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Null-plane phenomenology for the pion decay constant and radius
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The pion decay constant and the electromagnetic form factor are computed by using quark diagrams
and projecting the bound-state wave function on the null plane. We show that the resulting formulas are
the same as those of the Hamiltonian front-form scheme. The connection between the radius (r ) and
the pion decay constant (f ) is studied using different models of confinement.

PACS number(s): 14.40.Aq, 12.40.Qq, 13.40.Fn

I. INTRODUCTION

The relativistic description of mesonic bound states is
motivated, in part, by the desire to study the connection
between the high-momentum component of the quark
wave function and the corresponding long-range or
short-wave length part of it. The problem of obtaining a
physically reasonable relativistic wave function is extrern-
ly difficult and largely unsolved. Here we are concerned
with understanding some simple first steps. One such
description is obtained by making a truncation such as
using only qq components, expressing the wave function
in the null plane and evaluating a chosen graph. For ex-
ample, one may evaluate the triangle diagram to obtain
the elastic forin factor [Fig. 1(a)]. (We consider only qq
components of the wave function in our calculations, and
one of our conclusions is that other components are
necessary. ) We define this procedure of using the null-
plane wave function to evaluate a Feynman diagram the
"diagrammatic approach. "

The justification for the choice of variables in the null
plane comes from the suppression of the pair creation or
Z terms [1] in the amplitudes for specific processes after
the integration over the null-plane energy. The calcula-
tion of form factors using the triangle diagram has been
extensively discussed [1]. We generalize this procedure
to calculate other observables by studying the ~ weak de-
cay matrix element using the one-loop diagram of Fig.
1(b).

In the calculation of electromagnetic form factors us-
ing the triangle diagram, the plus component of the
current, J+=J +J, is used because it is a "good"
operator [2] that does not create pairs. This is a symp-
tom that such calculations are not complete. Indeed, ro-
tational invariance is not completely respected.

Another apparently different approach was suggested
long ago [3]. This approach, now called Hamiltonian
front-form dynamics [1,4], continues [5,6] and was gen-

eralized to other pseudoscalar mesons [7,8]. It was used
in the nuclear context, in particular, for the calculation of
the deuteron form factors [1,4,9].

In Hamiltonian front-form dynamics, the null-plane
wave function is constructed as an eigenfunction of the
mass operator and its kinematical dependence on the
null-plane coordinates is easily obtained [1,4, 10]. The
separation of the center-of-mass coordinate is also
straightforward. The null-plane bound-state wave func-
tion is written as a function of the transverse relative
momentum p, and the fraction of momentum
x =p+/P+, where p+ corresponds to the momentum of
that of the constituents and P+ is the plus component of
the total momentum. The connection with the usual non-
relativistic wave function comes when the third com-
ponent of the relative momentum of the two nucleons is
defined from the free mass operator of the two-body sys-
tem. The most important difference between the relativ-
istic and nonrelativistic approaches comes from the cou-
pling of the angular momentum and spin. The coupling
is carried out in the c.m. frame in the instant form and
reexpressed in terms of light-cone spinors [11]; this re-
lates the front form of the Clebsch-Gordan coefficients
[1,4] with the Melosh rotation. The null plane is defined
by x + =x +x =0. We use the metric and Dirac spinors
defined by Bjorken and Drell [12].

The formulation of the Hamiltonian front form of the
dynamics can also be understood as a special choice for
the kinematical operators [13,14] from among the genera-
tors of the Poincare group. These operators define the
subgroup of the Poincare group, which leaves the null
plane invariant. This means that among the 10 genera-
tors of the Poincare group, the maximal number of seven
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FIG. 1. One-loop diagrams for (a) the electromagnetic form
factor (triangle diagram) and (b) the pion decay constant.
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are chosen as independent of the interaction [13]. The
remaining three dynamical operators, which contain the
interaction, can be constructed from the mass operator
and the three components of the spin operator rotated by
a Melosh transformation [15].

Reference [1] showed that the elastic electromagnetic
form factors of a bound state computed from the triangle
diagram and from the Hamiltonian front-form dynamics
are the same. The integration in the momentum loop
over the null-plane energy in the plus component of the
current is the essential step. The Melosh transformation
is then seen to result from using the Feynman fermion
propagator.

