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Light-cone quark-model axial-vector-meson wave function
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Within the framework of the light-cone formalism we construct a model wave function appropriate
for axial-vector mesons. The spin bilinear covariant component of our model wave function is consistent

with the Melosh transformation procedure. We have applied our model to the a& axial-vector meson

and have compared the first six moments of the quark distribution amplitude with those obtained from

the QCD sum-rule technique. In addition to our axial-vector-meson results, we further investigate the

simple light-cone quark model by computing moments for pseudoscalar m and E and vector p mesons

and compare our results with those from various QCD sum-rule techniques and lattice calculations.

PACS number(s): 14.40.Cs, 12.38.Lg, 12.40.Qq, 14.40.Aq

I. INTRODUCTION

Even though more fundamental nonperturbative QCD
methods such as QCD sum-rule techniques [1,2] and lat-
tice QCD calculations exist [3—6], there is still growing
interest in using simple relativistic quark models [7—12]
to describe hadron properties. Since currently no
rigorous criteria exist for assessing how well such simple
models approximate the actual QCD solution, it is impor-
tant to document how well this approach, which accu-
rately describes numerous hadron properties, can repro-
duce features characteristic of nonperturbative QCD
methods. Our analysis [7] is a generalization and exten-
sion of the work by Dziembowski and Mankiewicz [9],
who developed a relativistic description of the vr and p-
meson valence-quark structure using the constituent-
quark model formulated in the light-cone Fock approach
[13—15]. Perhaps their most significant finding was that
such a model could indeed reproduce the important
features for meson amplitudes obtained by Chernyak and
Zhitnitsky [1), who used QCD sum-rule techniques and
by others performing lattice QCD calculations [3].

A surprising, controversial aspect of meson structure
which has emerged from nonperturbative QCD calcula-
tions is the substantial meson spin dependence associated
with the quark momentum distribution amplitude for
mesons containing light quarks. In particular, the QCD
sum-rule approach of Refs. [1,2] and lattice QCD calcula-
tions of Refs. [3,4] find that the tr distribution amplitude
is double peaked or camel shaped as a function of the
fraction of the meson momentum carried by the quarks,
while the p meson only exhibits a single broad peak. Be-
cause this signature is generated by both QCD sum-rule
and lattice gauge approaches it was initially thought to be
a consequence of nonperturbative theory even though it
was difficult to attribute which aspect of the QCD dy-
namics was directly responsible for the spin-dependent
behavior. Now, however, since this same behavior is also
reproduced in the simpler model calculations by Ref. [9]
and, more recently, Ref. [12], there are physically more
intuitive explanations available. Reference [9] argues
that the only necessary ingredients to reproduce the strik-

ing distribution feature are a nonstatic relativistic spin
wave function and a small i'adial transverse size for the
valence configuration. Reference [12], which uses a
different meson wave-function ansatz, claims the behav-
ior arises from quark spin interactions and predicts that
for heavier open-flavored mesons such as D and 8 the
camel-shaped distribution will disappear because the spin
interaction is suppressed due to decoupling between the
spin of a heavy quark and the gluon field [16]. More re-
cently, however, Ref. [6], using the unquenched approxi-
mation of Ref. [4], reported a lattice calculation which
does not generate a camel-shaped distribution for the ~
and supports the result obtained by Mikhailov and Ra-
dyushkin [17], indicating the issue needs further clarify-
ing study.

Previously, we extended the pion model for Ref. [9]
and derived general, analytic formulas for the elec-
tromagnetic form factor and the decay constant which
are valid for any pseudoscalar meson [7]. Our predic-
tions for the kaon (K+ and K ) charge radii, the kaon
form factor, and the decay constant fz compared favor-
ably with experimental data. In this paper we further ex-
tend that analysis to the a& axial-vector meson and per-
form a comparative meson study using the Lorentz-
invariant light-cone wave functions for the a&, ~, K, and

p mesons. In particular, we find that the spin bilinear co-
variant component (spin covariant) of our model wave
function is consistent with the Melosh transformation
procedure. We also generate various ~ quark distribu-
tion amplitudes including one which is not camel shaped
and compare the first six moments of the a „m, K, and p
quark distribution amplitudes with those obtained from
various QCD sum-rule and lattice QCD calculations.

