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Making use of the relationship between the corresponding field configurations, we derive the metric
around a straight global cosmic string with traveling waves in terms of the static metric (without travel-
ing waves) in the weak-field limit. We discuss under which conditions the effect of the traveling waves
may overcome the repulsive gravitational potential of the static straight global string. We also extend
the calculation beyond the weak-field limit combining our result with the recent observation made by
Garfinkle and Vachaspati that the exact solution must be of the generalized Kerr-Schild type.

PACS number(s): 98.80.Cq, 04.20.Jb

I. INTRODUCTION

Recent numerical simulations of gauge cosmic-string
networks suggest that intercommutation of string seg-
ments leads to significant perturbations on scales much
smaller than the correlation length of the network [1-3].
On average over distances larger than the typical wave-
length of the perturbations, a wiggly string appears
smooth, but with mass per unit length, u, larger and ten-
sion T smaller than their unperturbed values, the product
uT remaining constant [4]. The exact nature and amount
of small-scale structure on a string network is crucial to
understanding its evolution and its output in gravitation-
al radiation, which may place a crucial bound on the
string mass density through its potential observable
effects, such as in millisecond pulsar timing [5,6].

The simplest kind of structure, not necessarily of small
scale, are perturbations traveling in one direction at the
speed of light along an otherwise straight cosmic string.
Although special, since they do not dissipate through
gravitational radiation [7] as more general small-scale
wiggles do, they constitute a tractable and in some as-
pects representative case of small-scale structure.

Vachaspati was the first to consider gravitational
effects, in the weak-field limit, around a class of solutions
to the Nambu-Goto equations of motion representing
traveling waves along otherwise straight gauge cosmic
strings in the zero-thickness approximation [7]. At dis-
tances p to the string core larger than the characteristic
size of the perturbations, the traveling wave exerts a
gravitational force proportional to 1/p. More recently,
Garfinkle found an exact solution of vacuum Einstein’s
equations which reduces to Vachaspati’s cosmic-string
traveling-wave metric in the weak-field limit, which he
interpreted as the metric of a strongly gravitating travel-
ing wave along a gauge cosmic string in the zero-
thickness limit [8].

Traveling-wave solutions of field theories are also
known for global cosmic strings [9]. In this paper we an-
alyze their gravitational effects. Strings formed after the
spontaneous breakdown of a global symmetry have gravi-
tational effects quite different than their local counter-
parts [10], their energy not being confined to a small tube
but rather extending into regions far beyond the central
core [11]. A static, straight global string produces, in the
weak-field limit, a repulsive logarithmic gravitational po-
tential outside the core, in addition to an angular deficit
similar to that of a gauge string but also logarithmically
dependent on the distance to the core [10]. It is therefore
of interest to analyze whether small-scale structure in the
form of traveling waves may eventually overcome the
repulsive form of the static global cosmic string.

Rather than directly solving Einstein’s equations in the
weak-field limit, we will exploit a relationship between
the field configurations for static infinite strings and
strings with traveling waves, respectively, noticed both
for gauge as well as for global strings by Vachaspati and
Vachaspati [9]. We will see that there is a simple
prescription that allows us to obtain the linearized metric
around a gauge or global string with traveling waves
directly from the metric of the static string.

The existence of a relatively simple relationship be-
tween the static and traveling-wave cosmic string metrics
was recently noticed by Garfinkle and Vachaspati, and
exploited to obtain the exact metric around gauge cosmic
strings with traveling waves [12]. They concluded that
the exact metric around a cosmic string with a traveling
wave is of the generalized Kerr-Schild type, with the stat-
ic string metric as the background. Their method actual-
ly originates a family of solutions to the full Einstein’s
equations, coupled to the Abelian-Higgs equation for the
string fields, of the form

gn =g, +Fk,k, , (1.1)
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where the superscripts TW and st denote traveling wave
and static metrics respectively, k,, is a null, hypersurface
orthogonal, Killing field with respect to both metrics, and
F is a scalar function that satisfies a well-defined equa-
tion. The prescription of Garfinkle and Vachaspati to
find the exact metric around a gauge or global string with
traveling waves would be complete given a method to
univocally fix the function F in terms of the profiles of the
traveling waves. In the case of gauge cosmic strings they
managed to fill this gap by imposing on F the asymptotic
behavior already known from the weak-field limit. Other
vacuum solutions, also of the form (1.1) but with different
functions F, were shown to represent traveling waves
along cosmic strings interacting with additional gravita-
tional waves, or traveling waves along a set of parallel
cosmic strings [13].

