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Relativistic spin-independent corrections to the confinement of heavy quarks are examined. A
comparison is made between QCD, a QCD-motivated model, and the predictions of scalar confine-
ment. We find that a linearly confining Lorentz-scalar potential is inconsistent with QCD but that
the relativistic flux-tube model is consistent with QCD. The relativistic corrections are identified
arith the rotational energy of the flux tube.

PACS numbers: 12.38.Aw, l2.40.Qq

Progress in understanding the nature of quark bound
states has been somewhat uneven. From the beginning,
the potential model [1] seemed to provide the clearest
and most accurate picture of meson states, particularly
those composed of heavy quarks. Going beyond the
Schrodinger equation has proven a difficult task since
relativity introduces new ambiguities. Some of the best
theoretical guidance has been provided by the reduced
Wilson loop reduction formalism [2-4] which, although it
is valid only for slowly moving quarks, reflects the non-
perturbative aspects of the QCD bound-state problem.

The relativistic corrections that have previously been
studied most intensely (and successfully) involve spin
dependence. The experimental signatures in spin de-
pendence are unambiguous and much evidence now sug-
gests that the short-range interaction is a Lorentz vector
and the long-range (confining) interaction is eff'ectively
a Lorentz scalar. This latter identification rests upon
the characteristic lack of any long-range spin interaction
except the kinematic Thomas spin-orbit interaction. In
a potential model the Lorentz-scalar potential fits this
requirement but this does not necessarily mean that one
should look no further. On the contrary, the lack of long-
range spin interactions may be realized in other dynam-
ical schemes. The chromoelectric flux-tube model illus-
trates this point perfectly. Buchmiiller points out [5] that
in the rest frame of a flux tube extending from the anti-
quark to the quark there is no possibility for long-range
spin-spin correlations to occur.

Recently Brambilla and co-workers [4] extended the
work of Eichten and Feinberg [2] and Gromes [3] to
the spin-independent sector of the heavy QQ interac-
tion. As before, the relativistic corrections are valid
only for slowly moving quarks but are correct even in
the confining (nonperturbative) regime. Any specific
model of the QQ interaction must satisfy this general
QCD framework. In particular, the scalar confinement

potential model or the flux-tube model must yield spin-
independent corrections consistent with QCD or these
models must be discarded.

In Sec. I we slightly extend the results of Brambilla
and co-workers to the unequal-mass case. It is impor-
tant to consider the general case of unequal-mass quarks
since the appearance of 1/mi + 1/rn2 versus I/mimz
corrections terms can be significant. In Sec. II we exam-
ine the predictions of a Lorentz-scalar potential model.
We find strong evidence indicating rejection of this type
of potential model. We formulate and compute the rela-
tivistic corrections of the flux-tube model in Sec. III and
determine that they are consistent with QCD.

I. QCD RELATIVISTIC REDUCTION

An expansion in vz/cz of a Wilson loop formulation of
QCD yields [4] a Hamiltonian of the form

pz p4 6 1 1 5H=mi+mz+ ———
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K
V(r) = ——+ ar . (2)

In terms of this static potential the spin-dependent rel-
ativistic corrections are

where p is the c.m. momentum and tt = mim2/(mi +
mz) is the reduced mass. The first four terms follow from

the expansion of gp + m2i+ gpz+ mz2. In this reduc-
tion formalism the static potential remains unspecified
but when postulated the relativistic corrections to this
static potential can be computed. In addition there are
consistency relations which severely limit the nature of
the static potential. A simple allowed static potential is
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and the spin-independent corrections are [6]
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In addition to explicitly demonstrating the general cor-
rections for unequal masses, we have further simplified
the results using integration-by-parts identities. The ef-
fective Hamiltonian can only be consistently evaluated
perturbatively about the Schrodinger solution, so assum-
ing that expectation values are always to be taken we
have used

1
2X' P = —— (4a)

1 12
p; —p; = —pz —2mb(r) .r r (4b)

p = 2p M —mi —mz —V(r) (4c)

where M is the meson mass eigenstate.
We have grouped the corrections in Eqs. (3) according

to the coefficients of e and a. In the subsequent sections
these coeKcients will be interpreted in terms of either
Lorentz properties in potential models or in terms of the
/CD-inspired relativistic fiux-tube model.

