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Renormalizing the gauged Wess-Zumino-Witten Lagrangian to one loop
in a one-family technicolor model
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We examine the problems of calculating processes to one loop in a Wess-Zumino-Witten model, using
one-family technicolor as an example and gauging the QCD subgroup of the chiral symmetry of techni-
fermions. In particular, we examine decay processes of certain technipions, often denoted P and P8.
We find that almost all of the ultraviolet divergences cancel. The cancellation of infrared divergences
between processes with degenerate final states provides us with a constraint on our renormalization
scheme. We also study the effects of different d-dimensional prescriptions for d'" ~ and y5 in dimension-
al regularization. (The matrix y5 appears when we include possible extended technicolor couplings be-
tween technipions and ordinary fermions. ) In the end, we choose MS renormalization, and a noncovari-
ant prescription for e"" ~ and y5. We also present one-loop corrections to the width of the P . These
turn out to be sizable.

PACS number(s): 12.15.—y, 11.10.Gh, 11.15.Ex

I. INTRODUCTION

The Wess-Zumino-Witten Lagrangian [1,2] is an
effective Lagrangian used in describing the low-energy
behavior of Nambu-Goldstone bosons in a confining
theory of fermions, such as QCD. This piece of the full
effective Lagrangian arises from an Adler-Bell-Jackiw
anomaly in the fermion currents of the underlying funda-
mental theory. While Wess, Zumino, Witten, and others
have used this Lagrangian to describe low-energy QCD,
we can also use it to describe the low-energy behavior in
a technicolor [3] theory.

The gauge group of QCD, SU(3)„ is a flavor subgroup
of the chiral symmetry of the technifermions in tech-
nicolor. We can gauge this subgroup [2,4] in order to in-

clude ordinary strong interactions in our Lagrangian.
This will give us interactions between technipions and
gluons. These couplings will be largely responsible for
the decays of technipions.

We will be dealing with a one-family technicolor model
of Farhi and Susskind [3], and so the spectrum of techni-
fermions consists of an isodoublet of techniquarks, which
come in three colors, and an isodoublet of colorless tech-
nileptons. [The left-handed components of these iso-
doublets are SU(2)L doublets, while the right-handed
components are singlets. ] There are 60 technipions in
such a model. The lightest technipion is expected to be a
colorless, neutral, weak-isosinglet particle, often denoted
P . We have studied this particle before [5] and found
that the lowest-order decays are not as dominant as was
previously expected. In particular, we found that three-
body decays which are QCD corrections to two-body de-

cays are comparable to the lowest-order two-body decays.

In addition, we found that these same corrections led to
an enhancement of P production at hadron colliders.

In considering the three-body decays, however, we
neglected QCD corrections to the two-body decays which
are of the same order in a, . These corrections to the
two-body decays involve products of the tree-level dia-
grams with one-loop, ultraviolet-divergent diagrams, and
they are the focus of this work.

In addition to the Wess-Zumino-Witten Lagrangian,
we also consider the efFects of an extended technicolor [6]
interaction (or some other interaction) which couples
technipions to ordinary fermions. In most extended tech-
nicolor models, the couplings of technipions to ordinary
fermions is proportional to the fermion mass. We will
work under this assumption, and this will affect our re-
normalization.

In Sec. II we explain our renormalization procedure.
Section III exhibits the problems of mass singularities
and shows how we separate the ultraviolet and infrared
divergences. We describe and justify our procedure for
handling the Levi-Civita tensor and y5 in Sec. IV. These
are two objects which are inherently four dimensional,
and when we use dimensional regularization, there is no
satisfying prescription for continuing these objects to d
dimensions. In Sec. V, we show the cancellation of most
of the ultraviolet divergences. This is not trivial, since we
are not dealing with a renormalizable theory. We present
the results of calculations with the P in Secs. VI and VII
and follow this with a short conclusion. An Appendix
contains details of how the phase-space integration was
performed.

II. RENORMALIZING
THE EFFECTIVE LAGRANGIAN

'Current address: Department of Physics and Astronomy,
Drake University, Des Moines, IA 50311.

The effective Lagrangian we will be using here is a non-
renormalizable model, and as a result, we will not be able
to renormalize to all orders. We will be content to renor-
malize just to lowest order in QCD. In order to calculate
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TABLE I. Definition of the renormalization constants (left
column) and their values. g is the QCD coupling constant, f
and m denote any fermion field and its mass, G„' is a gluon field,
c' is a ghost field, and g is the gauge parameter.

go =Zg g Zg =1+ C2{G)——T(F)g 11 2
(4~)' 6 3

the 0 (a, ) corrections to two-body decays, we must con-
sider two-body decay diagrams that are just 0 (a, ) higher
than tree-level two-body diagrams. This will usually
(though not always) be equivalent to considering one-loop
diagrams.

Since we have coupled the effective Lagrangian to
QCD, we begin our renormalization by renormalizing
QCD. We choose the gauge-invariant method of dimen-
sional regularization for regularizing both the ultraviolet
and infrared divergences. One of our first choices to
make is that of a renormalization scheme. It has been
shown [7,8] that on-shell renormalization is inappropriate
for QCD. When one renormalizes the coupling constant
in an on-shell scheme, the cancellation of infrared diver-
gences is spoiled by the infrared divergence in the cou-
pling renormalization constant. Hence we will renormalaa

ize QCD by modified minimal subtraction (MS). Our no-
tation and the renormalization constants are presented in
Table I.

Before we close the subject of subtraction scheme,
however, we should briefly discuss one of the side effects
of MS. In the dimensional regularization scheme, ultra-
violet divergences show up in the form

——y E+ln4m+ln
1 p

M

where p is the renormalization scale and M is another
mass scale relevant to the diagram being calculated (for
example, the mass of one of the particles}. Subtraction
according to the MS scheme leaves the last term in (1).
In the end we have a dependence on p, a parameter with
no physical significance.

