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We estimate the density perturbation spectrum b'p/p in the extended inflationary model, in which
the scalar curvature is coupled to a Brans-Dicke field. Through a conformal transformation and a
redefinition of the Brans-Dicke fiek}, the action of the theory is cast into a form with no coupling to
the scalar curvature and a canonical kinetic term for the redefined field. Following IXolb, Salopek,
and Turner, we calculate bp/p using the transformed action and the standard recipe developed for
conventional inflation. This recipe is expected to give a valid order-of-magnitude estimate, but a
precise calculation would require a more careful treatment of several aspects of the problem. The
spectrum behaves as a positive power of the wavelength, a feature that might be useful in building
mode1s to account for the observed large-scale structure of the universe. Our result for the overall
amplitude of density perturbations dig'ers slightly from that of the previous authors, and the reasons
for these diR'erences are discussed. We also point out that the conformal transformation method can
be applied to a wider class of generalized gravity theories.

PACS number(s): 98.80.Cq, 98.80.Bp

I. INTRODUCTION

Extended infiation is a new model of infiation, pro-
posed by I a and Steinhardt [1]. Its key feature is that
the effective gravitational constant G varies with time
due to the nonminimal coupling of a scalar field to the
scalar curvature. As first proposed [1], it was based on

the Brans-Dicke [2] theory of gravity, for which the action
is given by [3]

( R io „„8„40„4S= d zg—g~ — 4+ g""
16' 16~ C

+&matter

With C —= 2sg2/io, the kinetic term for the scalar field

can be written in the standard way:

s = d zv' —g l

— 4 + -g s~ds. 4+L u*)4 ( R 2 1 „„
8io 2

(1.2)

We shall work with (1.1), the form originally introduced

by Brans and Dicke.
The Brans-Dicke field 4 couples to gravity and is re-

sponsible for the time variation of G. The inflaton field o

contributes to l:~~««and provides the nearly constant
vacuum energy density that drives inflation. u is a di-

mensionless parameter of the theory: Brans-Dicke grav-

ity becomes identical to Einstein gravity as ~ approaches
infinity.

In contrast to the exponential expansion of standard
infiation, the time variation of G in extended inflation
leads to a power-law expansion of the scale factor a(t).
The Hubble parameter H:—a/a is therefore decreas-

ing with time. Once H becomes sufficiently small, the
transition to a radiation-dominated universe can be com-

pleted by bubble nucleation, providing the possibility of
a graceful exit to the false-vacuum phase. If H changes
too slowly, however, then the problems of the original in-

fiationary scenario remain —a nearly scale-invariant dis-

tribution of bubbles is formed, resulting in large inhomo-

geneities and distortions of the cosmic background radi-
ation. These distortions are unacceptably large unless
~ & 25 [4, 5], whereas time-delay experiments constrain
~ to be ) 500 [6]. This problem can be avoided by in-

troducing a potential for the 4 field, with a minimum at
4 = G&, where Giv is the present value of the gravita-
tional constant, . Thus, a scalar field that couples to grav-

ity can be used to construct an interesting cosmological
model. The physics of this coupling is interesting in any

case, because a number of particle theories —superstring,
supergravity, and Ikaluza-Iklein theories, for example—
involve such a coupling. In general, terms with higher-
order couplings of 4 to the scalar curvature are also pos-
sible. Steinhardt and Accetta [7] have studied a gener-

alization of extended inflation, called hyperextended in-

flation, in which the consequences of such higher-order

coupling terms are explored.
In this paper we compute the density perturbation

spectrum bp/p in the context of the original model of
extended inflation of La and Steinhardt. Specifically, we

compute the curvature fluctuations that arise from quan-
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turn fluctuations in the 4 field. We work with the simple
Brans-Dicke action because it provides tractable equa-
tions of motion.

We begin in Sec. II by obtaining the equations of mo-

tion in the Jordan frame, i.e. , the frame defined by the
action (1.1). In Sec. III, following HIolman et al. [8], we

make a conformal transformation that takes the action
to the standard Einstein-Hilbert form. In this confor-
mally rescaled frame, known as the Einstein frame, a
rescaled time variable is introduced and the equations of
motion are derived. A new field 4, obeying the equations
of motion of a minimally coupled scalar field, is defined
in terms of 4. As pointed out by Kolb, Salopek, and
Turner [9] (hereafter called KST), this form of the action
allows us to directly apply the results for bp/p obtained
in standard inflation [10—13]. The calculation of bp/p is
carried out in Sec. IV. We point out some subtleties in
the application of the standard density perturbation re-
sults, but we leave the investigation of these subtleties to
a future paper. We nonetheless argue that the present
result should be acceptable as an order-of-magnitude es-
timate. In Sec. V our result is compared with that ob-
tained by naively applying the standard formalism in the
Jordan frame. A calculation similar to ours is carried
out in KST, but our result differs from theirs by a fac-
tor that depends on u. This discrepancy vanishes in the
limit of large cu, a limit in which both results agree with