Thus the "diagrammatic approach" and Hamiltonian
front-form dynamics are two relativistic techniques avail-
able for computing observables. The results for the elas-
tic form factors are the same, but it is not yet known if
such an equality holds for other observables. We shall
compare computations of the ~ weak decay constant, f
for the two procedures.

An apparently completely different third approach is
to use the soft-pion limit. The pion radius and weak de-
cay constant are related by (r„)' =&3/2rrf [16].
This is a result of the integration of the triangle diagram
for a ~—

qq vertex independent of momentum. The
essential physics is contained in the triangle diagram, and
because the radius is the derivative of the form factor, the
one-loop integral is convergent even with a constant ver-

tex, thus relating r and f . The Nambu —Jona-Lasinio
model also yields this result [17].

So a question arises: does the null-plane phenomenolo-

gy destroy the remarkable relation between r and f '?

We try to answer this question by performing several nu-

merical calculations in the perspective of the connection
between these two quantities for different models of the
pion wave function.

The plan of the paper is as follows. In Sec. II we evalu-

ate the one-loop diagrams for the pion electromagnetic
form factor and weak decay constant. It turns out that
the results obtained from the diagrammatic approach for
the form factor and f are the same as those of light-cone
quantum mechanics or Hamiltonian front-form dynam-
ics. In Sec. III, the numerical results for r and f for
different models in the null plane are given and compared
with the soft-pion limit. A summary of our new numeri-
cal results is given in Sect. IV.

II. ONE-LOOP DIAGRAMS FOR THE FORM FACTOR
AND DECAY CONSTANT

The pion electromagnetic form factor is calculated
from the triangle diagram of Fig. 1(a), and the weak de-
cay constant is obtained from the one-loop diagram with
the weak vertex? "y, as shown in Fig. 1(b). The vr~qq
vertex is determined by implementing the physics of
spontaneous breaking of chiral symmetry. To fix the con-
ventions for the pion and to obtain the vertex describing
the m.—+qq process, we present a brief review.

The pion viewed as the Goldstone boson arising from
the spontaneous breaking of chiral symmetry has many
rich consequences in low-energy hadronic phenomenolo-

.~ ~r'q'=exp i q .
2f

(2)

Here the pion field operator m is an elementary field.
The couplings of the pion field with the quarks are tak-

en from the Lagrangian after the chiral transformation of
the quark field, and the quark gets the constituent mass
M from the spontaneous breaking of chiral symmetry.
The couplings of the pion to the quark field are obtained
by the expansion of the chiral rotation. Then, we keep
terms up to first order in the pion field and in the second
order for the scalar term (qq). This gives

X.=q(i8 —M)q— 1
B„m'qy"y vq

i n"qy—rq+ m. qq .. m 5 m

2f
(3)

The quark field operators q' are written as q in Eq. (3)
and in the following text. Keeping only the terms of Eq.
(3) is consistent with our stated approximation of keeping
only qq components of the pion wave function.

The second term in the Lagrangian gives the pseudos-
calar coupling of the pion to the quarks, when the con-
stituent mass is used for the quark. This is the
Goldberger-Treiman [20] relation at the quark level. If
the effects of spontaneous symmetry breaking dominate
the pion wave function, it is a good approximation to
take iraq =Mq with M the constituent quark mass. Then
the interaction Lagrangian L, for the m —+qq vertex is

given by

i(M/f„)n q?—' rq . . (4)

This has the form of a m —+qq coupling with a constant
vertex function. The third term of Eq. (3) has the same
form as this one, but is neglected because the bare quark
mass is small.

The third term gives the Gell-Mann, Oakes, and
Renner relation for m

gy. For a review see Ref. [18]. The first striking feature
of the pion is the small mass compared to other hadrons.
This comes naturally in the Goldstone picture as is
shown in the Gell-Mann, Oakes, and Renner [19] rela-
tions for the masses of pseudoscalar mesons. The interac-
tions between the quarks spontaneously breaks chiral
symmetry. Because the interaction Lagrangian is invari-
ant under the chiral transformation, only the free La-
grangian is necessary for obtaining the coupling of the
Goldstone boson with the quarks. Then, we start by
making a chiral rotation in the free Lagrangian:

X=q(i8 m—)q,
where m is the average between the up and down bare
quark masses.