In the case of global strings imposing asymptotic con-
ditions on F would be much more difficult, since the exact
metric presents a singularity at a finite proper distance
away from the core [14]. Our prescription to obtain the
traveling-wave metric in the weak-field limit, both for
gauge as well as global strings, provides this ‘“missing
link,” since the weak-field limit can be used to determine
uniquely the appropriate function F in (1.1) for given
profiles of the traveling waves. The combination of
Garfinkle and Vachaspati’s general result together with
our weak-field calculation will thus allow us to write the
exact metric around a global string with traveling waves.

II. COSMIC-STRING
TRAVELING-WAVE CONFIGURATIONS

In  Minkowski spacetime with metric 7,
=diag(1,1,1,—1) and Cartesian coordinates {x*}
={x,y,z,t} we consider gauge cosmic strings made of a
complex scalar field ¢ and a gauge vector field 4, via the
usual Abelian Higgs Lagrangian
L=—

(D,$)(D*$)* —LF¥F,,— iA(|p[>—7P)? . (2.1)

1
2
Here D, =0,—ied, and F,,=03,4,—9,4,. Hereafter,
spacetime indices run from one to four unless otherwise
stated, and we have adopted the summation convention
for repeated indices. The Lagrangian (2.1) will be also
used for the description of global cosmic strings by set-
ting the gauge field 4, equal to zero.

To discuss the cosmic-string traveling-wave solu-
tions it is useful to define the coordinate system
{XM}={X,Y,Z,T} related to {x*} via

oXM 3xV
dx* ox"”

™ -
S,y (x,p,u)=—Q(X,Y)n,,+

where

Q (x,9)=S3(x,p)=—85(x,y)=1[F,,, F*'— A(|$|>*—7*)] .

SEMX, N+0 (X, Y)npun]

(XM}=(X,Y,Z,T}={x —f(t2),y —g(t£2),2,1} ,
(2.2)

where f,g are arbitrary functions of the null coordinates
u or v defined as

u=z—t=Z-T, v=z+t=Z+T. (2.3)

For definiteness, and without loss of generality, we will
assume from now on that the functions f,g depend only
on u. It would of course be the same tc take them both
to be functions of v only. However they should not be a
function of both u and v; neither can one depend on u
and the other on v.

Let {¢%(x,y), 4;(x,y)} and {¢%(x,y)} be the field
configurations that describe a straight static gauge and
global cosmic string, respectively, located along the z
axis. Note also that because of the assumed symmetries
we can choose a gauge such that A= A'=0. Va-
chaspati and Vachaspati have shown [9] that if the field
configuration above is an appropriate solution of the field
equations representing a static straight string, then the
configuration

¢TW(X,y, u ) = ¢St(X, Y) ,

axM (2.4)
™ — st

4,7 (x,p,u)= axh Ay (X,Y)

also solves the field equations. The fields

{¢Tw(x,y,u), A};w(x,y,u)} represent traveling waves
moving with the speed of light along the cosmic string
(i.e., along the z axis), with profiles in the x and y direc-
tions characterized by the functions f(u) and g (u), re-
spectively. A note on our notation: In this paper, we
denote by g(X,Y) the function which results from a func-
tion ¢(x,y) by changing its arguments x and y to
X=x —f(u)and Y =y —g(u), respectively.

The stress-energy-momentum tensor of the cosmic-
string fields is

T,,=(D$)D,,¢)*+F,F +Ly,, . (2.5)

The relationship (2.4) between the field configurations
representing a static string and a string with traveling
waves, respectively, also implies a relation between their
energy-momentum tensors T};Vw(x, y,u) and Tffv(X, Y).
Introducing the tensor S, defined in terms of the stress-
energy-momentum tensor as

S, =T,,—1n, )" (2.6)

and using Egs. (2.4) and (2.5), we find this relation to be

(2.8)

It is interesting to note that away from the string core, when |¢|—mn and F ww—0, then 0 —0.
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III. THE WEAK GRAVITATIONAL FIELD OF
COSMIC-STRING TRAVELING WAVES

Let us first review briefly the weak-field linearized Ein-
stein equations [15]. In this limit, one can find coordi-
nates {x*}, such that the space-time metric is written as

8 =Tyt (X)) (3.1)

where 7,,=7*"=diag(1,1,1,—1) and |h,,| < <1. Here-
after, within first order in |, |, space-time indices will be
raised and lowered using the Minkowski metric 7,,,.