the answer that would be obtained naively in the Jordan
frame. We point out what we believe are the reasons for
the discrepancy. We also demonstrate that the action
for a more general class of gravity theories can in princi-
ple be transformed to the form for a minimally coupled
scalar field with a canonical kinetic term. We summarize
in Sec. VI.

II. JORDAN FRAME RESULTS

In this section we summarize the homogeneous back-
ground solutions for 4(t) and the scale factor a(t) for the
Jordan frame action (1.1), assuming a flat (i.e. , k = 0)
Robertson-Walker metric. We follow the notation of KST
to facilitate comparison of results.

From the action (1.1), the equations of motion for C (t)
and a(t) are given by

p p„~ and p —p„~, where p„=M is the value of
V(0) in the false vacuum. The desired solution can then
be written

4(t) = C,(Bt)',
a(t) = ao(Bt) +'

+ 1

H(t) =

(2.4)

(2.5)

(2.6)

where

BCp
(6~+ 5)(2~+ 3)

32%43
(2 7)

(Readers comparing with KST will note that we have
chosen a different origin for the time variable t )Un.like
exponential inflation, the Hubble parameter H in this
case is time dependent.

III. EINSTEIN FRAME RESULTS

In this section we make the conformal transformation

[8] that defines the Einstein frame in terms of the Jordan
frame described above. The Einstein frame quantities
will be indicated by an overbar.

Define a new metric g» as

g„„(x,t) = Qs(t)g„„(x,t),
where

n'(t) =
4(t)

(3.1)

(3 2)

24) + 3
Qp — alp] (3.4)

The field 4 is introduced so that the kinetic term also
takes the canonical form. Carrying out the conformal
transformation (3.1) (see, e.g. , Birrell and Davies [14] for
the transformation of R[g»]) yields

and mp~ = GN is the present value of the Planck mass.-S/2 .

Define a field 4 in terms of Cl by

@ = @Din
I

/'e)
(3.3)

(mp', ) '

where

4'+ 3H4 = (p —3p),
24) + 3

/'al 8n.p ~ f4 r 4
(ay M 6 ~C)

(21)

(2.2)

( R 1s = f d zv —gl — + —g""8~'M e
16mG~ 2

a+ e~/ "g""a„~a—„~

-2s/@PM4 (3.5)
The energy density p and the pressure p are determined
by Zm~tt-, «, which describes the inflaton field e and all
other matter fields:

~matter = gg el@0'ovtT V(0) + ' ' (2 3)

In extended inflation V(o) provides the nearly constant
false-vacuum energy density that dominates the energy
density of the universe during inflation. Since the u field
stays anchored very near its false-vacuum value, its ki-
netic energy is negligible. Thus, during inflation we have

(3 6)

In S, 4' plays the role of the inflaton field —this identifi-

where we have used V(0) = M4. Notice that the gravita-
tional part of S has the usual Einstein form, and that the
kinetic term for 4 also takes the canonical form. Since
the kinetic energy of the cr field is negligible, 9 takes the
form of the action for a minimally coupled scalar field 4
with an exponential potential:

V(4)=M e
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cation simplifies the calculation of bp/p [15].
We write the equations of motion in terms of a rescaled

time variable t so that the metric takes the Robertson-
Walker form

ds2 = dt2 —a(t ) dz = 0 (t)ds (3.7)

where

dt =0-' dt,

a(t) = 0 'a(t),
dz = dz .

(3.8)

(3.9)
(3.10)

In these coordinates the equations of motion are

4(t)+ 3HiI(t)+ = 0, (3.11)

2

H' =
(

(~
) =,

/

-4'(t)+ V(@)
I

.
& a(t) ) 3mpl l, 2 /

(3.12)

In (3.11) and (3.12) and in all subsequent equations, an
overdot indicates a derivative with respect to t.