In Sec. II we discuss the essential aspects of our relativ-
istic quark model and develop the spin covariant for the
a, meson wave function. In this section we also demon-
strate the equivalence of our spin-covariant result with
that obtained by a Melosh transformation and provide a
more formal derivation in the Appendix. In Sec. III we
present our numerical results for the m, K, p, and a&

mesons moments and compare with recent QCD sum-
rule and lattice results. Conclusions are followed in Sec.
IV.
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II. MODEL DESCRIPTION AND a
&

MESON
%'AVE FUNC:C1ON

The model used in this paper is based upon the light-
cone quantization method [13—15] which provides an im-
proved Pock-state expansion for hadron states since in
the light-cone formalism the vacuum and hadron states
are rigorously orthogonal. The key approximation in this
approach is to truncate the expansion by retaining only
the lowest Fock state. The meson state ~M ) considered
in this paper is, therefore, represented by

g~(p; )=g„[io2/~2]g„ (2.8)

and

As shown in the Appendix the spin covariants y~ & given

by Eqs. (2.6) and (2.7}are equivalent in form to the light-
cone spin wave functions obtained by a two-step process
consisting of a Melosh transformation from the equal-
time static spin wave functions gM z(p, ) in the rest frame
and then boosting to the arbitrary frame. Here the
equal-time static spin wave functions are

~M & =q, , iqq &, (2.1) g~ i(p; ) =g„,[i(e(A)o, )o 2/~2]y„, (2.9)

where ~qq ) is the two-body Fock state for a quark q and
an antiquark q. The model wave function 4 is given

e e
by the product of the light-cone harmonic-oscillator wave
function 4~, which is prescribed by Brodsky, Huang,
and Lepage [18], and the light-cone spin-covariant com-
ponent y, which in the rest frame should be equivalent to
the light-cone spin wave function obtained by a Melosh
transformation [19,20] of the equal-time static spin wave
function. These wave functions depend on the light-cone
variables

x; =p;+/P+,

pz

and A,;, where

P =(P+,P,Pi) =(P +P, (mM +Pi)/P+, Pi}

(2.2)

(2.3)

where

=O'M(x;, ki; )gM &(x, , ki;, X;}, (2.4)

is the four-momentum of the meson M, and p; are the
four-momenta of the constituent quarks. The particle
masses and helicities are specified by mM and A, for the
meson and m;(i = 1,2) and A,; for the two quarks. For the
~(K) and p mesons [i.e., M=n(K), p], %' . is given by

q', ;='pM, ~.(x»u " )

where
+p. +m;

[2p;+(p; +m; )]'~2 p; ip; p,++m,.

(2.11)
Equation (2.11}is the unitary Melosh transformation.

Now, for the oi the issue is the spin covariant y, .
1

Since the a& is an axial-vector meson it is tempting to use
the simple ansatz of inserting a y~ in the vector-meson
spin covariant given by Eq. (2.7): i.e.,

for p=m(K) and p, respectively, where y„ is the two-
I

component Pauli spinor and the superscript T is the tran-
spose operation. The canonical spin projection p, ; is re-
lated to the helicity A,; by a Melosh rotation in the arbi-
trary frame and is equal to helicity in the rest frame. The
polarization vectors e(A, ) are the space components of the
polarization four-vectors e(A, } in the rest frame and have
the components e(+)=+(1,+i,0)/v 2, e(0)=(0,0, 1).

