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In this paper we present a new Ansatz for fermion mass matrices in the context of supersymmetric
grand unified theories. We are able to fit the 13 parameters, associated with quark and lepton masses
and mixing angles, and the ratio of Higgs vacuum expectation values (VEV's) which enters any super-
symmetric theory, in terms of 8 input parameters; hence, we have 6 predictions. The top quark is pre-
dicted to have a mass in the range 176 to 190 GeV, where the upper bound results from the assumption
of perturbative unification, and the lower bound is sensitive to the experimental value of V,b. Predic-
tions are also made for m„m, /md, ~ V„b /V, z ~, the ratio of Higgs VEV's, and the CP-violating phase of
the Kobayashi-Maskawa matrix.

PACS number(s): 12.15.Ff, 11.30.Pb, 12.10.Dm, 14.80.Dq

I. INTRODUCTION

The standard model describes all known experimental
data in terms of 18 phenomenological parameters: 3
gauge couplings, 13 fermion masses and mixing angles,
and a Higgs vacuum expectation value (VEV) and mass.
Neutrinos are predicted to be massless. Several attempts,
using symmetries or specific Ansatze, have been made in
the past to reduce the number of these independent pa-
rameters. Such attempts derive from the firm belief that
in more fundamental theory all these phenomenological
parameters may be derived from a smaller set of funda
mental constants. Putting faith aside, there is a more
practical reason for these attempts; any reduction in the
number of fundamental parameters necessarily has
predictive power. If experimental data subsequently
confirm these predictions, then perhaps we have learned
some important piece of information about the funda
mental theory of everything.

In this paper we present a new Ansatz for fermion
masses with only eight arbitrary parameters. These eight
parameters may be associated with the three up-quark
masses, three down-quark masses, the CP-violating angle,
and the ratio of Higgs VEV's, which enters any super-
symmetric theory. In order to make progress and go
beyond this Ansatz, one must necessarily resolve one of
the following fundamental problems: understanding the
generation hierarchy, the top-bottom mass hierarchy, or
the origin of CP violation. A solution to any one of these
problems would be a phenomenal breakthrough. In the

'On leave of absence, Theoretical Division, Los Alamos Na-
tional Laboratory, Los Alamos, NM 87545.

rest of this section, we review the framework for our pro-
gram [1].

A. Fritzsch Ansatz

In 1978, Fritzsch [2] proposed an Ansatz for quark
masses which is only now being fully tested. He con-
sidered the 3 X 3 up- and down-quark mass matrices of
the form

0 C 0
mU — C 0 B

0 B A

and mD is similar to the complex parameters A, B,C re-
placed by A, B,C. All but two of the phases in these six
complex parameters can be rotated away by suitable
redefinitions of the quark fields. Thus there are only
eight real numbers (six magnitudes and two phases) to de-
scribe the six quark masses and four mixing angles in the
Kobayashi-Maskawa (KM) matrix and, hence, two pre-
dictions. These can be taken to be the CP-violating angle
and top-quark mass. For example, using the experimen-
tal data for the five quark masses and three mixing angles
as input, Gilman and Nir [3] found the allowed range for
the top-quark mass:

77~m, +96 GeV .

This is still consistent with the lower limit on the top-
quark mass, m, ) 89 GeV, from the Collider Detector at
Fermilab (CDF) [4] Collaboration, but outside the pre-
ferred range allowed by measurements of electroweak pa-
rameters from the CERN e+e collider LEP. For exam-
ple, L3 recently found m, =193+69+16GeV and ALEPH
found m, =170+5&+&4 GeV, where the second error cor-
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responds to a change in the Higgs-boson mass from SO

GeV to 1 TeV [5].
In the Fritzsch Ansatz, a light top quark is easily seen

to follow from the relation between the quark masses and
the Cabibbo-Kobayashi-Maskawa (CKM) element V,b
given by

cb

' 1/2 1/2
C 2

—ip

where Pz is a free parameter. Since &s/b -0.18 and

~ V,& ~

=0.044+0.009, a precise cancellation is required
which forces the top-quark mass to be light H. e and Hou
[6] have recently suggested a revised Fritzsch Ansatz in
which the problematic factor &s/b is eliminated from
the above relation. They then find the allowed range for
the top-quark mass:

200~m, ~750 GeV . (4)

This may be overkill [5].
In the following section we present a new Ansatz for

fermion masses. We are motivated by the desire to pre-
dict the largest number of experimentally observable
quantities with the fewest number of fundamental param-
eters. Thus we shall not limit ourselves to quark masses
and mixing angles alone, but also include lepton masses.
Hence our analysis naturally begins from a grand unified
theory (GUT), where quarks and leptons can be con-
sidered on the same footing. We are then quickly led to
the scheme invented by Georgi and Jarlskog [7], which
elegantly reconciles the successful GUT prediction for
b/r with the predictions for the first two families of
quarks and leptons.

