
the same order as their charged lepton partners within a
given generation), and (ii) all right-handed neutrinos have
a Majorana mass term. With both terms present we have
a conventional Gell-Mann —Ramond —Slansky —Yanagida
[16] seesaw mechanism. The predicted light mass scale of
neutrinos will be acceptably small, of order m1, „„IM.
The right-handed neutrinos are favored for a large Ma-
jorana mass term because they carry no known gauge
symmetries. Nonetheless, one can also invoke small left-
handed Majorana masses, as in the Gelmini-Roncadelli
model [24]. These carry electroweak isospin of I = 1 and
must be very small, since I =1 effects are suppressed in
the standard model.

Here we will give only a brief toy model discussion,
leaving a more detailed catalog of schemes to another
place [25]. We consider a single Dirac neutrino field,
with left- and right-handed components vL, vz. We now
assume the existence of Dirac and both left- and right-
handed Majorana mass terms:

C
LE' Pl

iP/f +H. c.
Pl M8

(4.15)

Here a superscript C denotes charge conjugation. We as-
sume e « m «M The. phase

exp(iaaf

f ) is the
Chikashige-Mohapatra-Peccei (CMP) Majoron [13], the
NGB associated with spontaneous breaking of the U(1)11
right-handed (RH) neutrino number symmetry. We take
e to be an explicit U(1)l left-handed (LH) neutrino num-

ber breaking effect. The Dirac masses communicate the
explicit breaking in the RH sector to the LH sector, and
thus the Majoron becomes a PNGB.

If we set either m =0 or e =0 then the phase
exp(ig/f) can be eliminated from the mass matrix by a
redefinition of the neutrino fields, and we are left only
with the derivative coupling and P remains massless.
This is the usual assumption for the Majoron. However,
we see that the diagram of Fig. 2(b) implies an induced
mass term for P given by

E M ln(A Im ) (p/f )
16~

(4.16)

which is highly suppressed owing to the combination of
small e and the chira1 suppression involving m . Thus,
we expect that Majorons will behave in a mode which is
no more divergent than the Z2 case described above, and
in more general schemes will be suppressed as in the
Zjl„, ~ case.

In fact, the full behavior of broken Majoron models
may be very rich. Bjorken (private communication) has
suggested considering the full three-generation standard
model to contain a spontaneously broken SU(3)~ (which
will be in a sextet mode, corresponding to v~vJ~ ) which
will produce NGBis. The SU(3)„ is then explicitly bro-
ken by the Dirac mass terms, and no LH Majorana
masses are included. The result is a hierarchy of NGB's,

some remaining massless while others acquire a spectrum
of induced mass terms. More general schemes such as
this will be considered elsewhere [25].

%'e turn now to the thermal corrections to the chiral
Lag rangians.

V. THERMAL PROPERTIES OF Z~ MODELS

The effective low-energy theory (here, low-energy
refers to scales much smaller than f) consists of two fer-
mions (presumably neutrinos) QJ, j=0, 1, coupled to the
scalar field {() by Yukawa couplings of the form

—xv„k= g p [m+e[cos(plf +jm. )

j=o

+iy~ sin(glf +j m))]P, (5.1)

where we have used Pl f~e' +H. c. =$1( cos(a)
+igy5g sin(a). Here, f can be thought of as the scale at
which the continuous symmetry, of which P is the
Nambu-Goldstone boson, is spontaneously broken. The
origin of and motivation for considering such theories
was discussed in Sec. IV.

We can rewrite Eq. (5.1) by performing a chiral rota-
tion to eliminate the y5 term, with the result

+Y k M+ (4) 41 0 M —(4')4101

M+ (P) =m +e +2m e cos(/If ) .
(5.2)

Note that at this point there is no potential for P. How-
ever the effect of the P-g coupling will generate a non-
trivial potential for P through radiative corrections,
rendering it a pseudo-Narnbu-Goldstone boson. We first
calculate the zero-temperature potential, then consider
the finite-temperature potential. We will employ the
same methods developed in Sec. III.