Preserving the weak-field form (3.1), one can always
choose nearly Cartesian coordinates {x*} in such a way
that the harmonic gauge conditions

3y — 11,05 )=0

are satisfied. In this gauge the linearized field equations
are simply

Oh,,,=—167GS,, .

(3.2)

(3.3)

Here G is the gravitational constant.

Let {S},(x,p),h,,(x,y)} represent, according to the
field equations (3.2) and (3.3), the energy content and the
gravitational field of a spacetime with a straight static
(gauge or global) cosmic string along the z axis. With the
assumed symmetries and in the weak-gravity limit it
should be possible to write the space-time metric in the
form

ds*=[1—w(x,y)]( —dt2+d22)+[Sij+h,-j(x,y)]dxidxj .
(3.4)

Here §;; is the Kronecker delta while the indices /,j run
from 1 to 2. The coordinate system {x*] has been
chosen to satisfy the gauge conditions (3.2) and the quan-
tities A, (x,y) satisfy the field equations (3.3). In particu-
lar, because of (2.8), the function w =w (x,y)=h, = —h,,

satisfies
Ow (x,y)=—167GQ (x,y) . (3.5)

Consider now in the {x#} coordinate system the metric

gBV(x,y,u)=[1—w(X, Y)in,,

ax™M ax¥

(3.6)

This metric represents the gravitational field of the cosm-
ic string modulated by a traveling wave moving with the
speed of light in the z direction with profiles in the x and
y directions characterized by the functions f(u) and
g (u), respectively. Indeed, it is not very difficult to check
that, since the harmonic conditions (3.2) are satisfied in
the metric (3.4), the same is also true in the metric (3.6).

In addition, from the field equations (3.3) and Eq. (3.5),
we find that the metric (3.6) has as a source precisely the
tensor S,TLXV (x,y,u) of Eq. (2.7). This is most easily
proved by expressing the [0 operator of Eq. (3.3) in the
{XM} coordinate system of Eq. (2.2) and noting that
for any function q(x,y,u), D(XM)q(X, Y,u)

={D(xl»‘)q (x’y7u)} |x=X,y=Y'

A. Gauge cosmic strings

Equation (3.6) expresses, in the weak-field limit, the
metrics of cosmic strings with traveling waves, be them
gauge or global, in terms of the corresponding static
metrics, which are known. Gauge cosmic strings with
traveling waves have already been discussed by Va-
chaspati [7] in the weak-field limit and Garfinkle [8,12] in
the general case. Let us anyhow consider gauge cosmic
strings in this subsection, just for completeness and for
later comparison with the global strings.

The metric around a static, straight gauge cosmic
string along the z axis reads [16,17]

dsl=—dt’+dz*+dp*+pH1—4Gp)de* , (3.7)
where p is the string mass per unit length. The metric
(3.7) is actually flat, with a conical singularity. It de-
scribes the spacetime away from the string core, when the
fields that make up the string reach their asymptotic
values, and is also valid beyond the linear approximation.
Of course the exact solution to Einstein’s equations cou-
pled to the string fields is much more complicated, and
difficult to find analytically [18], except for very special
values of the parameters in the field-theory model for the
string [19]. But Eq. (3.7) is an excellent approximation to
the exterior metric, unless the string parameters are very
close to the Planck scale [20]. Using harmonic coordi-
nates, Eq. (3.7) can be written as

dsi=—dt*+dz*+[1+h(x,y)|(dx>+dy?), (3.8
with
2 2 —4Gpu
h(x,y)= | 212 — 1~ —4GuIn[(x2+y2)/y?] .