Using Eqs. (3.2) and (2.4), one sees that the desired
conformal transformation is given by

Q(t) =
0

(3.13)

The relation between t and t can then be found by inte-
grating Eq. (3.8), yielding

with

Ct = (Bt),

28mp)

C,1/2

(3.14)

(3.15)

l, mp2l ) (3.16)

Equations (3.9), (3.13), and (3.14) lead to

a(t) = all(Ctg~ (3.17)

where

@1/2
0a0 ——a0

mp&
(3.18)

The time dependence of the Hubble parameter can be
obtained by diflerentia'ting Eq. (3.17), yielding

2m+ 3
4t

(3.19)

It is straightforward to verify that the equations of mo-
tion (3.11) and (3.1'2) are satisfied by these transformed
solutions.

By combining Eqs. (2.4), (3.3), and (3.14), the Jordan
frame solution for 4(t) can be transformed to give

IV. CALCULATION OF bp/p

The equation of motion (3.11) for @ is the same as
that for a minimally coupled scalar field in standard infla-
tion. This identification [9, 16] allows us to use the results
[10—13] for density perturbations arising from quantum
fluctuations of a minimally coupled scalar field. The den-
sity perturbation amplitude for a scale coming inside the
Hubble length in the late universe is then given by

t'bp i H(t)'
~ P / Hubble @(t) f=tg

(4.1)

where the right-hand side is to be evaluated at the time tl,
when the scale crossed outside the EIubble length during
inflation.

While the conformal transformation has eliminated the
coupling between the scalar field and gravity, we must
still ask whether Eq. (4.1) is adequate for our problem.
There are several issues that must be considered.

(i) Even in the original context of standard inflation,
the formula is only an approximation. It can be obtained,
as in Ref. [11],by matching together an approximate so-
lution valid at early times and an approximate solution
valid at late times. The matching is done at the time of
Hubble length crossing, a time when neither solution is

highly reliable. Alternatively, as in Ref. [10], it can be
obtained by fixing the amplitude of the late-time solu-
tion by using a rough estimate of quantum fluctuations
at early times. The approximation is good enough for
most purposes, but here we face the problem that the
eA'ects we will be studying are quite small "ee, for ex-
ample, Fig. 1 below. To properly justify the consider-
ation of such small eH'ects, one wants to know that the
other uncertainties are even smaller. A rough estimate of
the uncertainty in formula (4.1) can be obtained by rec-
ognizing that the precise time at which the right-hand
side is to be evaluated has not been carefully thought
out. While the standard convention holds that it should
be evaluated at Aph»I+zf B one might just as well
have decided to evaluate it when Aph», ,~~

——2B . This
modification of the rules, however, would produce an u-
dependent correction that is comparable to the size of
the eH'ects that will be considered below.

(ii) The standard derivations of Eq. (4.1) assumed that
the 4 term of the equation of motion for 4 is negligible,
while we will find that this is not the case when ~ is small.
Again there is no problem if Eq. (4.1) is considered an
approximation, but the accuracy that we desire will merit
a more careful look at this approximation.

(iii) Equation (4.1) was derived originally for exponen-
tial inflation, while here we are applying it, to power-law
inflation, with a(t) oc t". The application to power-law
inflation has been investigated by Lucchin and Matarrese
[17], who conclude that the standard formula is correct.
This conclusion, however, is valid only as an approxima-
tion. Abbott and Wise [18] have shown, for example,
that the two-point function that is used to calculate the
scalar field quantum fluctuations depends on the expo-
nent p in a complicated way. Moreover, if H depends
on time, any answer that depends on H must specify
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precisely the time at which it should be evaluated.
These issues, however, are separate from the question

of evaluating the right-hand side of Eq. (4.1). In this
paper we will carry out this evaluation, postponing the
investigation of the subtle issues to a future paper. We
believe that the answer obtained below is a valid order-of-
magnitude estimate (similar in its accuracy to the stan-
dard results [10—13] in conventional inflation), but it is
not a precise calculation.

Since the equation of motion is obtained from the Ein-
stein action with t as the time variable, we must be care-
ful to evaluate the right-hand side of Eq. (4.1) by using
t and the Einstein frame Hubble parameter H(t). In or-
der to express (bp/p)H„bbl, as a function of a present-day
length scale, we use the ratio of the scale factors at the
time of Hubble length crossing and the present time. In
doing so we assume that the transition from inflation to
radiation domination occurs instantaneously at a tem-
perature T M, and that the field 4(t) does not vary
significantly after the end of inflation. Therefore we ap-
proximate

1 2C(t, ) - = mp, , (4.2)
N

where t, denotes the time at the end of inflation. We
assume that Eq. (4.2) holds also for all t & t, . Then