We will only consider the fermion contributions [26].
The tadpole method described in Sec. II can be adapted
to the present case. Rather than defining tadpoles in P,
i.e., (P), as in the self-interacting scalar model, here we

must preserve the full symmetry of the theory and define
the tadpole to be the expectation value of the mass terms.
The one-loop potential now receives contribution from
two tadpoles with fermions as in Fig. 1(b) from the mass
terms (M+ (p)pgko) and (M (p)$,$1). These contrib-
ute to the unrenormalized one-loop potential a result
given by

W4

X
A M (P)

M, (P)
M (P) ln

A

(5.3)

In this section we will analyze the thermal properties
of the Zz-symmetric chiral Lagrangian models discussed
in the previous section. For simplicity we will first con-
sider the Z2 model, and then generalize our results to the
Z~ case.

A. Z2-symmetric models
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Here A is an ultraviolet cutoff for the theory; presumably
it cannot be larger than f, since at this scale the effective
theory with the Nambu-Goldstone boson P must be sup-
planted by the full theory.

We must now renormalize the potential. In so doing
we will introduce an arbitrary energy scale p, of course
no physical effects will depend on p. To proceed, first in-
troduce the scale p into the potential

A A&0= Vo(j2) — + g M2(p)
16 8

1 2
+ 2(m2+E2)21n ~

16m A
2

V, =M (p)+ 2(2m@) ln
16m A

(5.6)

A4
Vi(P) =

j=+,—
M (P)

8

with Vc(p), and M (p) finite. The final potential is then
given by

M (P) ln
16 p

2

+ Mj(p)ln 216m A
(5.4)

V(P) = Vcr(P)+ V, ((t )

= Vc(p)+M (p) cos2(P/f)

M+(P}
M+ (P) ln

16 p2

Before proceeding we make note of the identities

Mj($}=2(m +e ),
(5.5)

Mi4($) =2[(m +e ) +&2m@) cos (Plf)] .
j=+—

Because of the residual Z2 symmetry M+ (p)+M (p) is

independent of P. From Eq. (5.4) we see that we must
add counterterms Vcr(P) =Vo+Vi cos (P/f), where Vo
and Vi are P and p independent, to the original Lagrang-
ian to cancel the cutoff-dependent terms. Here Vo and

V, are given by

M (P)+M (P) ln
p

2 2
(5.7}

V (P)i~—0=ma V(m'/2)=0 (5.8)

At this stage the sign of ma is not fixed. The final poten-
tia1 becomes

Now the p-independent parts of Vo(p) and M (p) can
be fixed by renormalization conditions. In particular, let
us choose the renormalization conditions

V(P}= (m i+m ) ln
32 2p

1

2

2

+ — f ma+ —(m+ —m ) m+ ln2 2 1 2 2 2 +

32 p

m 2
—m ln

p
cos (P/f)

2 M+ (((}) ln
16m.

Mi(P)
p

+M (P) ln
1 4

2

M (P)

p

1

2
(5.9)

where we have made yet another definition, m+ —= (mme). Although it is not apparent, Eq. (5.9) is p independent, as
can be seen by showing V(P;p) —V(P;p') =0. We leave the exercise in algebra to the reader.

Obviously V(P) is periodic with period m and its extrema are at /=0, n. /2(mode ). The location of the minima de-
pend on the sign of m 0. We show the potential in Fig. 3 for negative m 0.

Let us now turn to the finite temperature corrections to the effective potential for P. Given the P-dependent masses
M+(P) and M (P), we can then use the finite-temperature formalism discussed in Sec. III to compute the corrections
[cf. Eq. (3.5}]:

4
&Vr(p)= —4

2 g f dx x in[1+exp( —Qx2+M2(p)/T2)] .2' j—+
(5.10)

The signal of a second-order phase transition is the Battening of the potential at the high-temperature minima, i.e.,
V"(/=0)iz r =0. Here, V(P)=V, (P)+EVr(P). The temperature-dependent mass squared at /=0, m (T), is given

by

4m eT (x+m IT)
m (T)=mo+ g ( —1}J dxx

2m f 1=+ o 1+exp(x +m /T )'i. (5.11)
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actual value of mo is arbitrary, since it contains a renor-
malization counterterm. The value of mo is only techni-
cally naturally small, since it is protected by chiral sym-
metry (and the residual discrete symmetries).