(3.9)

Here y is an arbitrary length scale, that can be changed
rescaling x and y. It should get fixed by matching the ex-
terior solution to a realistic core, and is expected to be of
the order of the core width. The relation of the harmonic
coordinates x and y to the radial proper distance p is
given by

X2y =y (1=4Gulp/y /174w G.10

Using Eq. (3.6) (notice that now w =0 and h;;=h§,;) we
get, for the traveling-wave metric,

dsiw=—dt*+dz*+dx>+dy*+h(X,Y)[(f 2+g >Ndz —dt *—2fdx (dz —dt)—2gdy(dz —dt)+dx>+dy?] . (3.11)
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Here an overdot denotes a derivative with respect to the
argument u =z —t. Our derivation of Eq. (3.6) is only
valid in the weak-field limit, so we should take
h=—4GuIn{[(x —f)*+(y —g)*]/7*} in Eq. (3.11), and
the result agrees with Vachaspati’s direct calculation [7].
It is nevertheless interesting to remark that the metric
(3.11), with the exact function 4 (X, Y) given by (3.9), is
for (X, Y)##(0,0) an exact solution of vacuum Einstein’s
equations, as shown by Garfinkle [8], who also noticed
that it is of the type known as pp waves. It can be inter-
preted as the exact metric of a gauge cosmic string with
traveling waves in the limit of zero thickness of the string
core.

The geodesic equations for a nonrelativistic test parti-
cle in the traveling-wave metric (3.11) were already dis-
cussed in Ref. [7], while motion of light rays was con-
sidered in Ref. [21]. Consider a localized traveling wave
(a traveling pulse), acting upon a test particle that is ini-
tially at rest with respect to the string, while the pulse is
making its approach from far away. When the pulse has
already passed by and is far away in the other direction,
the particle will be moving towards the string at a speed
proportional to the integral of f2+g 2 over the pulse
profile [22]. In order to visualize this effect in a simple
case, consider the acceleration felt by a slowly moving
test particle located at y =0 at a distance x to the string
much larger than the amplitude of the traveling waves,
x >>f,g. Notice however, that now radial trajectories
are not necessarily geodesics, since the traveling waves
break the rotational symmetry around the string axis,
and may also force test particles to move in the direction
parallel to the string. To lowest order there is no
difference between f and proper time, and then

2
4x 46y

firg? L0
dr?

ar (3.12)

f" lnf—_i
Y

The first term on the right-hand side is a 1/x attractive
force, analogous to what is expected from an additional
mass per unit length of string proportional to u(f 2+¢ 2).
The second term can have different signs at different
times. However, being a time derivative it has no net
effect upon integration between times before and after a
traveling pulse has passed by the particle. The force on
the test particle increases as we approach the string. Al-
though Eq. (3.12) holds for sufficiently large distances
from the string, the 1/x dependence of the acceleration
clearly indicates that near the string test particles experi-
J

ence quite large forces. In fact, as shown by Garfinkle
[23], for the gauge cosmic-string traveling-wave metric
(3.11), the tidal forces diverge at the string’s core
(X,Y)=(0,0).

B. Global cosmic strings

Consider now global cosmic strings. In the weak-field
limit the metric of a straight static string reads [10]

ds’ = |1—4Gpu ln%+c+% (—dt*+dz?)

1n£+c

—i—zipz-+-p2 s

1—-8Gu

ld@z . (3.13)

Here p=mn? for the model Lagrangian of Eq. (2.1) (with
no gauge fields), 8 =(5?A) /2 is the core width, and c is a
constant of order unity that takes into account the effect
of the string core. Remember that for the global string,
the energy per unit length in the Nambu-Goldstone-
boson mode up to a distance p outside the core of the
string is @ In(p/8), and that for most relevant cases this
logarithmic factor is large (as large as 130 if p is the
present Hubble distance and 5~ 10'°> GeV). The constant
factor proportional to (¢ +5/4) in front of (—dt?+dz?)
corresponds to a choice of scaling on ¢ and z appropriate
for later comparison with the exact metric considered in
the next section.