II. NEW ANSATZ

In the preceding section we discussed the Fritzsch An-
satz for fermion masses which required a top quark with
mass ~ 96 GeV and is now apparently ruled out by elec-
troweak limits on the top-quark mass [5]. We also con-
sidered a revised Fritzsch Ansatz [6], which allowed for a
heavier top quark, albeit perhaps a bit too heavy. In both
models a simple parametrization of the quark mass ma-
trices was used to obtain predictions for quark-mixing an-
gles in terms of quark masses. In any renormalizable
field theory, the numerical value for the elements of the
quark mass matrix depends on the renormalization scale.
Up until now we have not explicitly emphasized this
point. However, we have (as is normally done) implicitly
defined the mass matrices at a scale of order the top-
quark mass. It is at this scale that we define the mixing
angles via unitary transformations which diagonalize the
mass matrices. Below the top-quark mass m„we use an
effective-field theory with five quarks (defined by integrat-
ing out the top quark) to run the light-quark masses
down to m&. Similarly, from m& to m„ the bottom quark
is integrated out and a four-quark effective-field theory is
used for the running. Finally, a three-quark model is
used to run the light-quark masses down to 1 GeV.

One may ask, is there any a priori reason to define the
quark mass Ansatz at the top-quark mass. In general,

Yukawa matrices satisfy renormalization-group equa-
tions, and a particular Ansatz at one scale may be
significantly changed at a new scale. The answer to this
rhetorical question is that since the original Ansatz is ar-
bitrary, no generality is lost by defining it at an arbitrary
scale. In this paper we are guided by a desire to find the
minimal parameter set fitting all fermion masses. In par-
ticular, we want to relate quark and lepton masses. This
is most naturally accomplished in a grand unified gauge
theory with an Ansatz for mass matrices defined at the
scale MG, where the grand unified gauge symmetry is re-
stored.

Even with grand unification it is not mandatory to
have the form of the Ansatz destroyed beneath the
unification scale. For example, global symmetries which
enforce the form of the Ansatz might survive beneath the
GUT scale. There are several reasons why we prefer not
to do this. Such symmetries require more than the
minimal number of light Higgs doublets, which will upset
the successful predictions of sin 8~. The low-energy
theory would not be the simplest possible. Furthermore,
if the global symmetries were broken at a scale not far
above the weak scale, one would expect this would lead
to unacceptable Qavor-changing neutral currents. In gen-
eral, having an Ansatz apply near the weak scale is very
dangerous: Flavor-changing problems are likely to ap-
pear on construction of the full theory, which has the An-
satz guaranteed by symmetries. It wi11 turn out that it is
crucial for our scheme that the Ansatz applies only at
very high scales: It is the renormalizations away from
the original Ansatz that produce an acceptable value for
the top-quark mass.

In constructing our framework we are guided by the
following practical constraints: it has become evident
that a supersymmetric (SUSY) GUT [8—10] is the sim-
plest model which fits the accurate LEP data for a„a,
and sin 8~ [11];in a SUSY GUT the good b/r predic-
tion can be maintained in the presence' of a heavy top
quark [12];to obtain reasonable relations for e, p, d, and s
masses with a minimal number of parameters, we use the
successful scenario of Georgi and Jarlskog [7] with the
following proviso; the GUT gauge group is assumed to be
SO(10) or larger.

The last constraint enhances the predictive power of
our framework by allowing the mass matrices to be natu-
rally symmetric, thus minimizing the number of parame-
ters.