A way around this problem would be to subtract the
p-dependent term along with the divergence. This im-
plies including a second mass scale in the subtraction (to
keep the argument of the logarithm dimensionless) such

as M. This is akin to what one does in, for example, on-
shell renormalization. In our calculation the mass that
often turns up in the role of M in (1}is M, the mass of the
P . Performing the subtraction in this manner, however,
is mathematically equivalent to performing strict MS and
choosing p=M. We opt for strict MS, leaving the effects
of this choice of scale completely visible in the final re-
sult, so that the effect can be easily investigated. Later,
we will show that varying p by a factor of 2 up or down
from @=M changes the total of our corrections by a few
percent for low P mass, to just under 10'1/o for M =150
GeV.

Our next step is to extract the parts of the effective La-
grangian that we need. In our past works [5], we have
concentrated on the P and Ps. We have chosen neutral
isosinglet particles, since these are expected to be the par-
ticles that can most easily be produced singly in hadron
colliders. Here we continue to concentrate on these par-
ticles. The terms in our effective Lagrangian which
govern the interactions of the P and P8 with gluons are

&= —(D P')'1
p 8

NTca,
yGa Gabcv+ dabcyaGb Gcicv

4~P. 4V 3 &" 2v'2

(2)

In (2), P and g are the P and Ps fields, respectively.
D„ is a covariant derivative defined by

D„C=d„k; gf"GI',4 .— (3)

G„' is the gluon field, G„'„=B„G'„—t) G„' gf' 'G„G'„—,
and we define G'""=e""~G'&. The constants f' ' and
d' ' are the antisymmetric and symmetric structure con-
stants of SU(3), respectively. Nrc is the number of tech-
nicolors [i.e., we assume technicolor is an SU(NTc) gauge
theory], g is the QCD coupling constant, a, =g /4m, and
F is the technipion decay constant, 125 GeV for one-
family technicolor. The first term of (2) is from the ordi-
nary part of the effective Lagrangian, while the rest is
from the Wess-Zumino-Witten Lagrangian. The Feyn-
man rules from this Lagrangian are shown in Table II.

The Lagrangian containing (2) can be derived solely
from symmetry considerations and topology. Since no

zl/2y

1X ——yE+ ln4w

Z =1— ——yE+ln4m
(4m)2

TABLE II. Feynman rules for interactions involving the P
and Ps ~

G~ =Z1~2G~
Op 3 p

Ca ~1/2 a
CO —~4 C

ko=zsk

mo=m +5m

Z3 1+
2

—C2(G) ——T(F)
g2 5 4

(4m)

X ——yE+ln4~
1

g C2(G) 1 1
Z4 = 1+

2
———yE+ln4m

(4m )2 2 c

Z5 —Z3
3g2C2(F)

5m = — m ——yE+ln4m
(4m-)'

Vertex

P ggg
PO'PO'g

Ps ggg
Ps gggg
&'ff
PSW

Rule

2i r~-~S"k,.k„
2gI d'" ~f' (k, +k—+k, )„
gf'~(k2 —k,)„—

pg 2g (fabef cde +fadef cbe
)

2~I"d' ~d' 'k kla 2P
2gl Elva~(dabef cdek +dacef dbek +d ade @beck )1)M 2p J 3p

p&g 2f &avagd afg(f bcff deg+f bdff ecg+f beff cdg)'
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perturbation theory or renormalization is done in arriv-
ing at this, the quantities in (2) are bare quantities. We
will be doing a perturbative calculation in the renormal-
ized quantities, and so we need to express (2) in terms of
renormalized quantities. This can be done with the help
of the information in Table I.

For example, one of the terms in our Lagrangian is

E" ~pc(BINGO )(8 Gop)
16 3n F

where the zeros on the coupling and fields show that
these are bare quantities. Before we replace the bare
fields, we must first see if the P field undergoes any re-
normalization due to propagator corrections from QCD.
The lowest-order correction is shown in Fig. 1. This dia-
gram, however, is a correction of order 0 (a, ), which is
higher order than we wish to consider here. Therefore
we ignore this, and to lowest order the P propagator is
unrenormalized.

Knowing this, we can replace the bare quantities with
renormalized quantities, and (4) becomes

1VTcg
E&" i8$(g G )(g G )Z 2Z

16+3~2+ I " a P 8

Expanding the renormalization constants in (5), we get

e"' ~P(B G')(8 G')
16&3~'F.

2a, C2(G)
X 1— ——y~+ ln4m

4m. c

FIG. 2. Propagator correction to P8 .

ya —Z 1/2ya

2g C2(G)
Z8 1+

2 YE+ln4~
(4n )'

This new renormalization constant must be taken into ac-
count when we substitute the renormalized fields for the
bare fields and obtain the counterterms.

Next, we include the possibility of extended tech-
nicolor (ETC) interactions in our efFective Lagrangian.
ETC is an interaction introduced to give masses to ordi-
nary fermions. It gives the ferrnions mass by coupling
them to the technicolor vacuum condensate. For this
reason the couplings of technifermions, and hence techni-
pions, to an ordinary fermion are assumed to be propor-
tional to the ferrnion s mass. With this in mind, we cou-
ple our technipions to ordinary fermions by

+ETc X (~Gf4 P1 5 P+iGsf $84r5T'0»
J

where the sum is over all flavors of fermions (quarks only
for the P8 ) and the y5 is for parity conservation. We do
not include Aavor-changing neutral-current interactions
here. The constant Gf is of the form

mf
Gf =Cf

where C2(G) is the second-order Casimir invariant for
the adjoint representation of the gauge group [3 for
SU(3), ], yz is Euler's constant, and E is 2 —d/2, where d
is the number of space-time dimensions in dimensional
regularization. In the four-dimensional limit, a~0. The
first term reproduces the tree-level Feynman rule, while
the second term is a counterterm that must be included
among our corrections.

We can do the same thing for the P8. This case is only
slightly different because of the color of the P, . In par-
ticular, the corrections to the P8 propagator, shown in

Fig. 2, are O(a, ), and so we must consider these dia-

grams as well. The loop integral in the second diagram
of Fig. 2 is the same as that in the correction to the gluon
propagator involving the four-gluon vertex, and so it is
defined to vanish. The first one, however, is ultraviolet

I

divergent and forces us to renorrnalize the P8 propaga-
tor. This gives us a new renorrnalization constant

where mf is the mass of the ordinary fermion and Cf is

some constant ( —1), which can vary from one flavor to
the next. Gsf has the same form.