Harmonic coordinates can be chosen such that the
above metric takes the form of Eq. (3.4) with

wEh,,=—hzz=4GulnL ,
Y
h,,=—2Gp |In—+21n? |~ |—2sin20+a | ,
14 Y
(3.14)
r r
hy,=—2Gu In—+2In? |— | —2cos?’0+a | ,
Y Y
hy, =—4Gpusin6 coso ,
where now r’=x2+y2, O=arctan(y/x), and y

=8exp(—c —%). In h,, and h,,, a is an arbitrary con-
stant which can be transformed away with an appropriate
rescaling of . In what follows, we will set a=0. It is
now straightforward to obtain the metric of a global
string with traveling waves using Eq. (3.6). The result
can be written as

dshw = [+ h (X, V) 1dxPdx ¥+ dul f(w +he (fdu —2dx ) +g(w +hy, )(gdu —2dy)+2h,,,(fgdu —gdx — fdy) ,

where, as already explained, the 4, here are the same
functions as in (3.14) but with X=x — f and Y=y —g as
arguments, rather than x and y. Asusual, u =z —t.

Let us now evaluate, as we did for gauge strings, the
acceleration in the x direction felt by a slowly moving
test particle located at y =0, assuming the distance to the

string core much larger than the amplitude of the travel-

(3.15)

[

ing waves, x >> f,g. We will also neglect terms of order

unity against Inx /7y, which we assume to be large. Then
2 P2y 52

dx aou|Lt—2LFE % 1538

dt? x x Y

f lnz—————x —f
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The first term, independent on the traveling waves, is the
repulsive 1/x force that a static global string exerts [10].
The second term, proportional to (f 2+¢ 2), is an attrac-
tive 1/x force analogous to the gauge-string case. But
now this term has an additional factor Inx /y. This extra
logarithmic dependence can be understood taking into
account that while for a gauge string the traveling waves
affect the stress-energy tensor just along the string core,
in the global-string case it is affected everywhere, and glo-
bal strings have mass per unit length and tensions that
depend logarithmically on the distance to the string core.
The last term has different signs at different times, but as
in the gauge-string case is a time derivative that can be
dropped off when evaluating the integrated effect of a
traveling pulse.

IV. STRONGLY GRAVITATING TRAVELING WAVES

The metric around a static and cylindrically symmetric
cosmic string that lies along the z axis, clearly admits two
null hypersurface orthogonal Killing vectors pointing
along the z*t directions. As the weak field Eq. (3.6) im-
plies, traveling waves propagating along the (z —¢) direc-
tion break the symmetry corresponding to the Killing
vector 9, ,, but not the one corresponding to 9, _,, since
the latter remains a Killing vector in the traveling-wave
metric. In fact this property holds also beyond the
weak-field limit. Garfinkle and Vachaspati have shown
[12] that the exact metric of cosmic strings with traveling
waves must be of a generalized Kerr-Schild type with
background the static cosmic-string metric; i.e., that the
metric must have the form of Eq. (1.1). As already men-
tioned in Sec. I, k, of Eq. (1.1) is a null and
hypersurface-orthogonal Killing vector with respect to
both static and traveling-wave metrics. Fis a scalar func-
tion which satisfies, with respect to the static metric, the
condition

k*v,F=0, 4.1
and the wave equation

O(e“F)=0. 4.2)
Here A is a scalar determined from V, k, =k V4.

The existence of A follows from the fact that k, is
a Killing and hypersurface-orthogonal vector field.
Equivalently, if we write the static metric in coordinates
adapted to the two Killing fields, say {u,v,y!,y?}, then
e is the g,, component of the metric written in the form

ds2=2e 4" du dv+g, ',y )dy'dy’ , 4.3)
with 7,j running from one to two. Here one of the obvi-
ous null Killing vectors is k*=8},k,=e AS,': (the other is
obtained from k, by interchanging u and v). Thus in this
coordinate system, Eq. (4.1) simply states that F is in-
dependent of v.

The function F is not uniquely determined from Eq.
(4.2) alone. One needs further information, such as
asymptotic conditions, to appropriately choose the solu-
tion that describes the spacetime around a string with
traveling waves characterized by the functions f and g.

In the global-string case the situation might appear, at
first sight, even more problematic [12], because the static
metric becomes singular at a finite proper distance from
the core. Hence, it may not be possible to give asymptot-
ic conditions on the function F. In this section we show
how to select the function F among all possible solutions
by imposing the appropriate weak-field limit. Our stra-
tegy will be to explicitly write the weak-field traveling-
wave metric of Eq. (3.6) as a generalized Kerr-Schild
metric with background the corresponding static one. In
so doing, we will find the weak-field value of the function
F. Nothing new will be learned for the gauge-string case,
already discussed in Ref. [12]. For the global string,
though, this will allow us to choose the function F ade-
quate to the exact metric with traveling waves.