02(t) = mphil/C(t) 1 for all t & t„so after the end of
inflation the Einstein and Jordan frames coincide. The
evolution of the perturbation amplitude after inflation
is therefore the same in both frames. We will need an
expression for t, (the rescaled time variable at the end of
inflation), which can be found by combining Eqs. (2.4)
and (3.14) to obtain C(t, ) = Crate = mpl. Then using
Eqs. (3.15) and (2.7), one has

qurnp~

2M2 (4.3)

To evaluate (4.1) we use (3.19) for H(t) and (3.16) for
4(t) to obtain

/'bp) H~(t ) (2~ + 3)~

( p ) ~~bbl~ y(t) i i 16@ate,
(4.4)

/'bp l
~ P )Hubble

(2~ y 3)' /'2(u + 3'l /'To 'l

16@o 4 )I I M)l Ae

(1 ) ('~+')/(2~-i)
xI =

i

~e
(4 8)

We now eliminate @0 and t, by using Eqs. (3.4) and (4.3),
obtaining bp/p in terms of known quantities:

To solve for tg, the rescaled time variable at the moment
of Hubble length crossing, we use

Apbr„, ~(t„) = a(t„)A, = H(t„)-', (4 5)

where A, denotes the comoving wavelength. This can be
rewritten as

a(t„) a(t, )'
A, =H(t ) (4.6)

where we have set the present value of the scale factor
a(tll) = 1. Since a(t) oc T i, a(t, )/a(to) = Ts/M, where
To 2.7K is the present photon temperature. Also,
a(tp, )/a(te) = (ti, /te)( + )/ from (3.17). We substitute
these relations into (4.6) to get

ltd, 5 ( + r'To ) 4ti,
4.7

l,t, ) (M) ' 2~+ 3

Solving for tl, and substituting in (4.4) we obtain

/'bp) (2 3) (su'+s)/s(~4'-i) /' 1 ) (2~+s)/(2~-i) ( M ) 2(2u'+i)/(2 -i)
(A T )4/(2~-i)

~ P )Hubble &q~) l, mp, ) (4 9)

Since we set a(ill) = 1, A, is the physical wavelength at the present time. Remembering that we are using units for
which /i = c = /' = 1, one has the conversion A, Tp —AMpe x 1 Mpc x 2.7 I& = 3.64 x 10 'AMpe. Thus,

/'bp) /'2 y 3) (su'+ )/s(2u'-i) /' ] ) (2u'+s)/(2~-i) ( M ) 2(&~+i)/(~-i)
(3.64 x 10 AMp, )

4 P )Hubble 0 ) &q~) l, mpl)

(4.10)

where q is defined in Eq. (2.7). This is our main result.
Notice that beyond using bp/p H (t)/4'(t), the only
approximation that we have made is to neglect the evo-
lution of 4(t) after the end of inflation.

In agreement with KST, we find that the perturbations
are proportional to A ~& ~ &. This means that, extended
inflation might be an attractive way to account for the as-
tronomical observations that show evidence for increased
power on large scales.

V. COMMENTS

A. Comparison with the naive Jordan frame result

To see the e8ect on this calculation of the transforma-
tion to the Einstein frame, it is interesting to compare
our result (4.10) with the answer that would be obtained
by naively applying the standard formalism in the Jordan
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frame. Using an asterisk to denote the naive calculation,
we have

bp') ' H'(t)
P )H bbl d&(t)/«

(5.1)

where P is the field defined canonically by the action
(1.2), and t& is the time of Hubble length crossing as seen
in the Jordan frame. In the following we denote the time
of Hubble length crossing as seen in the Einstein frame
by t = ta (and t = tl, for the rescaled time variable),
while the time of Hubble length crossing in the Jordan
frame is denoted by t = t& (and t = t&). Our result for

(bp/p)H„bbl, differs from the naive result for two reasons.
(i) At a given time the quantities H~/(dP/dt) and

H2/(d@/Ch) are not equal. Using the formulas from
Sec. II, one easily finds that

H'(t) /2Xcd(2cd + l)2q

dp(t)/dt 4M st~ (5 2)

a(t'„)A, = H(t'„) (5 4)

For comparison, the right-hand side of Eq. (4.4) can be
expressed in terms of t by using Eq. (3.14). One then
finds

H'(t) 2cd (2cd + 3 & H'(t)
d%'(t)/dt 2cd + 3 I),2cd + 1y dP(t)/dt, ,(;)

(5.3)

(ii) The time of Hubble length crossing itself is differ-

ent in the two frames. In the Jordan frame this time is
evaluated using

20 25

FIG. 1. The eR'ect of transforming to the Einstein frame.
The correct answer for bp/p is larger by the factor E(cd) than
the answer that would be obtained by naively applying the
standard formalism in the Jordan frame.

rescaled time variable t and scale factor a(t) correspond
to a Robertson-Walker metric; therefore these functions,
not the original ones, must be used in applying the stan-
dard methods to calculate (bp/p) Hc(bbi, .