When we renorrnalize we have the same situation we
had for the Wess-Zumino-Witten Lagrangian. We again
replace the bare quantities with the renormalized quanti-
ties. For the first term we get

5m
iGfopcgoysgc=iGf 1+ Z2pfysl .

m
(10)

III. PROBLEM OF MASS SINGULARITIES

The factor 1+5m/m comes when we replace the bare
mass in the constant Gf with the renormalized mass.
The second term in (8) gives us a similar expression, ex-

cept that we must include the factor Z8 for the P8 field

renormalization. The end result of this is again the tree-
level Feynrnan rule plus a counterterm.

FIG. 1. Propagator correction to P

Mass singularities must be handled specially because
there is a problem in separating the ultraviolet from the
infrared divergences. To illustrate the situation and
demonstrate how we handle it [8], we examine briefly the
case of the gluon loop corrections to the gluon propaga-
tor. This is given by
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C2(G) 5 1 31llg(k') = ——y E+ln4m+
(4~)' 15

where the superscript g expresses the fact that we have
only included the gluon contribution and we have ex-
panded some of the factors in c. The problem is in the
last factor. If @=2—d/2 is positive, then this factor is
undefined as we go on the mass shell (k =0). But e) 0 is
the appropriate condition for regularizing ultraviolet
divergences.

We begin by renormalizing in the MS scheme, with the
gluon off shell. This means that we subtract

g'C2«) s
Iltw= 2

———y@+in4n (12)
(4n. )'

e""=0 whenever I p, vI A I0, 1 I . (15)

The other components are the same in d dimensions as in
two. The Lorentz-covariant prescription amounts to dec-
laring the indices to be antisymmetric and taking

p/lvpap F(d)(gp ag vp g/4pg va) (16)

where F(d) is an analytic function and F(2)=1. One
should note that this constraint is not completely con-
sistent. For example, in evaluating the quantity

between renormalization-group coeScients. Bos takes
some of these exact relations and rederives them pertur-
batively, using both a covariant prescription and a strict-
ly two-dimensional prescription for the Levi-Civita ten-
sor. The noncovariant (two-dimensional) prescription
consists of stating that

Then, for our renormalized propagator correction, we get
E~ e vp ~ (17}

lip (k') = ilg(k') —
III%

g'c~«) s(4n). 1——y +ln4mE

—k
X

p

31 —k
15 2 (13)

For k %0 expression (13} is convergent in the limit
c,~0. Therefore we have removed the ultraviolet diver-
gence. Any remaining divergence must be infrared, and
so we are justified in using the subscript i on the c's of
(13). Since we no longer need to regularize the ultravio-
let, we can now take e.; &0. This is the appropriate con-
dition for regularizing infrared divergences. Once we do
this, we can go on shell. As k ~0, ( —k /p ) 'v0, so
that

one can use (16) on either the first two tensors or the last
two tensors. If one demands the same result in each case,
one must require (d —2)F(d) =0. This would imply that
F(d}=0whenever d%2. Coupled with our requirement
that F(2)=1, we see that one cannot smoothly take the
limit d~2 as required in dimensional regularization.
This same inconsistency lurks in the analogous four-
dimensional case. If one does not encounter expressions
such as (17), however, then this may not be a problem.

Bos finds that the two-dimensional tensor (15) repro-
duces the exact result order by order, while the covariant
tensor (16}fails. Since we have no better constraint than
this, we will use a strictly four-dimensional definition of
the d-dimensional d'" p, although we will perform some
of our calculation using both prescriptions for compar-
ison.

Since O'" P and ys are related objects, we will also use a
noncovariant prescription for yz to be consistent. This is
defined by

3 S=~r'r 'r'7'
g'C2«) s

'

1II) (0)= —
2

———yE+ln4m
(4~)'

Now the infrared divergence is apparent.

(14) which will lead to the mixed commutation relations

Iys, y„I =0, p=0, 1, 2, or 3,
ly5y„j=0 ~». (19)

IV. LEVI-CIVITA TENSOR AND ys

We have chosen for our regularization scheme the
gauge-invariant method of dimensional regularization.
There are, however, some ambiguities that we must ad-
dress before we can actually calculate any physical pro-
cesses. These ambiguities in dimensional regularization
involve the inherently four-dimensional quantities d"" ~

and y5. The treatment of these two objects has been a
subject of debate since the inception of dimensional regu-
larization.

The study of the Levi-Civita tensor which is most
relevant to our work is by Bos [9]. Bos works with the
Wess-Zumino-Witten model in two space-time dirnen-
sions, a model in which many quantities can be calculated
exactly. Some of these exact results involve relationships

The Lorentz noncovariance of these inherently four-
dimensional objects will make the calculation very com-
plicated, but our best indication (Bos) is that this is the
best way to proceed.

Along with y5 and e" ~, we must decide how to extend
the external momenta to d dimensions. It is common in
renormalization to take the external momenta to be
strictly four-dimensional objects; that is, all components
are zero except the first four. This is not appropriate,
however, in our case. Two of the processes we shall be
dealing with are the decays P ~gg and P ~ggg. The
Feynman diagrams for these processes are shown in Figs.
3 and 4. There is an infrared divergence associated with
each of these processes. In the three-gluon decay, the in-
frared divergence appears in the phase-space integral
when one of the gluons is soft or two of them are col-
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where k, and k2 are the gluon momenta. With a nonco-
variant e"" ~ tensor,

&p p
= 2(S'pg g gp) (21)

(b) (c)
where underlined quantities hereafter will denote quanti-
ties that are truncated to four dimensions. Then, for (20),
we get

e„,p~k, ~kqpk~)kq = —2[k fkq —(ki'kz) ] (22)

(e)

FIG. 3. Diagrams for the decay P ~gg.

e" ~e ki k2pk~ik2, (20)

(b)

FIG. 4. Diagrams for the decay P —+ggg. There are two
others found by permuting the gluons in (a).

linear. In the two-gluon decay, the divergence arises in
the loop integration when one of the internal gluons is on
shell. When we regularize the divergences and add up
the decay rates to these two processes, however, the in-
frared divergences between the two processes should can-
cel. There are two ways that we can regularize the in-
frared divergences. The first is to give the gluon a small
mass. This is not a gauge-invariant method, however,
and when we employ it we find that the infrared diver-
gences between the two processes will not cancel. The
other way is to use dimensional regularization for the in-
frared as well as the ultraviolet divergences. This method
works; the infrared divergences cancel.