Equivalence between Eqs. (2.6) and (2.8}as well as Eqs.
(2.7) and (2.9) mentioned above can be shown by substi-
tuting for p, and pz at equal time (t) by A, i and A,2 at
equal light-cone (LC) time:

Ip;, 1'&,
'

'Ip;, t&„,
'

~p. g) (2.10)

k +m;
4M(x, ,ki;)= A exp —g 8P (2.5)

y, i(x;,ki, , A,;)=ui m, g(A, )+ '
y, v„

[P,E'(&) ]

and the spin covariants for n.(K) and p are given by

y (x;,ki;, I,; ) =ui [m +P]y, vi„ for p =n(K),

(2.6)

y i(xki A)=ui m g(A)+ '
vi for p .[P,E'(&) ]

(2.7)

Here the normalization of light-cone spinors is given by
ui (p;)ui (p;)=2m;/p, .+ and Eq. (2.7) involves the com-

mutator between the Feynman slashed momentum 7 and
polarization four-vector P(A, ). In Eq. (2.5) A is specified
by normalizing 4 to unity and P, the oscillator param-

q e
eter, is the only dynamical constant entering the model.

(2.12)
However, we find that Eq. (2.12) is not equivalent to the
light-cone spin wave function obtained from a Melosh
transformation of the equal-time static spin wave func-
tion having the standard quark-model assignment. This
is because the a& has nonzero angular momentum while
Eq. (2.12) is based upon Eq. (2.7) which describes a zero
angular momentum vector meson. The correct form
which describes nonzero orbital angular momentum and
is consistent with the Melosh transformed spin wave
function is

i(x;,ki;, A, ; )

(m, ,
+P) E'(A, )+ ' ] y, v

mg

(2.13)



4216 CHUENG-RYONG JI, P. L. CHUNG, AND STEPHEN R. COTANCH 45

where the relative momentum is defined as

k=(p2 p—, )/2 . (2.14}

As in the cases of the pseudoscalar and vector mesons,
one can also verify Eq. (2.13) by a straightforward substi-
tution using Eq. (2.11}involving the static equal-time spin
wave function: +(P —2)(1—g )/4], (3.3)

and for the p meson with longitudinal and transverse po-
larizations,

functions (2.4) and (2.5)—(2.7), the following results were
obtained for m., K, and p mesons: for the m. and K,

4.(k}=4 (k)[v'+vIJ+(P' 2—}(1 0—')/41

&~(k}=4 (k}[i ii ~+(xii 2+x21 i}i"

(2.15)

In the same spirit of Refs. [9] and [10], we construct a
simple model wave function for a& as a product of Eqs.
(2.13) and (2.5). A more formal derivation of Eqs. (2.6),
(2.7), and (2.13) is presented in the Appendix. Further,
we note that our results are consistent with the vertex,
functions based on the time-ordered diagrams for conven-
tional perturbation theory in the infinite-momentum
frame [21].

4„(()=0,(@[i '+pP+(P'+2}(1—4'}/4]

4„(k)=0,(k)[1 '+Pi"+I" (1 4')—/4]

where

m
p, = (equal-mass constituents case),

2

(3.4)

(3.5)

III. NUMERICAL RESULTS AND COMPARISON
WITH QCD SUM-RULE AND LATTICE QCD RESULTS

The meson's quark distribution amplitude is defined to
be the probability amplitude for finding quarks in the
L, =0 (s-wave) projection of the wave function collinear
up to the scale Q [13]:

PM ~(x, , Q)= J [d'k, ]%~i(x, ,k„,A, , ) . (3.1)

For the value p=0. 30—0.45 GeV [7,9,10], the scale is
Q=1 GeV. Because of the presence of the damping
Gaussian factor in Eq. (2.5), we can extend the integral
limit to infinity without loss of accuracy. Using the wave

m, m2
p, =, p = (unequal-mass constituents case),i 2P 2 2P

(3.6}

mMP=, (=xi x2
2P

'

and

(3.7}

For the a, meson, using the wave functions (2.4), (2.5),
and (2.13), we obtain

TABLE I. First three nonzero moments of the quark distribution amplitude for the pion.