There is no analytic expression for Tc, however, we
can make some estimates. For m!T «1 we can expand
the finite temperature potential as [27]

8

.2 M (P)
b, Vr(P) = g M (P)ln +

16m T
(5.12)

where we neglect terms such as (T-dependent) constants
or (T-independent) parts depending on cos Plf. These
terms are unimportant as far as computing the effective
mass. The critical temperature is obtained by setting the
second derivative of the full potential at /=0 to zero.
Doing this within the high temperature approximation
yields

I

7r/2
S/f

0
0

FIG. 3. The zero-temperature potentia1 of the Z2 model.

m m+2 2

ma= „m+ln
16m f ~C

m 2

—m ln
~C

(5.13)

We can solve this for Tc.
m /(m —m ) —Sm f m

exp
(m —m+ )

c=m+
m+

(5.14)

(recall mo &0). This expression will apply if Tc »m+.
Now consider the possibility that Tc is much less than
m+. In the limit m /T » 1, clearly b, Vz (P)
~ exp( —m+ /T), so the phase transition cannot take
place at T «m+.

In Fig. 5 we show the total P-dependent potential as a
function of temperature. Clearly there is a phase transi-
tion somewhere in the range 3m & Tc &5m when the
high-temperature maxima become the low-temperature
minima. Just as clearly, the phase transition will be
second order. A unique feature of this model is that at
the critical temperature the potential is absolutely flat—
P becomes a free field (not simply massless as in a typical
second-order transition). This can be understood by ob-
serving that the only extrema of the potential are at

9
.7 .8

8

I

Cl
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78
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I

n/2
e/f

0
0

FIG. 4. The temperature-dependent corrections to the Z2
model. FIG. 5. The total potential of the Z2 model.

Since 4m e= m +
—m & 0, it is easy to show that the

temperature-dependent term is always positive. Thus, if
/=0 is a minimum at zero teinperature, it will remain so
at any finite temperature. This implies that the T=O
maximum at n/2 (whe. n mo &0) remains one at finite T.
Thus we do not expect any phase transitions when
mo &0. One the other hand, if mo is negative, so that
/=0 is a maximum at zero temperature, we can balance
the negative zero-temperature mass against the positive
contribution from the finite-temperature piece. Thus, we
expect that there will be a phase transition at some criti-
cal temperature Tc in this case.

Whether a phase transition occurs depends upon the
sign of m 0 as can be seen by examining b, Vz (P). An ex-
ample of the temperature-dependent part of the potential
is shown in Fig. 4. Clearly the curvature at /=0 be-
comes more positive as the temperature increases. This
does not depend upon the sign of the curvature of the
zero-temperature potential as b Vr(P) is independent of
mo. From Fig. 4 we also see that the finite-temperature
corrections will always increase V(n. /2) more than V(0),
so if at zero temperature rr/2 is a maximum of the poten-
tial, it will remain so at high temperature. Of course, the
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/=0, m/2, m, . . ., and when the full potential evaluated
at m /2 becomes equivalent to the potential evaluated at
m, there can be no intervening extrema so the potential
must be flat. Thus at the critical temperature the Z2
symmetry is promoted to a (nonlinearly realized) U(1)
symmetry.

Above the critical temperature there is still a Z2
symmetry —there is in no sense a larger symmetry at
high temperature. Another interesting feature of this
model is that at high temperature the potential becomes
T independent (except for an additive T-dependent, P-
independent constant). This is in contrast with usual
high-temperature scalar field theory where the mass of
the scalar field at high temperature is proportional to T.

Notice that the phase transition can lead to the forma-
tion of domain walls. For instance, if P is at the
minimum P =n for T & Tc, when the phase transition is
complete regions of the Universe with P=n/2 will be
separated from regions with /=3m/2 by a domain wall.
However there is one concern with the above scenario:
There may be no physical mechanism to set P to its
high-temperature minimum. The value of P at high tem-
perature may be free to roam and may not be pinned to
any particular value. This is because the Z2 symmetry of
the model implies that the P T term will not be present,
and at high temperatures the leading temperature-
dependent, (t-dependent term is (I) ln(T ), which grows
slowly with T. One might well imagine a scenario where

P has insufficient time to relax to its high-temperature
minimum before the onset of the phase transition. If P
has a value away from the low-temperature maximum at
the onset of the phase transition, and it is constant
throughout the Universe (say set during inflation), then
the entire Universe may evolve to the same low-
temperature value of P and domain walls would not ap-
pear. Therefore, if domain walls are produced, f must be
considerably less than the scale of inflation.