For the three-gluon case, this means that we perform
the phase-space integral over d dimensions instead of
four. Therefore our choice of regularization scheme for
the infrared divergences leads us to take the external mo-
menta to be d dimensional, and we cannot set the extra
components of these to zero. For consistency, we treat
the external momenta the same way (d dimensionally) for
the two-gluon decay as well. We are now in a position to
see how noncovariance complicates matters in the phase-
space integrals.

All the two-body decay amplitudes are proportional to
e" k, k2&. When we square the amplitude, we get

If we take k„ to be a four-dimensional object, then
k& k2=k& k2 and k =k =0. If k„ is a d-dimensional
object, then k, k2=k, .k2+O(e), etc. Now we see that
when we perform our phase-space integration, we no
longer have a Lorentz-covariant integrand. Details of the
phase-space integration are in the Appendix.

In the case of the ultraviolet divergences, the worst
divergence we encounter goes as 1/e. This means that
using different conventions for d'"~ or y5 will give us re-
sults that differ only in the finite part. This is because the
differences in d'" ~ and ys themselves will only be O(e).
The infrared case, however, is different. The worst in-
frared divergence is proportional to 1/e . Therefore us-
ing different prescriptions for d'" ~ and y5 can lead to
differences in the divergent part. One could imagine that
these differences could spoil the infrared-divergence can-
cellation, and so we might find that one prescription
works while the other one does not. In fact, this is not
the case. Using either prescription for e" and y5 in an
arbitrary number of dimensions results in the cancella-
tion of infrared divergences, although the finite result
differs in the two cases.

V. ULTRAVIOLET BEHAVIOR
OF ONE-LOOP DIAGRAMS

Now we shall see how this renormalization affects the
ultraviolet behavior of P ~gg, Ps ~gg, P ~qq, and
P8 ~qq. The diagrams for some of these processes are
shown in Figs. 3, 5, and 6. We begin with the first pro-
cess. The ultraviolet divergences in diagrams of Figs.
3(d), 3(e), and 3(f) are, by design, canceled by the counter-
term of Fig. 3(i). The divergences in Figs. 3(a)—3(c) are
canceled by the counterterm of Fig. 3(i). This leaves only
the diagram of Fig. 3(g), and this is finite. All the ultra-
violet divergences in this process have canceled, and the
result is ultraviolet finite. Although our cancellation here
is presented in the Feynman gauge, this cancellation of
ultraviolet divergences is, in fact, gauge invariant. If we
had not treated the quantities in the Wess-Zumino-
Witten Lagrangian as bare quantities, then we would not
have the counterterm of Fig. 3(i). Then we would have
not only been left with ultraviolet divergences, but we
would have obtained an answer that was gauge depen-
dent. The ultraviolet divergences in the process P8 ~gg
disappear in a completely analogous manner, the only
difference being the correction to the Ps propagator [Fig.
5(k)] and the counterterm [Fig. 5(n)] introduced to cancel
its ultraviolet divergence.

The ultraviolet divergences in the quark decays of the
P and P8 are not so well behaved. The ultraviolet
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(b) (c) (a) (b)

FIG. 7. Diagrams for the decay P ~qqg.

traviolet divergence here, and so we have this divergence
left over. The same thing happens in the decay Ps ~qq.
In the end we are left with a divergent graph similar to
Fig. 6(c).

For the diagrams which produce ultraviolet diver-
gences which are not canceled, dimensional regulariza-
tion is not an appropriate scheme. In this scheme we are
left with our regularization parameter a=2 —d/2, which
should approach zero in the four-dimensional limit.
Since this parameter has no physical significance, it is a
bad parameter to have left at the end of the calculation.
Therefore, for the diagram of Fig. 6(c), we impose an ul-
traviolet cutoff in the integral. The cutoff can be given a
physical meaning. In general, reasonable results can be
obtained by taking the cutoff to be the scale of new phys-
ics, i.e., the scale at which the effective theory is no
longer valid. In our case we take this scale to be about
where the technifermion structure of the technipions
should become apparent, around a few TeV.

(n)

FIG. 5. Diagrams for the decay Ps ~gg.

VI. P ~gg(g)
We begin here with the results for the decays of the P

to two or three gluons, I'(P ~gg)+r(P ~ggg). These
must be calculated together, because the two processes
individually have infrared divergences. In the case of
massless quarks, we must also include the diagrams of
Fig. 7. For massive quarks the sum of these two decay
widths is infrared finite. The result is

divergences from the quark-propagator correction of Fig.
6(b} is canceled by the counterterms of Figs. 6(d) and 6(e).
The divergence from Fig. 6(a) is canceled by the counter-
term of Fig. 6(f}. We are left, however, with Fig. 6(c),
which is a diagram with an ultraviolet divergence. There
are no counterterms or other diagrams to cancel the ul-

r(p' gg)+r(p' ggg)

a, I M
C2(G}(N —1 }

321r'

65 111 P, 4+ T(F)
1

P,

6 3 Mz 3 f C2(G) 2m'~

a, I GfMmf T(F)(N 1)—
+g h(f) .

f 16
(23)

(b)

FIG. 6. Diagrams for the decay P ~qq.

(c)

In (23), I = NTca, /4n&3F —(NTc is the number of
technicolors, and F is the technipion decay constant), a,
is the strong fine-structure constant, g /4m. , and N is 3
(the number of colors in QCD). Also, M is the mass of
the P, p is an arbitrary mass scale introduced by the re-
normalization, and mf is the mass of the quark f. The
sums in (23} are over all quarks. Gf is a constant, as-
sumed to be -mf /F, but unknown without the details
of extended technicolor interactions (or whatever mecha-
nism one uses to give mass to fermions), and C2(G) and
T(F) are group-theory factors, which in our case are 3
and —,', respectively. Finally, h (f) is a function which de-
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pends on the quark mass. For quarks less than half the
P mass (mf (M/2), we get

T

4mfh(f)= —Ir +in
M

1+ 1—4mf

M
(24)

while for mf )M/2, we get

4mfh(f)= —H —4arctan —1
M

1/2

4mf
+4m arctan —1

M
(25)

Decay width of the P to gluons
I I I I I I I I I I I I I I

Note the absence of the parameter s in (23). This quanti-
ty has no infrared divergence, and so we freely take the
limit c.~0.