In addition, expectation values of p are calculable using
the Schrodinger equation

II. RELATIVISTIC REDUCTION
OF POTENTIAL MODELS

From the reduction of the Bethe-Salpeter equation or
by other methods, relativistic corrections [7, 8] can be
developed corresponding to an interaction potential of a
specified Lorentz nature. The resulting generalized Breit-
Fermi Hamiltonian is generally assumed to provide a cat-
egorization of relativistic corrections. In this section we
compile previously known results on these corrections.
As in the preceding section we assume that the actual
evaluation of these corrections is to be done perturba-
tively and we have used Eqs. (4) to simplify our final
results. To compare with the @CD reduction given in
Eqs. (1) to (3) we have again assumed the static po-
tential of Eq. (2) of Eichten and Feinberg. Following
conventional wisdom we shall assume the "short-range

tc/r" te—rm of Eq. (2) is a Lorentz vector and the "long-
range ar" term of Eq. (2) is a Lorentz scalar. As we
will shortly see, this choice goes far, but not all the way,
toward understanding the QQ interaction in terms of po-
tential interactions.

Using well-known results [7—9] for Lorentz-vector and
-scalar potentials, the relativistic potential model correc-
tions to the static potential of Eq. (2) are
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where the final terms are the so-called confinement retar-
dation corrections. In a popular method the QQ scatter-
ing amplitude is evaluated assuming the quarks are on
mass shell. As pointed out [8—10], this is incomplete in
the bound-state problem and a retardation term should
be added.

By comparing Eqs. (5) to the corresponding /CD rel-
ativistic corrections of Eqs. (3) we conclude that (1) the
relativistic terms proportional to ~ are correctly identi-
fied with the "short range" Lorentz-vector corrections in
both HsD and Hsi, (2) the spin-dependent confining cor-
rections [i.e. , the coefficients of a in Eq. (3a) ] are identi-
cal to those generated as if the line~. r confinement interac-

tion were a scalar potential, and (3) the spin-independent
confinement corrections of Eq. (3b) are not the same as
those resulting if the linear confinement interaction were

a Lorentz scalar. This conclusion holds whether or not re-

tardation terms are included. The main result of this sec-

tion is that the normal historical assumption that quark
confinement acts like a Lorentz-scalar potential is incon-
sistent with /CD in the form of a low-quark velocity
Wilson loop expansion.

From a purely phenomenological point of view, similar
conclusions were previously made by Jacobs ef al [11]. .
Using a momentum-space formulation, Breit-Fermi-type
corrections were included nonperturbatively. A compari-
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son with cc and bb data showed that assuming scalar con-
finement (with or without retardation) spin-independent
corrections had a negative effect toward improving the
agreement of the potential model with data.

Another aspect of this inconsistency has been pointed
out by Gara et a!. [12]. These authors found that in the
limit of light-quark masses the scalar confinement kernel
in the Bethe-Salpeter equation partially cancels for zero
momentum transfer. Since the confinement interaction is
quite singular at this point, the result is the destruction of
the linear Regge trajectory which ordinarily should result
from linear confinement and relativistic kinematics. This
result identifies a real difficulty for the potential model
picture with scalar confinement. FIG. 1. Geometrical quantities used in the asymmetric

flux-tube formulation in Sec. IV.

III. THE RELATIVISTIC FLUX-TUBE MODEL

One seems to have reached an impasse with the po-
tential model including scalar confinement. The spin de-
pendence requires pure scalar but the spin-independent
part is not only phenomenologically wrong, it appears to
disagree with /CD predictions. Fortunately for model
building, there is a possible way out. The electric flux-
tube model [5, 13—16] has many attractive features. In its
simplest form a straight flux tube connects the quark and
antiquark. A wide range of advantages over the potential
model can be enumerated.

(1) It makes more physical sense than the potential
model for light quarks since the field becomes a dynam-
ical entity carrying momentum and angular momentum
as well as energy [17].

(2) In the ultrarelativistic limit the tube carries all of
the rotational energy and angular momentum. The po-
tential model cancellation of Gara ef a! [12] will .therefore
not change the Regge structure.

(3) The spin dependence is similar to scalar confine-
ment [5].

(4) For heavy quarks the leading-order interaction is
just the potential model with linear confinement. The
flux-tube model augmented by short-distance QQ inter-
actions reproduces all of the successes of the potential
model [15,16].

(5) Unification with glueballs and hybrid mesons is
natural [14].

(6) The flux-tube model is consistent with @CD. In
the next section we will demonstrate that this is true for
relativistic corrections to heavy-quark bound states.