Finally, we digress for a moment to make sure we
know just exactly whose temperature enters into the
above expressions. Recall that the light neutrinos decou-
ple from the ambient plasma at TD —1 MeV. Thus after
this time the neutrinos are not in thermal equilibrium.
However, the neutrino distribution function is still that of
a particle in thermal equilibrium (so long as T is not too
much less than the mass) with an efFective temperature
given by a (tD ) TD/a (t) where a (t) is the scale factor, and
ta is the cosmic time at which decoupling occurs. Thus,
it is this effective temperature that appears in the finite-
temperature effective potential.

This theory has the ZN symmetry given by

4+i, 0/f 0/f+2~/N (5.16)

MJ ((())
M (P) ln

1677

with A being the ultraviolet cutoff, as usual, and

M, (P) =m +e +2m icos(P/f +2' /N)

(5.17)

(5.18)

for j =0, . . .,N —1. In parallel with the Z2 case we in-
troduce an arbitrary scale p, and rewrite the potential as
[cf., Eq. (5.4)]

N —1 p4 p2
V)(p)= g 2

— M (p)
0 32~2 8~2 J

MJ(p)
M (P) ln

p2

2

+ M ((())ln
16m A

(5.19)

Our next task is to ascertain what types of counter-
terms must be included to absorb the divergences present
in V, (P). Before proceeding, we note the following:

N —1

g MJ(P)=N(m +e ) (forN&1),

(5.20)

g M~(P)=N[(m +e ) +2m e ] (forN &2) .
j=O

Whereas in the Z2 case g~ OM (p) was p independent, if
the discrete symmetry is Zz&2, then g Pl~4(P) is also P
independent. Thus, the only counterterm we need to add
is the P-independent term Vo, given by

N —1 p4 p2
Vo= Vo(p) —g 2

—
2 MJ (p)

32~ 8m

2

+ M (P)ln
16m A

where now the index i is taken mod N.
The same methods used in the Z2 case can be used

here to calculate the efl'ective P potential. We find [cf.,
Eq. (5.3)]

N —1 p4 p2
V, (P)= g — M2(P)

, 0 32m' 8

B. ZN-symmetric models

It is simple to generalize the models in the previous
section, with its Z2 symmetry amongst the fermions to
one with N fermions and a corresponding ZN symmetry.
The Yukawa couplings for such a model are

N —1—Xv„z= g PJ. [m+e[cos(P/f +2' /N)
j=O

+iy5sin(f/f +2' /N)]]P. .
(5.15)

(5.21)

Forming the total potential and dropping irrelevant P-
independent terms, we find

N —1
1 MF(P)

V(Q)= Vo(p) —g M (P) ln
j—o 16' p

(5.22)

Again Vo can be found by some renormalization condi-
tion, and the p dependence in Vo(p) will cancel the p
dependence in the ln term, rendering the entire potential
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FIG. 6. The zero-temperature potential of the Z3 model. FIG. 8. The total potential of the Z3 model.

finite and p independent. Since we did not need to add
any P-dependent counterterms, the (() mass is calculable
in terms of the parameters of the theory, i.e., m and e.

The extrema of V(P) are somewhat trickier to find
than in the Zz case. It can, however, be shown that these
are located at Plf =O, rrIN mod(2m. /N). Whether these
are maxima or minima depends on N; for N even (odd)
/=0 is a maximum (minimum) while P/f =n/N is a
minimum (maximum). The potential again has a simple
periodic form. The form of the potential for %=3 is
shown in Fig. 6.

Now the temperature corrections are easy to
calculate —they are given by Eq. (5.10) where now the
sum on j runs from 0 to N —1. An example of the
temperature-dependent corrections to the potential is
shown in Fig. 7. It is clear that the sign of the
temperature-dependent part of the potential is opposite
to the sign of the zero-temperature potential.

The total potential V(])] )+EVr(])]]) is shown in Fig. 8

for several temperatures. The interesting result is that at
high temperatures the Z~ symmetry is promoted to an
exact (nonlinearly realized) U(l) symmetry. That this
should occur is easy to see by examination of the high-

temperature expansion of the finite-temperature potential
[cf. Eq. (5.12)]:

]1 — M2($)
b Vr(P)= g M~ (P) ln + .