The parameter c in (23) reflects our uncertainty in the
regularization of d' ~. If we take the Lorentz-
noncovariant prescription, then c =0. If we take the co-
variant prescription, then c =1. We see that the two
scenarios give results which are very similar in form,
differing only in one term. However, we also see that the
difference is appreciable. The dependence of the final re-
sult on the regularization of e" ~ is not negligible.
Henceforth, we will stick with noncovariant prescriptions
of e" ~ and y5.

Figure 8 shows the result of our calculations for the de-
cays P ~gg (g). We took the number of technicolors to
be 4 and the P qq coupling to be amf/F, choosing
a =1. We took a, to be the running coupling constant

with five flavors of quarks, and evaluated it at the P
mass. We also set p, =M. Finally, we chose m, =125
GeV. Putting these values into (23) gives us the solid
curve of Fig. 8.

The other two curves are the result of an attempt to
separate the gluon decays into two- and three-body de-
cays. We did this by calculating the three-gluon decay
[5] with an infrared cutoff of 5 GeV in the invariant mass
of any gluon system. A two-gluon system with an invari-
ant mass of 5 GeV or more may be distinguishable from a
single gluon. The dotted line in Fig. 8 represents the
three-gluon decay derived in this manner. The dashed
curve represents the two-gluon decay (and the three-
gluon decays in which one of the gluons is soft or two of
them are nearly collinear) and is obtained by subtracting
the dotted line from the solid line.

The graph shows that this result is absurd above about
75 GeV. The decay rate to two gluons drops below zero
at this point. As the mass of the P increases, the 5-GeV
cutoff goes deeper and deeper into the infrared diver-
gence of the three-gluon decay. This causes the three-
body decay width to rise rapidly, and the two-body decay
width drops. We could, of course, choose a higher cutoff
than 5 GeV, but this would only push the problem to a
higher-mass P . Of course, if we push the cutoff too
high, then the entire physical meaning of the cutoff is
lost, as we start to exclude events from the three-body de-
cays which could be experimentally resolved into a
three-body decay. Hence we are unable to reliably
separate the gluon decays of the P into three- and two-
body decays.

Contr&but&ons to the P Decay
I I I I I I I I I I I I I I I I I I

bQ
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FIG. 8. Decay width of P to gluons, relative to the tree-
level decay. The solid line is the total, while the dashed and
dotted lines are the decays to two and three gluons, respectively.
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500

FIG. 9. Decay width of P ~gg (g), separated by the various
virtual processes affecting the decays. The solid line is the con-
tribution from diagrams containing only gluons. The dashed
line is from the quark triangle diagrams. The dotted line is
from quark loop corrections to the gluon propagator.
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Figure 9 shows the O(a, ) corrections to the decay
width of P ~gg (g), broken into three separate contribu-
tions. The first contribution (solid line) is from diagrams
containing only gluons and ghosts (besides the P itself,
of course). These include all the three-body decay dia-
grams and interference terms between the tree-level two-
gluon decay and the two-body diagrams of Figs. 3(a)—3(e)
(with appropriate counterterms). The second contribu-
tion (dashed line) comes from the quark triangle diagram
of Fig 3(g). The final contribution (dotted line) comes
from quark loop corrections to the gluon propagator
[Fig. 3(f) and appropriate counterterms]. The sum of the
three curves of Fig. 9 is one unit less than the solid curve
of Fig. 8. The difference is that the tree-level contribu-
tion, which is 1 in our units, is included in the curves of
Fig. 8.

The quark triangle contribution comes mainly from the
t quark. This is especially true for higher-mass P . One
might expect this contribution to drop dramatically as
the P mass increases. The reason for this is that widths
for decays involving the P gg and P ggg vertices have a
coefficient that goes as M, while the overall coefficient in
decays involving the P qq vertices goes as Mmf. Hence,
as M increases, the quark triangle contribution should de-
crease swiftly relative to the tree-level two-gluon decay
and relative to all the other curves of Fig. 9. However, as
the P mass increases, the virtual t quarks in the loop are
closer and closer to the mass shell, which provides an
enhancement, resulting in a slight overall increase in this
contribution to the overall width, relative to the tree-level
gluonic decay width.

In Fig. 9 the quark triangle contribution is taken to be
the same sign as the tree-level contribution and the all-
gluon corrections. We cannot assume that this is the
case. Since 6f comes from extended technicolor and the
constant I" comes from the Wess-Zumino-Witten La-
grangian, we have no information a priori about the rela-
tive signs of these constants. For positive 6f we have
constructive interference between the quark loop dia-
grams and the tree-level diagram. This is the case in the
monophagic models of Ellis et al. [10],but we should in
general also consider the case of destructive interference.

The contribution from quark loop corrections to the
gluon propagator, on the other hand, is unambiguously
negative. This, in fact, must be the case. In the limit of
massless quarks, there is an infrared divergence in the
quark loop diagrams. This infrared divergence is can-
celed by an infrared divergence in the square of the dia-
gram of Fig. 7(c) for the decay P ~qqg Since the.
square of this diagram must be positive and the infrared
divergences must cancel, the contribution from the quark
loop diagrams must be negative. Also, because of the in-
frared divergence in the massless-quark limit, the largest
part of this contribution comes from the lightest quarks.

Because of the infrared divergence, the quark loop con-
tribution in Fig. 9 is probably unrealistically large. Ex-
cluding all of the decay qqg of Fig. 7(c) from the two-
gluon decays assumes that we can distinguish, for exam-
ple, the decay P ~uug in which the two quarks are col-
linear from the decay P ~gg. The u quark is simply not
massive enough to allow this distinction experimentally,

and so we must also consider decays to quarks while we

consider decays to gluons.