Let us first express the metric (3.6) in the coordinates
{X,Y,u,v} defined in Egs. (2.2) and (2.3). We easily find
that

ds}w =(1—w)du dv +(8,;+h,;)dX 'dX’
+(1—w)[(f 2+g 2du +2fdX +2¢dY)du , (4.4)

with i,j running from one to two. By changing in a last
step the v coordinate to D,

W=v+ [(f2+¢du+2fX +28Y , 4.5)
we find
dstw =2(1—w)du dd +(8; +h,;)dX'dx’
—2(1—w)(fX +§Y)du? . 4.6)

In this form, the cosmic-string traveling-wave metric can
be compared to the static one (3.4). We observe that it
contains the static part (3.4), with the coordinates
X,Y,9+u /2 and D —u /2 playing, respectively, the role
of x, y, z, and t. The modification with respect to the
static metric is of the (generalized) Kerr-Schild type since
the metric (4.6) can be written as

gry =g, +Fk, k

12 uv o (4-7)

with k#=8 a null, hypersurface orthogonal Killing field
with respect to both static and traveling-wave metrics.
Since k, =(1—w)3,, we conclude by comparison of (4.6)
and (4.7) that the function F in (4.7) is in the weak-gravity
limit equal to

F=—tX+EY 4.8)
1—w

A. Gauge cosmic strings

This case has already been discussed in the literature
[8]. Here we will just briefly reproduce the result for the
exact metric around a gauge cosmic string with traveling
waves in the zero-thickness approximation, for complete-
ness and to exemplify how our method works before
moving into global strings.

The exact metric around the static string is given by
Eq. (3.8) with the exact function & of Eq. (3.9). Compar-
ing it with Eq. (4.3) we find that 4 =0. It should then be
obvious that the function F which satisfies Eq. (4.2) and
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has as weak-field limit the Eq. (4.8) with w =0, is simply
F=-—2(fX+gY). This result agrees with that of Ref.
[8], obtained there in a different way.

B. Global cosmic strings

The exact metric around a static global string reads
(14]

ds§t=—é(—dt2+dzz)

o
172
+y? ’& exp fo—¢”
3 €o
Here, with regard to the expression that appears in Ref.
[14], we have made the notational changes {u,ug}
—{£&,&y}. The parameter y is the same as in Eq. (3.14).
Finally, the parameter & is

1 —scp«<1

&o

with Gu the same as in Eqgs. (3.13) and (3.14). We point
out here that the metric in Eq. (4.9), as well as its weak-
field limit in Eq. (3.13), are not solutions of Einstein equa-
tions coupled to the equations for the scalar field that
makes up the string. Rather, they are solutions to Ein-
stein equations with the scalar field configuration fixed to
its asymptotic value everywhere outside the core, which
is in most cases a sensible approximation.

The metric (4.9) has two singularities, one at £= « and
another at £=0. The former is located at the center of
the string’s core, where the metric (4.9) is not expected to
describe correctly the spacetime. Its validity starts from
the string’s core at §=~¢, and ranges down to the outer
singularity at £=0.

(dE*+de?) . 4.9)

(4.10)

Ko(§)
§

F=-20

172
. . |28 %
(f cos©+¢ sin®), with Q= - ve

The weak-field limit is obtained for
E—E>1. (4.11)

To see this, let us first perform a coordinate transforma-
tion of the radial coordinate £ to R:

(4.12)

It is then not very difficult to check that with the usual
coordinate transformation X =R cosO,Y =R sin® we
obtain in the limit (4.11), to first order in &; !, the weak-
field metric for the static global string as in Eq. (3.14).
Consequently, the coordinates ¢, z, (R,0), X, and Y of
this subsection, agree in the weak-field limit (4.11) with
the corresponding ¢,z,(r,0),x,y harmonic coordinates of
Sec. III B.