, (5 23)
J —0 16m T2

which exactly cancels the entire P-dependent part of Eq.
(5.22). Thus at high temperature the potential becomes
exactly flat.

%hat cosmology might one expect given the tempera-
ture behavior of the potential? Clearly between T-f
(when the effective potential makes sense) and T =m, P is
free to take on any value. Below some temperature of or-
der m the potential minima will start to become impor-
tant and different regions of the Universe will have
different values of P with domain walls between them.
Thus, effectively there is a phase transition at T-m
where the order parameter (in this case P) evolves from
whatever value it had at high temperatures to a zero-
temperature minimum. In this case the transition is simi-
lar to the phase transition associated with axions, al-
though we emphasize that the underlying dynamics are
quite different in the two cases.

Also in analogy with the axion case, if inflation occurs
at a scale less than f, then one might expect P to be set to
a single value throughout the Universe. If this happens,
when the transition occurs there will be a single initial
value of P that will be random, there is nothing to perch
the initial value of P on a low-temperature maximum,
and the Universe will most likely end up in a single value
of P—no domain walls.

VI. CONCLUSIONS

2'/3

FIG. 7. The temperature-dependent corrections to the Z3
model.

In this paper we have given a general discussion of the
thermal physics of pseudo Nambu-Goldstone bosons.
These afford a natural way of generating very soft scales
of potential interest to astrophysics, typically of order
m

&
—m, ,]]If„,, where we might choose
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GeV. These objects have a precedent in elementary-
particle physics in the familiar nucleon-meson system, as
well as scores of theoretical generalizations, and the mod-
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els considered here really involve no additional physical
components. As in the case of the invisible axion, or fam-
ilons [28], etc. , we are simply abstracting the scales to
those that are of potential interest to astrophysics or
cosmology. We have discovered that the thermal behav-
ior of these systems is very simple, controlled largely by
the residual symmetries of the low energy potential.

Though we have largely focused on the specific models
of Ref. [7], these models capture most of the physics that
can generally occur in the context of PNGB's. For exam-
ple, the Zz models for large N have very soft breaking of
the continuous U(1) symmetry, due to the cancellation of
the fermion loops at high momentum from the discrete
symmetry. It is, therefore, not surprising that the
thermal behavior of this system imitates that of the ax-
ion, since the PQ symmetry of the axion is broken only in
the far-infrared limit of QCD.

To a good approximation we may summarize the
thermal physics as follows. The P-dependent part of the
potential has the form

V(P)=c(T)m cos(N(()lf), (6.1)

where c ( T) is a smoothly varying function of T with the
following possible types of behavior: (1) c ( T) is slowly
varying with no sign change over the full range of tem-
peratures (0~ T~ f); (2) c(T) is slowly varying with a
sign change for T-m, as in the Z2 model; (3) c(T) is
slowly varying with asymptotic zero c ( T)~0 as T~ ao

(as in Zz model, for N )2).
Here we have not addressed the issue of cosmological

implications (if any) for the formation of structure or oth-
er possible signatures. It seems that the options here are
(i) to pursue schemes that lead to soft domain walls, or
other topological configurations, with "thicknesses" of

order m& ', which form after the 3 K microwave back-
ground decoupling [6],or (ii) to try to build a natural ver-
sion of the Press-Ryden-Spergel [11] scheme [29]. The
latter has an additional potential fine-tuning problem as-
sociated with initial conditions that may be remedied in
something like the Zz scheme with a sign change in c ( T).
We also mention that other large scale signatures, such as
periodic redshifts, might require some bizarre version of
schemes as discussed here [30].

If the symmetries and dynamics of particle physics are
a guide, then it seems likely that either ultralow-mass fer-
mions, such as massive neutrinos, or ultralow-mass bo-
sons, such as PNGB's, are the best candidates for poten-
tial new cosmological effects. Restricting attention to
such classes of particles is a powerful simplification rath-
er than a complication. The existence of such objects im-
plies dramatic new physics at the highest energies, 0 (f),
that lead to phenomena on the largest-distance scales (as
large as flm ), which are of relevance for cosmology.
We thus feel that the general discussion of the thermal
behavior of PNGB's given here is an important con-
sideration for future cosmological model building efforts.
Cosmologists should learn the physics of PNGB's and
think about their potential implications in the early and
not-so-early Universe.
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