VII TOTAL WIDTH OF THE Po

Considering decays to quarks as well as gluons brings
on a new problem. Namely, we must now perform loop
integrals and phase-space integrals in an arbitrary num-
ber of dimensions with massive particles. (Although we
now have massive particles, we still have gluons, and so
we still have infrared divergences to regularize. ) The
combined difficulties of massive particles, arbitrary num-
ber of dimensions, and lack of Lorentz covariance (we
still have e"" ~ and y~ in the calculation) render the prob-
lem intractable. So now we consider the quarks to be
massless, at least for the purpose of phase-space and loop
integrals, except for the t quark, and we assume that the t
quark is too heavy for the P to decay into. The first as-
sumption will not hurt us much, since the P is almost
certainly at least 4 times as heavy as the b quark. The
second assumption is also a safe one, since the lower limit
on the t-quark mass is around 85 GeV, and the P mass
can only be heavier than 170 GeV through an extreme
case of condensate enhancement [11—13]. Therefore,
while it is not impossible that the P could decay into
tt (g), it is unlikely.

One should be aware that we cannot completely as-
sume the quarks to be massless. In the first place, the
coupling P qq is proportional to the quark mass, and so
taking quarks to be massless here would eliminate many
diagrams that we expect to be significant. Second, some
terms which do not actually contain this coupling turn
out to be proportional to the mass of a quark. We do not
wish to throw these terms out. Instead, we will keep
quarks massive in the coupling constant 6f', and for oth-
er terms that are proportional to the quark mass, we will
keep the lowest-order dependence on the quark mass.
Effectively, this amounts to taking quarks to be massless
in denominators and in the phase-space integral while
keeping them massive in the nurnerators of expressions.

Once we decide to consider massless quarks, we of
course introduce new infrared divergences, such as the
divergence we just encountered which was formerly regu-
larized by the quark mass. With the entanglement of the
infrared divergences between the competing decay mech-
anisms, it would be a tedious business to separate each of
the four decay modes P ~gg, P ~ggg, P ~qq, and
P ~qqg. Furthermore, we have already seen that this is
futile. Hence we just present the total width, first in units
of the tree-level width, and then the absolute total width.

Finally, it is at this time that we must confront our
remaining ultraviolet divergence, from the diagram in
Fig. 6(c). Recall that this diagram has an ultraviolet
divergence that was not canceled by any counterterms.
Also, we opted for an ultraviolet cutoff, which we shall
call A. The dependence on A will be logarithmic, and so
varying A by a factor of 2 or so will make only a small
difference. As we have mentioned, we will take A to be a
few TeV.

We start with the amplitude for the diagram of Fig.
6(c):
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u(k, )y (i'+m)yt3U(k2)(l —k, )„(1+k2)„
JK=2g I C (F)e"

(2m. ) 1 (1 —k, ) (1+k2)
(26)

Next, we use Feynman parameter integrals to combine the factors in the denominator and shift the integration variable
to make the denominator symmetric in l. This gives us

Af, =2g'I C,(F}e""~f dx dy 2y fva d I
0 (2m. )"

~(k, )ygy&U(k2)[l (k, +k, ).] m(1 —y)'tt(k, )y yttU(k2)k, k,„
(12 Q2)3 (12 Q2)3

(27)

where Q = —y x (1—x)M . We have now separated the ultraviolet from the infrared divergences. The first term is in-
frared finite, while the second term is ultraviolet finite. We now insert a factor

—A 2

l —A
(28)

in the first term. In the limit A~ ~, this factor is just 1. For finite A, however, this will serve to regularize the loop in-
tegral. We can then take d =4 in the first term as well. After that, we continue integrating in a straightforward
manner.

It may seem a bit artificial inserting the factor of Eq. (28) in the middle of the calculation. If we attempt to insert the
factor earlier in the calculation, however, then we cannot separate the ultraviolet from the infrared divergences. Hence
it is necessary that we wait until this point in the calculation to insert the ultraviolet regularization. The rest of the cal-
culation involves nothing new, except for the phase-space integrations, summarized in the Appendix.

Finally, we arrive at an expression for the total decay width of the P where I 0 is the lowest-order decay width:

2

1(P )=I'o(P )+ I (N —1)C2(G)M 27+ ln
32"2 M

+I (N —1 )T(F)M n —ln —+ln2—2 2 4 p 53

M 15

4 2

+2rG, Mm, T(F)(N2 —1) —~2 —4arctan2
2

——ln
4 p

2m
' 1/2

4m,+4m. arctan —1
M2

1/2

mf A+g GIC2(F)NM 61n +25 —12+ I GfmfMC2(F)N ln 2+2 (29)

The variables here are the same as in Eq. (23), with the additions that the subscript t denotes specifically the t quark,
and A is our ultraviolet cuto6'. The lowest-order decay width I 0 is

r'M' m
r,(P') = +y f M+2

2n f 8m M

1/2
4mf1—
M

(30)

Figure 10 shows the 0 (a, ) corrections to the decays of
the P in units of the tree-level decay. The corrections
are less than or about equal to the tree-level width. In
obtaining the curve of Fig. 8, we used the following
choices for our parameters: NTC =4; Gf =mf /F;
a, (P ) =a, (M ) for five quark flavors, so that a, =0. 15
at 50 GeV; p=M; m, =125 GeV; F =125 GeV; A=3
TeV.

There are two interesting characteristics to this curve.
The first is that the corrections, taken as a whole, are not
as large compared to the total tree-level decay as the
corrections to the gluon decays were compared to the
tree-level gluon decay. The reason for this is that the
tree-level decays are dominated by P ~bb. Since we are
dividing the corrections by the lowest-order decays, in-

cluding the tree-level bb decay with these means dividing
the corrections by a larger number, giving a smaller final

result than in Fig. 8. The other feature is the upward
slope of the curve after about 35 GeV. This is also attri-
butable to the tree-level decay to bb, which does not

climb nearly as quickly with increasing P mass as the
decays involving the P gg coupling. For higher P
mass, this decay ceases to dominate, and the corrections,
which are dominated by the P gg coupling, increase rela-
tive to the tree-level decays.

In Fig. 11 we have plotted both the tree-level decay
width and the corrections to that width, in units of MeV.
We see again that the tree level dominates at low mass,
but loses its dominance for higher-mass P . We also see
how rapidly the absolute decay width rises as a function
of the P mass, increasing by roughly a full order of mag-
nitude over the range considered.