0.30
0.36
0.43
0.45
0.47

( g2 ) n

0.20
0.25
0.37
0.46
0.64

( g4 )n.
0.08
0.11
0.20
0.26
0.39

0.04
0.06
0.12
0.16
0.25

Chernyak and Zhitnitsky (CZ)'
Mikhailov and Radyushkin
Mikhailov and Radyushkin'
Narison
Guo and Huang'
Martinelli and Sachrajda'
DeGrand and Loft
Daniel et al."

'Reference [1].
Equation 45 in Ref. [17].

'Equation 47 in Ref. [17].
Reference [2].

'Reference [12].
'Reference [4].
~Reference [5].
"Reference [6].

0.43
0.26

& 0.32+0.03
0.38—0.60

0.36
0.26+0. 13
0.30+0.13
0. 10+0.01

0.24
0.13

& 0.20+0.03
0.22 —0.35

0.17

0.15
0.08

& 0.15+0.02
0.17—0.22
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TABLE II. First six moments of the quark distribution amplitude for the kaon.

0.30
0.36
0.43
0.45
0.47

0.058
0.046
0.034
0.030
0.026

(g2)K

0.17
0.20
0.25
0.26
0.28

(g3)K

0.026
0.025
0.023
0.023
0.022

(g4)K

0.06
0.08
0.11
0.12
0.14

(g5)K

0.014
0.015
0.016
0.017
0.017

0.03
0.04
0.06
0.07
0.08

CZa

Guo and Huang

'Reference [1].
bReference [12].

0.107
0.15

0.34
0.34

0.060
0.075

0.18
0.30

0.038 0.11

(3.8)

(3.9)

where P, (g) is also given by Eq. (3.7). In comparing

these quark distribution amplitudes with the QCD sum-
rule and lattice QCD results, we used constituent-quark
masses m„=md=0. 33 GeV and m, =0.45 GeV and
spin-averaged meson masses m Qp) 0.612 GeV,
m@=0.793 GeV, and m, =1.120 GeV. Tables I—IV

1

summarize the 6rst six moments of the quark distribution
amplitudes of ~, E, pI, pT, a &L, , and a

& T and list for com-
parison the various QCD sum-rule and lattice QCD re-
sults. The nth moment is dined by

(3.10)

Here the normalization of pM 2(g), NM, is fixed by the
zeroth moment (g )z =—1 if pM z(g) is an even function
of g. Because Eq. (3.9) is an odd function of g, the lowest
n =0 moment vanishes for the transverse a

&
and thus we

present the moment ratios (g")r'/( g') z' in Table IV.
As shown in Table I, the present model can reproduce

the pion result of Chernyak and Zhitnitsky remarkably
well with the value of p=0.45 GeV. Even though the
present model does not give the same level of agreement
with Chernyak-Zhitnitsky p-meson result (see Table III)
the important qualitative features of the p-meson quark
distribution amplitude are reproduced (i.e., no camel
shape). Such agreement supports the conclusion [9,10]
that this model can reproduce both QCD sum-rule and
lattice QCD calculation results. However, if the recent
claim [6,17] is correct that the second moment for the
pion is sufficiently small to remove the camel shape in the
quark distribution amplitude, then the value of P should
be further reduced (see Fig. 1). Such reduction might be
related to nonlocal condensate contributions in the QCD
sum-rule result or the unquenched approximation in the
lattice QCD result. This issue needs further study to
resolve. In any case, the present model qualitatively can
reproduce the moments from QCD sum-rule and lattice
QCD approaches by adjusting only one parameter p. For
the kaon, the odd power moments do not vanish because
of unequal-mass constituents (see Table II). Nevertheless,
the shape of quark distribution amplitude is still predom-
inantly governed by even power moments and the basic
features of the Chernyak-Zhitnitsky kaon quark distribu-
tion amplitude can also be reproduced by this model us-
ing P=0.45 GeV (see Fig. 2). However, for larger P
values the computed meson decay constants are far below
the observed values (e.g., for p=0.45 GeV, f =36 MeV,

TABLE III. First three nonzero moments of the transverse-quark distribution amplitude for the
transverse p meson and the ratio of the transverse to the longitudinal moments.