The chiral angle is associated with the pion field, and
the quark field rotated by the chiral transformation
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m' =, (olqqlo},
A. Pion electromagnetic form factor

and the scalar vacuum condensate of quarks is the mea-
sure of chiral-symmetry breaking.

The general structure of the qq bound state of the pion
comes from the pseudoscalar coupling, and we will use
such spin structure in the following discussion of the
one-loop diagrams.

We choose to work in the Breit frame where the
momentum transfer is such that q+ =0 and q~ =(q„,0,0)
to make contact with the null plane impulse approxima-
tion of the pion form factor [6]. The triangle diagram for
the pion electomagnetic current is

e(p"+p'")F(q') =
& ~'ls" l~' &

M d k @+M 5 it' —gf'+M „k—/+M
f~ (2n ) k M—i e— (k p'}—M —i e —(k —p ) M—i e— (6)

where p =p' and p'~= —
pj =qj /2 in the Breit frame. N, =3 is the number of colors.

The plus component of the current is calculated, because in general the k integration is convergent. This property
is essential for the null-plane phenomenology.

We evaluate the integral of Eq. (6}by performing the integration over k first. This yields an expression which can
be interpreted as involving spatial pion wave functions that depend on the plus and l components of the qq relative
momentum. Proceed by changing the variables from k"=(k,k) to (k =k —k, k+=k +k, k~) and performing
the trace. Then one obtains

J

k +M +is
k+

k+(k+ —p+) k

2

2(k —p)+ k~+M — (k —p)+ —k+ k +M—
dk+d kjdk 2 4

F(q )=i 4N,f~ '
(2m)

X
(kj —p~) +M +ie

k —p k+ —p+
(k~ —pj ) +M +ie

k —p k+ p+

(7)

where the singularity structure in the k integration is
explicitly shown.

The integral over k is convergent, and one can apply
the Cauchy theorem. There are three distinct situations
that must be analyzed: k+ (0, 0(k+ &p+, and
k+ &p+. The first and the third regions of k+ integra-
tion do not contribute to the integral because the three
poles have imaginary parts with the same sign. The only
contribution comes from the region of 0(k+ &p+. This
corresponds to the spectator quark in the photon absorp-
tion process to be on-mass shell. So its plus component
of the momentum cannot exceed that of the pion. The
result is

dx d Kg

x(1—x)

(1—x)q .K
%~+M

(m —Mo }(m —M' )

(8)

where the momentum fraction x=(p+ —k+)/p+ and
0 &x ( 1. The relative perpendicular momentum is
defined as [1,3—10]

Ki=(1—x )(pj —ki) —xki,
and K'~=K~+(1 —x}qj. The free mass operator for the

q
—

q is written in terms of the momentum fraction and
the relative perpendicular momentum,

E +M
Mo x(1—x)

(10)

and Mo is written as a function of X~.
The integration of Eq. (7) can be used to obtain the

pion radius r =—(1/6)dF/dq l 0 In the soft-pi. on
limit (m =0}, Eq. (8) gives the well-known result of
(r ) '~ =V3/2n f from Ref. [16]. The null-plane in-
tegration gives the correct result for r that could not be
achieved using the bad (other than plus) components of
the current.

The next step is to interpret Eq. (8), in terms of an in-
tegral involving spatial pion wave functions 4 . Note
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alld

1K = x ——
2

+2+M2

x(1—x)
(13)

The normahzation condition of the pion wave function
is that F(q =0)=1. Using the new variables, this is

Mo1= dK
3 f2 ( rri2+M2)( in2+M2)

(14)

We require that 4 (K) is normalized to unity, so that one
may identify the wave function in terms of the relative
coordinates as

@ ( )
1 M o cM N

m' ' f —m'+M' (15)

Eq. (8) is obtained using a constant pion-qq vertex func-
tion. The structure of the standard Drell-Yan formula
for the form factor emerges from Eq. (8) if one interprets
the denominators as wave functions. In particular,

1

—m +MD

This is a standard expression for a wave function, ob-
tained using a constant vertex function. The other fac-
tors in the integrand of Eq. (8) arise from the Melosh ro-
tation of the spin wave function of the quarks, as shown
below.