B. Comparison mitb KST's results

KST (Ref. [9]) have also worked with the Einstein
frame action, but nonetheless their answer [Eq. (2.21)
of their paper] differs from ours: it is equal to our answer
times the factor

which is not equivalent to the Einstein frame relation
(4.5). Using Eq. (3.14) to evaluate ti, in terms of tp, , one
finds the relation

4/(2(d —1}
Cd Cd

3I2~+ 3) (2~+ 3) (5.8)

(
2 +3)'~&"-'1 (1 ~

24I + I) (5.5)

( = F(~) —
l

bp'r bpl
'

P ~Hubble p ~Hubble

where the correction factor is given by

(5 6)

I" (Cd) = (g + g)9(2 +!)/(9 —1)
Cd Cd

2cd + 3 (2cd + 1
(5.7)

The correction factor F(cd) is plotted in Fig. 1. It de-
creases monotonically with ~, approaching one as ~ ap-
proaches infinity.

We emphasize again that in the Einstein frame the Geld

@ behaves as a minimally coupled scalar field, and the

To put together the two sources of discrepancy, note
that the correct expression for (bp/p)H„bble is obtained
by evaluating the left-hand side of Eq. (5.3) at ta, which
implies that the right-hand side is evaluated at tI, . Ac-
cording to Eq. (5.2) this expression is proportional to
I/t~&, which can be replaced by the right-hand side of
Eq. (5.5). The factors occurring in Eqs. (5.3) and (5.5)
are then multiplied to give

This discrepancy is due to the following reasons.

(i) They evaluate H2(t)/iIi(t) at the time of Hubble
length crossing in the Jordan frame, while we maintain
that the time of Hubble length crossing must be eval-

uated in the Einstein frame. According to Eq. (5.5),
this causes their result to contain an additional factor
[(2cd + 1)/(2cd + 3)] &I ~ )

(ii) They use a "slow-rollover" approximation 4(t) =
(dV/diIt)/3H(t—), while we evaluate 4(t) by differenti-

ating the exact solution for Irl(t). This causes their re-

suit to contain the additional factor IIile„ee&/O' I)l)„„
3(2cd + 3)/(6(d + 5).

(iii) They evaluate H by using H 8lrV/3rnpl (ne-
glecting the kinetic energy), while we used the exact ex-

pression. This causes their result to contain an additional
factor (H pp„„/H, „c)s= [(6cd + 5) /3(2cd + 3)]s~ .

(iv) They omit a factor 2cd/(2cd+ 1) that should appear
on the top line of their Eq. (2.9). This causes their result
to contain an additional factor [2(d/(2(d + l)]4('&~

Each of these discrepancy factors approaches one as ~
approaches infinity, but in this limit the effect of trans-
forming to the Einstein frame disappears altogether.

The discrepancy factor (5.8) carries over into the for-
mula for the temperature fiuctuations of the cosmic back-
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ground radiation, (bT/T)s&io II (t)/15%'(tg, given as
Eq. (2.25) in KST. For the same reasons, we would difFer
with KST's results for graviton perturbations, Eqs. (3.4)
and (3.7) in their paper. For the dimensionless amplitude
of a gravitational-wave perturbation as it comes inside
the Hubble length in the late universe, we obtain

( M ) 2(2(u+1)/(2(u —1)

mp) t, mp))
/'2 3) f2~+s)/f2~-»

x (3.64 x 10 AMp, ) . (5.9)

C. Application to generalized gravity theories

We have obtained the density perturbation spectrum
for a simple model of extended inflation. The method we
have used, however, is applicable to a wide class of gener-
alized gravity theories that involve a scalar field coupled
to gravity. Suppose that the action can be written as

& = f d'*V' g[ i(4)&+ —,'g"—"&(0)&,4&—.4+ & ««.],
(5.10)

where f(P) and T(P) are arbitrary functions. From
Eq. (1.2) it follows that for Brans-Dicke gravity f(P) =
P /M and T(P) = 1 . If T(P) = 1, then for all f(P) & 0
[the condition for a general T(P) is given below] the con-
formal transformation to the Einstein frame can be per-
formed and, through a redefinition of fields, the action
can be cast in the form of the action for a minimally cou-
pled scalar field. We first demonstrate this for a general
f(P), and then consider the analytically tractable case of
f(4) = 4'.