0.30
0.36
0.43
0.45
0.47

0.180
0.200
0.217
0.222
0.226

0.067
0.082
0.095
0.098
0.101

0.033
0.042
0.052
0.054
0.057

(4 &rn .

1.05
1.08
1.11
1.13
1.14

(0& rgl.

1.10
1.14
1.20
1.21
1.22

(4 &ra .
1.14
1.17
1.24
1.26
1.30

CZ'
Narison

'Reference [1].
bReference [2].

0.143
&0.14

0.048
& 0.06

0.022 0.53
& 1.0—1.2

0.36
& 1.0—1.2

0.28
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TABLE IV. First three nonzero moments of the quark distribution amplitude for the longitudinal

and transverse a
&

meson.

(g2) 1
(g3) 1 (g5) 1 (g7) 1

0.30
0.36
0.43
0.45
0.47

0.143
0.155
0.165
0.167
0.169

0.046
0.053
0.059
0.061
0.062

0.020
0.024
0.028
0.029
0.030

0.376
0.414
0.454
0.465
0.477

0.181
0.216
0.255
0.266
0.278

0.100
0.127
0.159
0.169
0.179

CZ' 0.04—0.07

Narison 0.07-0.08 0.03—0.04 0.02

'Reference [1].
Reference [2].

and fr=97 MeV). Finally, the significant reduction of
the second moment of the longitudinal a, meson is also
reproduced by the present model (see Table IV).

IV. CONCLUSIONS

In this paper we constructed a Lorentz-invariant
light-cone wave function for the axial-vector a, meson
following the same procedure applied for the zero angu-
lar momentum pseudoscalar and vector mesons. We
found that the proper spin covariant consistent with the
Melosh transformed light-cone spin wave function for the
a, is given by Eq. (2.13) instead of Eq. (2.12). While more
complete fundamental results are not yet available to
determine whether our light-cone model wave functions

are good approximations to the actual QCD solutions, a
comparison has been made for the first six moments of
the m, K, pl, pT, a&L, , and a&T quark distribution ampli-
tudes obtained from the light-cone model wave functions
and the recent QCD sum-rule and lattice QCD results. It
is both interesting and significant to note that the basic
features of the quark distribution amplitudes obtained
from nonperturbative QCD methods can be reproduced
by the present model which uses only one parameter P.
Finally, we note that in Ref. [21], the a

&
form factors and

transition form factor in the decay process a, ~~y using
the vertex function consistent with Eq. (2.13) were calcu-
lated and found to quantitatively agree with QCD sum-
rule predications. In summary, this model provides a re-
markably good description of static properties for the m

and E mesons and reproduces the basic features of the
QCD sum-rule results for four different mesons. Because
of its conceptual and computational simplicity it merits

1 .5 I ~ 0 ~

1 .5 ~ ~ ~ I I I I I ~ ~ e

0.5

/~
//

; I/
I'/

'
~

/.

~ ~

/ ~

0.5

~ X

I

—0.5 0.5

FIG. 1. The quark distribution amplitude for the pion. The
following line codes are used: dash-dot-dot-dotted, P=0.30;
solid, P=0.36; dashed, P=0.43; dotted, P=0.45; dash-dotted,
for the QCD sum-rule results of Chernyak and Zhitnitsky (Ref.