The next step is to use a more realistic model for 4 .
This will be done by modifying the vertex function. A
necessary preliminary is to discuss the normalization fac-
tors. It turns out to be useful to make another change of
variables (x,Ki)~K to rewrite Eq. (8). This also helps
us to make contact with the null-plane impulse approxi-
mation as given by the Hamiltonian front form of the dy-
namics [4,6]. The Jacobian of the transformation is

@x Kl) [x(1—x)]'
(12)

&(K„K,) K', +M'

X4„(K')4 (K) . (16)

Our expression (16) for the pion form factor is the same
as that obtained in Ref. [6] using Hamiltonian front-form
dynamics.

In the numerical work presented below, the expression
(15) for the pion wave function is modified to include the
effects of a nonconstant vertex function. This is done by
using different phenomenological forms for 4 . Such
forms include the effects of confinement. It is interesting
to see if the soft-pion relation between r and f is main-
tained. Thus we compute the pion decay constant using a
similar triangle diagram analysis.

B. Pion weak decay constant

The pion decay constant is calculated from PCAC
(partial conservation of axial-vector current) [20] which is
expressed through the diagram in Fig. 1(b)

p„(,0~qyI'y'r, q~m;) =2ip'f 5,), (17)

where f =93 MeV.
Using Eq. (4) for the pion-qq vertex function, one ob-

tains

NMdksk —M'f. (2 )'

Ji —ii —MXy'
(p —k ) —M i e—

(18)
Our aim here is to integrate over k in order to obtain
an expression for f written as an integral involving a
pion wave function expressed on the null plane. So, per-
forming the Dirac algebra, and separating the poles in
the k plane, one obtains

Using the above expression for the wave function in Eq.
(8) leads to

Mo
' (1—x)qi K~

F(q )=fd K 1+M' &', +M'

dk+d2k~dk
=2iM N (2~)'k'(p' —k') k'+M'+i~

k k+
k +M +Ye

p —k

(19)

We evaluate this expression in the pion rest frame. The
integral over k is convergent, and only values of k+
such that 0 & k+ &p+ contribute. The result is

ry pion Geld approach can be generalized by again using
the replacement suggested in Eq. (15). The final equation
1S

dxd kf =2N,
(2m. )3 ~ x(1—x)

1

kq+M—m +
x(1—x)

(20)
MQN, f dx1 Ki 4 (K)f

4' ~ x(1—x)
(21)

The expression for f in the constant vertex elementa-
This is the same expression found by Chung, Ji, and Co-
tanch [8] obtained using Hamiltonian front-form dynam-
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ics. Thus, the expressions for the weak decay constant
and the electromagnetic form factor are the same for
each of the two formulations we consider. This em-
phasizes the role played by the elementary Feynman dia-
grams in the interpretation of the null-plane phenomenol-
ogy.

Note that Eqs. (14) [or (8) with q =0] and (20) provide
independently obtained different expressions for f . Our
numerical work shows that the two expressions yield
similar results. This can be traced to the fact that if one
takes the soft-pion limit, Eq. (8) with q =0 and Eq. (20)
yield the same expression for f„.
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III. NUMERICAL RESULTS ~ ~
~ ~ ~ ~ O~~ 0~ ~ ~ ~

and

M=330 MeV, (22)

M=220 MeV . (23)

This last value is used to compare the results of the hy-
drogen and Gaussian models to those obtained from Ref.
[21]. The pion model of Ref. [21] uses a quark-mass (M)
of 220 MeV, which we do not vary.

The hydrogen-atom and the Gaussian model wave
functions depend only on one range parameter that can
be related to the nonrelativistic radius. The nonrelativis-
tic radius is defined as

We perform numerical calculations using three wave
functions: (i) a Gaussian, in which the main characteris-
tic is confinement; (ii) an hydrogen-atom type that mim-
ics one-gluon exchange at short distances; and (iii) the
pion wave function model of Ref. [21]. This last wave
function has the efFects of (iterated) one-gluon exchange
and confinement.

In order to define the transformation of the c.m. wave
function to the null-plane variables, one needs to specify
the mass of the quark in the calculations. We choose the
constituent quark masses

0, f

0
I I I I I I I I ( I I I I I I I f I I I I I I I I I I I

0.25 0.50 0.75 I.OO I .25 I. 50
r„„(&m)

FIG. 2. Ratio of the pion radius to the nonrelativistic radius
as a function of the nonrelativistic radius of the model wave
function. Hydrogen-atom model (solid line) and Gaussian mod-
el (dashed line) for M=330 MeV. Hydrogen-atom model (dot-
ted line) and Gaussian model (dot-dashed line) for M=220 MeV
[(square) Ref. [21]].

the mesons is naively computed to be much smaller than
the experimental values [21].