Comparing Egs. (4.9) and (4.3) we see that e «¢&.
Therefore, using Eq. (4.2) and the metric (4.9), we find
that the function F for the global string satisfies

0¢[§0-(EF)] +3g[£06(EF)]=0 . (4.13)
According to Eq. (4.8), in the weak-field limit (4.11) F
must behave, to first order in &; !, as

. R(fcos®+¢sinO)

F—
1—(1/£,) In(R /y)

(4.14)

Guided by this large-§ behavior, Eq. (4.13) can be easily
solved by separation of variables and an intermediate an-
satz F=F /€, leading to a zero-order modified Bessel
differential equation for the £-dependent part of F. The
result is

1+-L

(4.15)
8o

Here K ,(£) denotes the zero-order modified Bessel function. That this expression reduces appropriately to (4.14), can
be checked using Eq. (4.12) and the large-argument asymptotic behavior of K(§):
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Thus, according to Eq. (4.7), the exact metric for a global string with traveling waves can be written as

£&—¢
o

50—]1/2“
£ P

To go back to the x,y,(r,0),z,t coordinate system, where
f and g attain their natural interpretation as profiles of
the traveling waves in the x and y direction, respectively,
one has to perform in reversed order the transformations
of Egs. (4.5) and (2.2), using (4.12) to go from £,0 to X, Y.

An interesting point to note here is that §K,(&) van-
ishes at £=0 as £ In§. As mentioned above, at £=0 there

dstw =2—§%du av +y?

(d§2+dez)—2§—§§K0(§>(f cosO+g sin®)du? .
0

(4.16)

is a curvature singularity of the static global-string metric
[14]. This singularity appears to be unavoidable in stan-
dard field-theoretical models of a global string [24]. Non-
singular solutions around a static global string (which
have an event horizon rather than a singularity) can be
found only if invariance under boosts in the string direc-
tion is given up [25,26]. It is thus worthwhile to investi-
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gate what is the effect of traveling waves on the singular
structure of the static global-string metric. In the Ap-
pendix we evaluate the nonvanishing components of the
Riemman tensor for the spacetime around a global string
with traveling waves. We conclude that more com-
ponents of the Riemann tensor diverge at the singularity
(§£=0). Thus, we may say that the effect of the traveling
waves is to increase the strength of this singularity, at
least in the sense of increasing the tidal forces in its
neighborhood. However one should note that curvature
scalars, like the one given in the Appendix, appear to be
entirely insensitive to the presence of the traveling waves.

V. SUMMARY AND CONCLUSIONS

A traveling wave along an otherwise straight cosmic
string exerts, in the linear approximation to general rela-
tivity, a net attractive effect upon a nonrelativistic test
particle. We have seen that in the case of global cosmic
strings these effects are larger than for gauge strings by a
factor with logarithmic dependence on the distance to the
string core. This is not so surprising, since the mass per
unit length and tensions of the static global string also
grow logarithmically. The static global string exerts a
repulsive force, inversely proportional to the distance off
the core. The traveling waves may have even larger grav-
itational effects if (f 2+g 2)In(p /7 ) is larger than unity.

Combining Garfinkle and Vachaspati’s proof that the
J

exact metric around a string with traveling waves must
be of the generalized Kerr-Schild type, i.e., as in Eq. (4.7),
with our result for the linearized metric, we found the ex-
act metric around a global string with traveling waves to
be specifically that of Eq. (4.16). The metric around a
static global string is singular at a finite proper distance
off the core. Traveling waves can not remedy this situa-
tion. On the contrary, more components of the Riemann
tensor diverge at the singularity. Curvature invariants,
though, blow up at the singularity exactly as in the static
case.
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APPENDIX

Here we give for the metric (4.16) the nonvanishing
components of the Riemann tensor:

) "
Q(g sinO+ f cosO) ,

Q (g sin®+ f cosO) ,

(AD
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_ § "§0
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_ (AE HEEK ((E)+[4EH &+ D — £ K (€
v 4E3E
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Here prime denotes derivative with respect to &.
The only nonvanishing component of the Ricci tensor
is
2
R [=)=) =—. (A2)
o
From Eq. (Al) we can obtain after a lengthy but
straightforward calculation the curvature scalar

-8
&

wvpn =
RyyonR

326 —8£,£2+ 363 oxp ‘

. A3
4y?6E° l )

Note that it has no dependence on the traveling waves. It
blows up at £=0 and £= « demonstrating thus the real
nature of these singularities.
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