[1])

I I E I

-0.5 0.5

FIG. 2. The quark distribution amplitude for the kaon. The
line codes are the same as Fig. 1.
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further consideration and should be comprehensively
tested by applications to other hadron systems.
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APPENDIX: COVARIANT FORM OF MESON
WAVE FUNCTIONS

In this appendix we derive the explicit covariant wave
function for pseudoscalar, vector and axial-vector mesons
based on the standard quark-model assi nments [22].
The meson wave function in the rest frame =(M, O, O, O)
can be written in terms of the standard Clebsch-Gordan
coefficient (j„j2,p„p2I j,p) as

~i(x &i pi iJ2)= g &4~I'i, m, «X-,', —2,p, „p2l~,p, )(s, i,p„pilj, p)@~(x;,k„)lkl'
Pg~P(

=y„,(I ~ „)y„P~(x;,k„)
=(X~i )p, ,i,,@M(x(ikj;), (A 1)

where I M „are the operators and

1I p= /0'2,

states IX, )„c. Thus, we have the matrix

Ip»1&Lc
Ix~,„& =(lpi ~&~c lpi, & &~c&)~,„ lp, g)„ (A4)

I,„=~ [e(p, ) cr]o, ,

I,„=—,'[~3e(p) ~ (kXo )]o2,

(A2)

for pseudoscalar, vector, and axial-vector mesons respec-
tively.

First, we specify the spin-state vector of meson M at
equal time as lgM „),:
Ir'M, „&,=(r'M, „)„,,„,lp, &, li 2&,

(U~)i „=
' 1/2

p&
"i,, (pl )u„, (pl)

2m)
(A5)

and

where Q~„=(U~)i „(I~„)(U~)„ i . Now, we use

the fact that the Melosh transformation is simply the
product of the light-cone spinors and the equal-time spi-
nors:

'Ip„ t &,
=(lp„t &„lp, , s &, )I „

I » (A3)

' 1/2
P2

(UA)P2, k2
—

2 UP2(p2)U~ (p2), (A6)

Next, we use the Melosh transformation U given by Eq.
(2.11) to relate equal-time states lp; ), and the light-cone

where u& and v& are the light-cone spinors used in Sec.
1 2

II and u„' and v„' are the equal-time spinors such asPi Pz

C C C C 1
u 1/2 &

u —1/2 &
U 1/2 & U —1/2 )

~2m(E+m)

' E+m

pz

px+Vy

px Vy

pz

px lpy

pz

pz
—(p„+ip~ )

(E+m )— (A7)

u„' (p, =O)

(A8)
E)+mi

However, the crucial observation of the present, more
elegant derivation shown in this appendix is

1/2
pi

(U~4, „,= 2m'
1/2

2m'
X

Ei+mi
' 1/2

P2

E2+m2

1/2

U„' (p2=0)ui, (p2) . (A9)

(A10)

X~„(P)= p&

Ei+m)

I/2
P2

E2+m2

1/2

u„', (pi =O)

Thus, we 6nd that

(&m„)ii i, =ui. (pi)X~„(P)uz (p2),

where

and X(I ~„)„„v„'(p =()) (A11)
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X „(P)=N 'I „(P),
where N is given by

N=[8(p]+mt)(p~+m~)/x]x~]'

and

(A12)

(A13)

From this, it is not very difficult to show that XM „(P) is

given by

%'st q(x;, kj, A,;)=N 'ug (p()I st g(P)

XU& (pz)4(x;, kt;),

where I M z(P ) in the arbitrary frame are given by

(A15)

elk=a h —lo ~"b"and the subsidiary condition e P-=O.
P

Hence the light-cone bound-state wave function in an
arbitrary frame becomes

I ~ (P ) =m~ (1+P)y5,

I „„(P)=m„(1+P)/(p),

(A14a)
I ~(P)= [m +g]ys,

(A14b)

I', „(P)=m,(1+p) g(p)+ '
ys . (A14c)st(p), k

ma

To obtain Eq. (A14c) we have used the identity

I „z(P ) = [m„+P]tt(A) =m„st(A )+ [P,8(A, ) ]

I, (P)= (m, +1') tt(A. )+ '
y

ma

(A16)
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