Of course, these curves are not to be taken as a perfect
description of the behavior of the P . There are too
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many uncertainties for that. We will sum them up here.
First of all, the number of technicolors enters into the
constant I in the P gg (g) coupling. Second, there is the
parameter a in Gf =amf /F„, which describes the P ff
coupling. This uncertainty includes not only the magni-
tude of a, but possibly the sign as well. The quark trian-

gle correction to the two-gluon decay can contribute ei-
ther constructively or destructively, depending on this
sign. Next, there is our choice of convention for the
Levi-Civita tensor and y5. Then there is our choice of
both the t-quark mass and mass scale p that we intro-
duced in dimensional regularization. The dependence on

p can be easily seen in Eq. (29). We chose @=M. Choos-
ing LM=2M or M/2 will change the total of these correc-
tions by only a few percent for light P, up to about 10%
for M =150 GeV. Finally, there are, of course, higher-
order corrections. Since the corrections we have calcu-
lated are sizable, we suspect that higher-order corrections
may make a significant, though hopefully not overwhelm-

ing, contribution to the P decay width.
The question then is, what features of our results sur-

vive these uncertainties? If a one-family technicolor
model is the next correct theory of particle physics, then
we can expect to see a P with the following characteris-
tics.

(i) The decay width will rise as the mass of the Pc
cubed. The rate of this rise will become very rapid as the
decay becomes dominated by the P gg (g) couplings.

(ii) QCD corrections will be important in a perturba-
tive approach to P decays. This will be especially true
for a heavy P, since the tree-level bb decay (in which the
corrections are smaller) will be less important in this case.

(iii) Corrections involving P qq couplings will be better
behaved (i.e., smaller) than corrections involving P gg (g)
couplings. This is apparently due to the proliferation of
diagrams involving the P gg (g) couplings, occurring be-
cause of the non-Abelian nature of QCD and, perhaps,
due to the momentum dependence of the P gg (g) cou-
pling. This momentum dependence may allow for a
significant contribution from higher momenta in the loop
integrations.

(iv) If still higher-order corrections contribute con-
structively to the decay width, as the next-to-lowest-order
corrections have, then we can expect the curve of Fig. 11
to serve as a lower bound on the total decay width of the
po'

(v) For a heavy P, the extended technicolor contribu-
tion (responsible for the P qq coupling) will become
dominated by the Wess-Zumino-Witten contribution
(which gives the P gg couplings). In this case, then, we
are mostly free from the uncertainties in the extended
technicolor sector. This will not be the case, however, in
the unlikely event that the P will be able to decay into

1.0

0.5
20 40 60 80 100

Mass (GeV)

FIG. 11. Total decay width of the P (solid curve) broken
down into the corrections (dotted curve) and the tree-level de-
cay width (dashed curve).

VIII. CONCLUSIONS

Our goal in this work was twofold. First, we wanted to
learn more about the properties of the technipions which
are present in a technicolor theory and, in particular, of
the P . Second, we wanted to learn how to perform
one-loop calculations in a Wess-Zumino-Witten model in
which a non-Abelian subgroup of the chiral symmetry is
gauged. This second goal was, in fact, necessary in order
to accomplish our first goal.

We discovered several things about performing these
one-loop calculations. First, we know that on-shell re-
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normalization is inappropriate for such a calculation, be-
cause of the presence of infrared divergences. In order
for the infrared divergences to cancel, we require a renor-
malization scheme in which the coupling-constant renor-
malization constant (Zg in our notation) contains no in-
frared divergence. This is not the case in on-shell renor-
malization, and so we used modified minimal subtraction
(MS), in which none of the renormalization constants
contain infrared divergences. Second, we learned that
use of a gluon cutoff to regularize the infrared diver-
gences is also inappropriate, since in the end the diver-
gences will not cancel. The trouble is attributed to the
trilinear coupling of gluons. This led us to use dimen-
sional regularization to regularize the infrared as well as
the ultraviolet divergences. Third, we found that if we
interpret the quantities in the Wess-Zumino-Witten La-
grangian correctly as bare quantities, then almost all of
the ultraviolet divergences in the process that we have
considered can be eliminated through very straightfor-
ward renormalization. (In fact, almost all the renormal-
ization necessary is just the usual renormalization of
QCD. )

Finally, we found that we are left with a choice in our
handling of the quantities e" ~ and y5 in dimensional
regularization. We can obtain an answer equally well by
treating these quantities as Lorentz-covariant or nonco-
variant quantities. In either case the infrared divergences
cancel, but the answer one obtains can differ appreciably
between the two prescriptions. In the end we chose the
noncovariant scheme, since our best indication from oth-
er work is that this scheme is more appropriate for the
Wess-Zumino-Witten model.

We eventually obtained results in our calculation of the
P, which were presented in the preceding section. The
O(a, ) corrections to the decays of the P are quite large
relative to the tree-level values, although the total width
is still small. Our final expression for the total width of
the P is probably a good lower bound for the width, al-
though higher-order corrections may be important as
well. There is a great deal of model dependence in the re-
sult. Finally, we attempted to separate the width into its
various decay modes. This proved futile because of the
combination of the strength of the coupling and infrared
divergences associated with massless gluons and light
quar ks.

APPENDIX

We have chosen dimensional regularization to regular-
ize the infrared divergences in our calculation, and so we
need to know how to perform phase-space integration in
d dimensions. This is not difficult in the case of massless
particles in the final state and a Lorentz-covariant in-
tegrand [14]. It becomes much more difficult if the in-

tegrand is not covariant.

Two-body phase space

In d dimensions two-body phase space takes on the
form

d" 'k ~~ k 6(k')
2E

(A2)

and we have assumed that the particles are massless. The
parameter p keeps the integral at a constant-mass di-
mension.

In d-dimensional space-time,

d" 0,=sin 8&sin" I92
. sin0d 3d 8&d Oz

. d 8d 2 .