'The second consideration provides additional evidence in
favor of SUSY GUT's and therefore deserves some explanation.
A large top-quark Yukawa coupling has, in general, a
significant effect on the renormalization-group running. In a
one-Higgs-boson model, such as in a minimal non-SUSY GUT,
it contributes to the running of both quarks and leptons. It has
the effect of increasing the b/~ ratio, such that for a top-quark
mass —140 GeV the b/~ ratio is too large. In a minimal SUSY
GUT, there are at least two Higgs doublets. As a consequence,
the top-quark Yukawa coupling contributes, at one loop, only
to the running of the quarks with the effect of decreasing the
b/~ ratio. This leads to acceptable b/~ ratios with m, as large
as —190 GeV.
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We now discuss our Ansatz for the Yukawa matrices at
the GUT scale. Since we do not attempt to relate the
up-quark matrix to the down-quark matrix, the Yukawa
matrices must involve at least seven real parameters:
three for the hierarchy of eigenvalues of the up-quark
mass matrix, three more for the down-type quark masses,
and the CP-violating phase. Let us temporarily ignore
CP violation and concentrate on the form of the down-
quark and charged-lepton mass matrices. With just three
free parameters, it is easy to show that the only way of
obtaining the GUT scale mass relations mb =m „
m, =m„/3, and md =3m, is to use the Georgi-Jarlskog
Ansatz for the down-quark and charged-lepton mass ma-
trices [7]. There are several ways of arranging the three
parameters of the up-quark Yukawa matrix to get the
desired hierarchy of up-type quark masses. However,
present measurements of the KM angles immediately rule
out all but one possibility. Furthermore, when we rein-
troduce CP violation by allowing all the parameters of
the Yukawa matrices to be complex, this last remaining
acceptable possibility has just one irremovable phase, as
we will shortly demonstrate. Thus we find that there is a
unique GUT Ansatz for the Yukawa matrices which in-
corporates the Georgi-Jarlskog mass relations for down
quarks and charged leptons and which has the minimal
number of seven free parameters. This Ansatz is given by

Vsinp D Vcosp Vcosp
m U

—U ~- ) mD —D ~-, mE —E

U= C 0 B
0 B A

0 Fe'~ 0
D= Fe '~ E 0

0 0 D

0 F 0
E= F —3E 0

0 0 D

The zeros in these matrices are assumed to be con-
strained by a discrete symmetry defined in the GUT.
This discrete symmetry is, however, necessarily broken in
the low-energy theory, which has at most two Higgs dou-
blets [8—11]. In order to compare with low-energy data,
we must then use the renormalization-group equations
(RGE's) (see next subsection) to obtain the fermion mass
matrices at the scale m, . As a result of the RG running,
the zeros in the Ansatz are now only approximate, and in
addition, two significant terms are generated in the above
mass matrices.

We find (at the scale —m, )

0 C 0
U= C 5„8

0 8 A

0 Fe'~ 0

where tanp is the ratio of Higgs VEV's, V=246 GeV, and
the 3 X 3 Yukawa matrices U, D, E are given by

0 C 0
C 0 B
0 B A

D = Fe '~ E 5d

0 0 D

0 F 0
E= F —3E 0

0 0 D

(8)

D=
0 F 0
F E 0
0 0 D

0 F 0
F —3E 0
0 0 D

defined at a scale p=MG. The parameters A-F are, in

general, complex. We now use the freedom of field
redefinition to eliminate some of the phases as follows:
The U and D Yukawa matrices have nine nonvanishing
entries. We have nine fields at our disposal —three dou-
blets and six singlets; thus eight relative phases that can
be used to get rid of all but one of the complex phases.
For convenience we use this phase freedom to make A, B,
C, D, and E real and keep F complex and the mass ma-
trices Hermitian. Thus we have seven real parameters
A, B,C,D, E, the magnitude of F (call it F from now on),
and its phase P. A, B, and C describe the hierarchy of
up-quark masses, D, E, and F that of down-quark masses
or electrons. The lepton mass matrix E can easily be
made real by using the phase freedom of the six fields—
three doublets and three charged singlets. In this paper
we will not consider neutrino masses. After these field

redefinitions, we obtain the Yukawa matrices

and approximate Inixing

c2 s2 0

matrices

1 0 0
V = —s2 c2 0 0 C3 $3 )

VL
d

where

0 0 1

ci si 0

si ci 0

0 0 1

0 —s3

0 c4

0 —s4

c3

0 1 0 0

s4 0 e'~ 0

c, .o 0 e'&

(10)

It is these matrices which are diagonalized by the unitary
matrices V» Vd, Vd, V, defined by U "g= V„UV»
Ddiag V D VR f Edia V EVt, and Udiag, etc., are rea
diagonal matrices. The CKM mixing matrix is then
givenby VcKM= V„Vd .Lt

The matrix elements satisfy the inequalities
A &)8-5„&)C and D »E-5d »F. Therefore we

can obtain approximate eigenvalues

B C
t —A, c ——5„+, u—

(9)
F2b-D, s-E, d-
s
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' 1/2
c —IS. I

2

1/2
5d

D
g

The CKM matrix elements are then determined in terms of the above angles. We find

C1C2
—S1S2e S1+C1S2e

—ip $2($3 $4)

$1($3 S4) c)($3 $4}

VcKM = c )$3 s )e $ )$2+ (c )c2c3c4+$3$4 )e
—ip —ip (s3 —s4)