IV. RELATIVISTIC CORRECTIONS IN THE
ASYMMETRIC FLUX-TUBE MODEL

rg I g

p gl —~'r" vii & Vii)

(6a)

where yii ——(1 —vii) ! . The angular momentum is
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and the tube segment energy is

H tube
1
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The quark mi carries momentum miyi(i'iri + v&18),
angular momentum Ll ——mlylrlv~l and energy rnlpl.
Since the flux tube carries no radial momentum, the total
canonical momentum in the direction ri is the particle
momentum

Pr —mlgl~l )

from which it follows that

~rl QJ 1 —~1/1 (8)

where W„i ——gp„+ mi. Radial momentum conserva-
tion is achieved by p„i ——p„s = p„. Combining the tube
and particle contributions and using Eq. (8) the three
conserved quantities are
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~

1 —
~
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The asymmetric flux-tube model consists of a quark
and antiquark of masses ml and m2 connected by a thin
flux of energy per unit length a as shown in Fig. 1.
The origin of our coordinate system is the center-of-
momentum point and the total tube length r = rl + r 2.
For the part of the tube from the c.m. to ml the tube
momentum is [18]

ari (arcsinviiL = WriTxivxir 1 +
2vll ( vJ1

+(1 ~ 2),
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(gb)

(9c)
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where M is the total meson energy and (1 ~ 2) indi-
cates terms due to the second-quark and second-tube
segment. These equations constitute the complete clas-
sical description of this system. For equal quark masses
the momentum-conservaton equation is trivially satisfied
by rq —r2 but in general Eq. (9a) is required to fix r2
relative to rq.

For our purposes we wish to compute the relativistic
corrections to Eqs. (9). We expand in the small quantities
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where i = 1 or 2. Inverting and using the approximations
(10) and v~; L/m;r in the &~V~&; term we obtain
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where we also have combined the classical radial and an-

gular terms by using

L2
(»)

The Hamiltonian of Eq. (llc) can now be evaluated
from Eqs. (11c) and (12)
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where r = rq + r2 is the interquark separation. Using
Eq. (lla) we rewrite Eq. (lib) as

where we have again used mlr1 m2r2 and vi;
in the correction terms. Multiplying out and combining
terms we obtain
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The angular velocity is fixed by the quark angular mo-
mentum to be

LPart L
pr2

Combining the last three equations gives

Gr (m2~ m22mgrn2) (18)

which is the negative of the tube relativistic correction.
Going back to the leading rotational energy term in

Eq. (14),

2 L2 (Lpart + Ltube)
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The above result should be compared to the QCD result
in Eqs. (1)-(3).

The quarks in the flux-tube model presented here have
no spin and furthermore momenta and coordinates have
been commuted classically. One can reasonably expect
that only the semiclassical terms would be correct. In
Eq. (3b) the coefficient of L2 matches that in Eq. (14).
The L2-independent terms may well arise from spin ef-
fects or by commutation. %e emphasize again that the
spin dependence of a flux tube model is expected [5] to
be that of an efkctive Lorentz scalar and hence to match
that of Eq. (3a). Also, as mentioned previously [16],one
can easily introduce a direct Lorentz-vector interaction
between the quarks and hence account for the short-range
QCD interaction.

Finally, it is interesting to provide a physical picture
for the flux-tube relativistic corrections. To first order
the system c.m. is the quark c.m. and the quarks carry
most of the angular momentum and energy. Consider
now only the rotational energy (p„= 0). The rotational
energy of the tube alone is

Etube ltube~21
rot 2

where the tube moment of inertia is
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2P EPart + gEtIIbe
rot

2p
rot (20)

and hence the spin-independent relativistic correction
—E,'", ' is needed to make the total rotational energy the
sum of the particle and tube contributions.

CONCLUSIONS

Starting from the nonperturbative relativistic QCD
corrections to the heavy-quark bound-state interac-
tion [4] we note first that the usual short-range-vector
and/or long-range-scalar potential model is not entirely
correct. The relativistic corrections generated by the
short-range (Lorentz-vector) part of the potential (2) of
Eichten and Feinberg are identical to those expected from
the QCD reduction [4]. However, the spin-independent
corrections implied by Lorentz-scalar linear confinement
are inconsistent with QCD even though the spin depen-
dence is correctly given. This discrepancy remains re-

gardless of whether retardation terms are included. This
observation reinforces the conclusion that scalar con6ne-
ment relativistic corrections in heavy-quarkonia poten-
tial models made the agreement between experiment and
potential-model predictions worse, and Gara et af [12].
demonstrated that for light quarks, a cancellation in the

Bethe-Salpeter scalar interaction kernel causes deviation
from Regge behavior.

The relativistic Aux-tube model is a more viable model
as at least its semiclassical behavior is consistent with
QCD. By examining the flux-tube relativistic corrections
for heavy quarkonia we show that the semiclassical (large
angular momentum) correction corresponds exactly to
the large angular momentum QCD correction. We fur-
ther demonstrate that this correction is equivalent to
adding the angular momentum and rotational energy of
the rotating flux tube of effective mass ar Bec.ause of this
identification, the failure of the potential model is under-
standable. The qualitative difference between the usual
potential model and the flux-tube model is that the gluon
field's angular momentum is taken into account. This is
necessary even at the level of the lowest relativistic cor-
rections according to the QCD results of Eqs. (1)—(3).
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