(A3)

The ranges of the angles in (A3) are from 0 to n. except
for Od 2, which runs from 0 to 2m. The integration can
be performed with the help of the identity

1 m+1 n+1
cos 8 sin"OdL9= —8

p 2 2 2
(A4)

where 8 (a, b) is the beta function,

I (a)l (b)
I'(a +b)

In addition, we can use the identity

+ 1 &~1(2a)
2 2 ' '1(a)

(A5)

(A6)

to express gamma functions with half-integer arguments
in terms of gamma functions with integer arguments.

We can, in fact, finish the phase-space integration if
there is no angular dependence. The result of this is

1 4m.p I (1 —s)
8n p2 I (2 —2s)

(Aj)

We see the four-dimensional result reproduced as c.—+0.
We are especially interested, however, in the case

where the integrand is not Lorentz covariant. The non-
covariant prescription for the dimensional regularization
of e" ~ leads to terms in the integrand such as k, and
k

&

' k p which are the products of d-dimensional vectors
truncated to four dimensions.

To handle this case, we start by integrating k2. We use
the substitution (A2) with the momentum k2 and in-

tegrate d "k2 with the 5 function. This gives us

d" 'k,
5 (P —k, )

(2') 2E,
(A8)

For convenience, we will work in the center of mass and
in units where P =1, so that P =(1,0,0, . . . ). The non-
covariant quantities that we will have to worry about are
just ki, P, and P.ki. (Remember, we have integrated k2
already. ) But in the center of mass, the last two quanti-
ties are just Pp =1 and PpE& =E&. Hence the only non-

(p')' ' (2')"5"(P—k —k )
(277) '2E, (2') '2E2

(Al)

where we can substitute at will
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d 'k
5(1—2E )lul',

(2n. ) 2E,
(A9)

covariant quantity in our integrand will be k1. Phase
space has now become

where we have now included the square of the amplitude.
We now choose a parametrization for k1 which will

make k1 take on a simple form. First, we separate the
real four dimensions of k1 from the extra dimensions and
put each set of dimensions into polar coordinates:

k, =(E„KcosO„K sinO, cosO~, K sinO, sin82, K cosP„K sing, cosQ~, . . . , K sin/I . .
sining g),

where E1=K +K . Then we make the change

K =E1cosa,

K =E1sina .

Then the integration measure for k1 is

d 'k& =E, dEIcos a sin" ada sinOIdOIdOzsin oisin tI)z sin(()& 6dg& dP&

In this parametrization,

kl =E, (1—cos a)=Efsin2a .

(Alo)

(A 1 1)

(A12)

(A13)

Hence we can integrate all of the 8 and (() variables immediately using the identity (A4}, because the integrand depends
only on E, and a. The a integral is done using (A4} as well, and the E, integral is done with the 5 function.

Three-body phase space

Three-body phase space in d dimensions requires a few more tricks. We start with

dd —1k dd —1k ddk3
(p')" ' 5(k,')(2m. )~5~(P —k, k, k, ) lA—t I' .—

(2n) '2Ei (2m. ) '2E~ (2m)
(A14)

Integrating k3, we get

d 'k1d 'k2
(p )

' 5[(P —k, —k2) ]lJKl
(2~)~" 32E

) 2E~
(A15)

Again, we work in the center of mass and take P =1.
Also, we define

E; =2P.k;, (A16)

where i can be 1, 2, or 3. Then E;=x;/2 in the center of
mass. This gives us

(p2) ' 5[(1—x, —x2)+2k, k2]leal
(2m. ) x,xz

(A17)
Next, we switch to polar coordinates. We will use 8; to

denote angles in k& and g,. to denote angles in k2. If our
integrand is I.orentz covariant, then our next trick is to
perform a coordinate transformation on the spatial com-
ponents of k2, such that in terms of the new coordinates
k2,

k, .k2 =E,E2(1—cosQ, )=—,'x, x2(1 —cosQ, ),
while k, and k2 remain unchanged. ' We can then use the

It is best not to think of this as a rotation. Under a rotation
the product k, k2 is an invariant. This is simply a series of vari-
able changes on (k, , . . . , k2 ) with Jacobian 1.

1 d —1

I

remaining 5 function to integrate QI. However, we have
noncovariant quantities such as kz and kl kz, and these
quantities are not invariant under such a transformation.
We can still make the transformation, but we must now
see how these quantities are affected.

We can start out by making transformations among
the first three spatial components of k2 and among the
last d —4 components with impunity, so that all of the
relevant quantities in lJKl are left unchanged, except
that

and

k, .k2 =E1E2—K1k21 —K1k24 (A18)

k1 k2 =E1E2—K1k21 (A19)

k =E —K—1 1 —1

—2 2 —2
k2 —E2 K2

The last transformation we make is

k21

k24
= 1

E1

K1 K1 k 21

K1 K1 k24
(A21)

Finally, we switch to polar coordinates in k2 and we treat

where k;~ is the jth spatial component of k2. Also,

E; =K; +K;. The other kinematic factors we have to
deal with are
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k, just as we did in the two-body case, going to polar
coordinates separately in the first three spatial com-
ponents and the last d —4 components. Then the kine-
matic factors in the integrand become

k 2
=E2 ( sin g &sin $2sin p3+ sin a cos li &

+2 cosa sina cosli, sinl(, sin1it2sing3cos1i4

—sin a sin lt&sin 1(2sin 1(3cos lit&) . (A25)

k, k2=E, E2(1—
cosset, ), (A22)

k =E sina (A24)

k, k~ =E,Ez( 1 co—s a cosg,

+cosa sina sing, sint(t2sing3cosg&), (A23)

Recall that li, is the ith angle describing kz and that cosa
describes that fraction of k& which lies in the three physi-
cal spatial dimensions.

Any angle not appearing in (A22) —(A25) can be in-

tegrated immediately. We can also replace the E's with
—,'x's. We integrate tl(t, with the 5 function left over from

the k3 integration. Then we make one last variable
change, trading in the variable x2 for U, where

x2 = 1 —vx &. Finally, we get

2E

64~'"

(A27)

Xcos a sin" ada sin $2sin g&sin Pzglt2dgsdgq . (A26)

The x, and U integrations can be performed using the identity

J da a (1 a)"=B—(m+ 1,n+1),
0

and the angular integrations can be done with (A4) and (A6). We have now covered everything we need to know to do

the phase-space integrations for the processes in this work.
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