(c3C4+s3s4 }e'~

where s, -A, , s2-s3-s4-A, , and the expression is valid
to order A, . The parameter A, can now be identified with
Wolfenstein's parameter )L, =IV,dl. Recall the Wolfen-
stein [13]form for the CKM matrix:

r

A. A (p i'}—
~CKM

A, A (1 p
—iri)——

A, A

We then obtain the identities

A, =(s, +sz +2$,$ c&sop)' =IV,dl=lV„, I,
A, A =s3 —s4=

I V,b I,
' 1/2

Q~(p'+ri')'"=» =
I v.b/v. b I

=
(13)

ri =$,$2sing/A.

A. Input data

We have seven fundamental parameters in our fermion
Yukawa coupling Ansatz ( A, B, C, D, E, F, and P) and
one ratio of Higgs VEV's given by tanp. We shall use the
eight best measured low-energy parameters (e,p, r, c,
b

I V,b I,p/d, I V,d I ) as input to fix the seven Yukawa cou-
plings and tanp. We then quote predictions for d, s, t,

I V„b /V, b I, sinp, and the CP-violating angle.
Let us now discuss the acceptable ranges for the exper-

imentally measured parameters. The charged-lepton
masses e, IM, and ~ are accurately known to be 0.511,
105.658, and 1784.1+3 6 MeV, respectively. Gasser and
Leutwyler [14] give values for the running masses of the
three light quarks u, d, and s, determined via current
algebra and QCD sum rules: (at 1 GeV) 5.1+l. 5,
8.9+2.6, and 175+55 MeV, respectively. Finally, for the
heavy quarks, they find m, (m, )=1.27+0.05 GeV and
mb(mb ) =4.25+0. 1 GeV. Note that the ratios s/d and
u ld are constrained by chiral-Lagrangian analyses [15].
Kaplan and Manohar [15] find 0.2 ~ u /d ~ 0.7 and
15 ~s/d ~25, where larger values of s/d correspond to
smaller values of u/d. Leutwyler [15], using additional
constraints, finds tighter bounds.

Limits on the weak mixing angles are found by the
Particle Data Group [16]. The 90% confidence limits are
I v„, l

=I v„I=0.221+0.003, I v„l =o.o44+0.014, and
Iv„bl=o. oo4+o.oo3. At la we have lv,bi=0 044

I

+0.009 and
I v.b/v, b I

=0.09+o 04
Quark and lepton masses must be renormalized to a

common scale p=m, in order to be compared directly
with the results of the next section. For this paper we in-
clude the two-loop effects of QCD and the one-loop
effects of QED in the running.

B. Scaling Yukawa matrices from grand to weak scales

At the grand unification scale MG, we assume that
there is some symmetry structure which ensures the Yu-
kawa coupling matrices have the form given in Eq. (6}.
Beneath MG we take this symmetry to be broken, so that
the form is not preserved as the matrices are
renormalization-group scaled to the weak scale. For
many parameters this scaling is unimportant. This can
be because the parameter was in any case arbitrary at the
grand unified scale (e.g., Uz&

= U&2=C) or because, even
though it was determined at the unification scale, it gets
generated at a level too small to affect comparison with
data (e.g. , U&3 and U3&). For the purposes of our mass
and mixing-angle predictions, there are six important RG
equations.

(a) The top Yukawa coupling I,,
—= U33 A evolves to-

ward its infrared fixed point.
(b) The charm Yukawa coupling 5„=U23 becomes

nonzero and gives an important contribution to m, .
(c) The coupling 5d =D23 becomes nonzero and gives a

contribution to V,b.
(d) The running of B = U23 = U32 is important since it

appears as a source term in generating 5d and 5„.
(e) The running of A, b =D33 is important since it also

appears as a source term in generating 5d.
(f) The running of R =A,b/A, ,=D33/E33 leads to the

prediction for mb /m, . Also, the running of R '

=A,, /A, p=D33/E22 leads to the prediction for m, . How-
ever, the solution for R ' is obtained trivially from that for
R.

To perform these six RG scalings, we need a model
which successfully unifies: That is, the three gauge cou-
plings g,. (i = 1,2, 3) all merge at some scale MG which is
larger than 10' GeV. The best-motivated such model is
the minimal supersymmetric standard model (MSSM). In
this paper we take all superpartners and the second Higgs
doublet to be degenerate at Mz =160 GeV. We assume
no threshold effects at intermediate or superheavy scales,
and we take the lightest Higgs boson degenerate with the
Z. A less idealistic superpartner spectrum will not sub-
stantially alter our predictions. We do not expect large
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dAt At
(
—c,g, +6k, , ),16~2

(14a}

d5„6„
16m

—c g +3A, +38 (14b)

d5d

dt 16m.
—c,'g,2+BA,t

d
(14c)

dB
dt

dA, b

dt

dR
dt

2
(
—c;g; +6k, , ),

16m.