Our calculation is only concerned with the quark core
of the pion, but in the context of the vector-dominance
model this core could be much smaller than the observed
radius [17]. Even with the relativistic increase of r„ the
computed r is smaller than the data (0.6620.07) [22],
and the computed value of f is much larger than the
measurements. Perhaps one should include effects of the
virtual mesons (a~pm) or other non-qq components.
This has not yet been done in the context of the null-

and

dF~R
rNR (24)

200

I & I
(

I I I I
(

l I t &

I
f & & I

FNR(q )= Jd E4 K+ 4 (E). (25) I 50

We display the ratio of the pion radius to the nonrela-
tivistie radius as a function of rNR in Fig. 2. Two
different masses M =330 and 220 MeV are used. The re-
sults do not depend very much on the model wave func-
tion once the constituent quark mass is fixed. It is impor-
tant to note that in each case the true or measured radius
increases over the nonrelativistic one [6]. This difference
is caused by the Melosh rotation of the spins.
(Equivalently, one could say the difFerence is caused by
the use of a Feynman propagator for the intermediate fer-
mions. ) As one would expect, the relative increase in the
radius over the nonrelativistic one is pronounced for
smaller values of rNR. This helps in the phenomenology
of the nonrelativistic quark model, where the radius of

v- IOO

50

0
0 2

FIG. 3. Pion weak decay constant as a function of r '. The
curves are labeled as in Fig. 2. The soft-pion limitf =Y3/2mr is the straight solid line. The data point, indicat-
ed by X, is that of Ref. [22].
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TABLE I. r (fm) and f (MeV) for different models, the
nonrelativistic radius is 0.195 fm for all the cases. The pion
model of Ref. [21] gives r =0.456 fm and f =123.0 MeV in
the null-plane phenomenology.

m (MeV)
H atom Gaussian

100
220
300
400

0.606
0.463
0.408
0.361

63.98
124.5
156.4
188.7

0.612
0.476
0.422
0.375

56.01
108.2
135.7
162.1

plane phenomenology.
In Fig. 3, we plot the results of f as a function of

(r ) . The limiting case of the soft-pion limit of the tri-
angle diagram using a constant vertex function is shown
as the solid line through the origin. This can be com-
pared to the results obtained with our three model wave
functions. The experimental data point is also shown.
For larger r there is model independence. However, the
three models yield different results for small pion sizes.
The inverse relationship between r and f is approxi-
mately valid for the Gaussian and hydrogen models. If
the core of the pion is small, the corresponding f„will be
greater than the experimental value, unless a constituent
quark mass smaller than usual is chosen.

In Table I, we show the results for the hydrogen and
Gaussian models for different quark masses and a fixed
nonrelativistic radius of 0.195 fm. This is the value quot-
ed in Ref. [21] for the pion wave function. The results
follow the qualitative behavior given by the soft-pion lim-
iting formula. The model dependence for the radius is
small, as we already observed from Fig. 2.

IV. SUMMARY

The diagrammatic approach is applied to compute the
form factor and weak decay constant of the pion. We
show that the diagrammatic approach gives the same re-
sults as Hamiltonian front-form dynamics.

We study numerically the pion electromagnetic radius
and weak decay constant for different models (Ref. [21],
Gaussian and hydrogen atom) of the q

—
q pion wave

function. The connection between the values of r and
f„ is examined. The computed pion radius is indepen-
dent of the model, once the constituent quark mass and
nonrelativistic radius is fixed.

The results suggest that the soft-pion limit of the trian-
gle diagram for the pion radius and decay constant is also
approximately obtained by the null-plane calculations for
different models. In the case of a small qq core of the
pion our results show that the experimental value of the
pion decay constant cannot be easily reproduced in null-
plane calculations. One possibility is to invoke gluonic
and multiquark degrees of freedom in the pion wave
function [23], and from that the pion decay constant will
be renormalized, because the probability of the qq com-
ponent is not equal to unity. This means that further
studies of the pion wave function are needed.
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