We make the conformal transformation g» ——02g„„,
where

e(g) = jul((p)dp (5.15)

is well defined and is a monotonically increasing func-
tion of P, so there is a unique value of 4(P) (up to an
additive constant) for every value of P. Therefore one ex-
pects that the quantum theory for @ gives the standard
result, Eq. (4.1), for the density perturbation spectrum.
In general the integral for @(P) and the solutions of the
equations of motions must be obtained numerically.

For Brans-Dicke gravity, the integral for iI('(P) is simple
and the result is given by (3.3). 4((t) can also be obtained
in closed form for the case f(P) = P, T(P) = 1 From
Eq. (5.13) one has

mph) !/48$s + I)
16' g P4

(5.16)

which can be integrated according to Eq. (5.15) to give

3m') /' 48ps+ 1

I, 48/

+In(i/48/+ i//48/2+ 1) ! . (5.17)

In hyperextended inflation a term of this form may dom-
inate the f(P)R coupling during a cosmologically impor-
tant epoch, so it is of some interest to study its density
perturbation spectrum [9].

A nonminimally coupled scalar field with f(P) = 1—
(x/2 has been studied by Futamase and Maeda [20], who
have obtained @(P) for all n & 0.

& @(4)~.@(4)= @'(0)'rI 0c/. 4 = ~&(4)D 4».4

(5.14)

So in terms of 4(P) the kinetic term is canonical and the
action takes the form for a minimally coupled scalar field.
For I&(P) & 0 the integral

2
g2 Pl

16~ f(y)
(5.11) VI. CONCLUSION

The action (5.10) then takes the form (with Z~~qq« ——0

for convenience)

&(&) = 16",[3f'(&)'+ f(&)T(&)] . (5.13)

The first term on the right-hand side of (5.12) comes
from the conformal transformation of the scalar curva-
ture term in (5.10), and the second term comes from the
original kinetic term. If we define a field 4(g) such that
4'(P) = QI&(P), then

S = d zi// g! — P'R—+ g""I~(P)0„-$0„$!") '

(5.12)

where I&(P) is given by Salopek, Bond, and Bardeen [19]

We have estimated the density perturbation spectrum
in the original model of extended inflation, with Brans-
Dicke gravity. Curvature fluctuations arising from quan-
tum fluctuations in the Brans-Dicke field contribute a
significant amplitude of density perturbations. They are
a slowly increasing function of the scale, a feature that
might be useful in building models to account for the
observed large-scale structure of the universe. We have
performed the calculation by transforming to the Ein-
stein conformal frame, then applying the standard proce-
dures used in conventional inflationary models. We have
pointed out some subtleties associated with this proce-
dure, but we nonetheless believe that the result is valid
as an order-of-magnitude estimate.

We have compared our density perturbation amplitude
to the answer that would be obtained by working naively
in the Jordan frame —our answer is larger by a factor
that is near unity, but which becomes large for very small
values of the Brans-Dicke parameter u. If the calculation
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is done correctly in both frames, however, one should of
course expect to obtain the same answer. Indeed, part
of our motivation was to lay some groundwork toward a
consistent calculation in the two frames. The success of
such a calculation would give us confidence that the field
theory is being treated correctly, and that the conformal
transformation method is valid at the quantum (or at
least semiclassical) level as well as the classical level. The
question of consistency between the two frames has been
addressed in two recent papers [21].

As pointed out earlier, the model we have studied must
be modified if it is to satisfy experimental constraints.
One possibihty is to add a small mass term for the Brans-
Dicke field —the evolution of 4 during the inflationary
period would not be significantly affected, but the mass
term could still freeze the value of the field in the present
epoch so that the theory would be consistent, with obser-
vation. As pointed out by KST, in this scenario the 4
particles would have to be unstable in order to prevent

the mass density of the universe from becoming domi-
nated by them. If the model is repaired in this fashion,
then the calculation of density fluctuations presented in
this paper would remain valid. One can also imagine
more substantial modifications to the model, in which
case our calculation would no longer be valid in detail.
It would nonetheless serve as an illustration of a tech-
nique to compute (bp/p)H„bb~, for models with a scalar
field coupled to gravity.
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