(
—c g;+A, , ),

16m.

~ ( —d;g;+A. , ),
16~

(14d)

(14e)

(14f}

where c, =( —" 3 —"), c,.'=( —' 3 ") and d. =( —4 0 &~)

The exact solutions to these equations are

changes in our predictions to occur unless many of the
superpartners are made much heavier than a TeV.

We solve the one-loop RG equations dg, /dt
=b,g; /16m, .where b; =(—", , 1, —3) above Ms and

t =lnp. Taking inputs of a ' = 127.8 and
sin 0+.=0.233, we find that a, and a2 merge at

M6 = 1.0 X 10' GeV, where they are equal to
a6=1/25. 1. These numbers correspond to m, =160
GeV, which will turn out to be at the lower end of our
predicted range. Evolving a3 down to weak scales, we

predict a3(Mz ) =0.109.
In the MSSM the six one-loop RG equations for Yu-

kawa couplings that we need are

M~
l(p)= j g(p')d 1np' . (16b)

Using values of a;(Mz ) quoted earlier, we find g(p = 160
GeV) =10.1 and I(p =160 GeV) =112. In the following
analysis, the parameters q, I and the ratio of gauge cou-
plings should be self-consistently evaluated at p=m, .
We shall, however, neglect the small changes in these pa-
rameters resulting from varying m, away from 160 GeV.

III. MASS AND MIXING-ANGLE PREDICTIONS

We now discuss the predictions which follow from
these solutions. We begin by considering the heavy two
generations, since these predictions are sensitive to the
RG scaling and can be studied independent of the first
generation. There are five free parameters in the mass
matrices of the second and third generations: the four in-
dependent parameters in the Yukawa matrices at M& and
the ratio of Higgs-doublet VEV's U2/U, =tang. These
five parameters can be fixed by specifying m„, m„m„
mb, and V,b, leaving two predictions for m, and m, . It
turns out, however, that the additional constraint of per-
turbativity will also imply that the b mass is predicted to
be in a narrow range.

The prediction for the strange-quark mass is very
straightforward, but is the least interesting as there is
considerable uncertainty in the value extracted from
data. The prediction follows from the solution for R',
which is the same as that for R given in (15f) except the
(A, , /A, , )'~ factor is absent; there is a suppression of a

factor of 3 coming from R '(Mo ) and the power of q has
changed:

A,
2

1—
I+(3/4m. )k, I

1/2
B2

1/6

3 ~2 I
4n

(isa)

(15b)

' 3/2 a,
a6

= 149 MeV,
2.02

m md = 'g mp'g
1 1/2 2

a&

1/6

(17)

B
A,b

(15c)

(15d)

Ab

1/6
t 5/12

7l
At t

1/6
t 5/12

t~

a2
3/2

1/33

' 1/6

(15e)

—:A.b /A, (15f)

and

where all couplings without subscripts are evaluated at p,
which we later take to be m„and those with a G sub-
script are evaluated at p=M&. Also,

'
c,. /b, .

ag.(~)=rr (16a)
aq.

m,

B2
1/2

A,t

"' A2

1/4

where r), is the RG scaling factor of m, (p) from p=m,
to m, and all couplings on the right-hand side are, in

principle, to be evaluated at p=m„ though with negligi-
ble error we fix p = 160 GeV throughout. Using
a3(Mz) =0.109, we find g, =1.94 (m, =1.27 GeV,
m, = 160 GeV}. The diagonalization also gives

where g, is the factor which results from renormalizing
(m, /m„) from m, to 1 GeV. This is the successful
Georgi-Jarlskog prediction, with the precise number ap-
propriate to unification of the MSSM. Later, we shall
combine this result with the Georgi-Jarlskog prediction
for the ratio m, /mz [see Eq. (31)], thus obtaining the
values for m, and md, separately.

Diagonalization of the up-quark mass matrix in the
heavy two-generation sector gives the ratio of current
quark masses,
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B
Vcb $3 $4

Ab

' 1/6
B 'G 1/12 (19)

be the case in nature, but is a necessary condition for our
ability to make predictions. The top-quark mass is given
by

Combining Eqs. (18) and (19) gives

m, A, t
m

~b A,
q

V ri
(20)

m, = —A, ,sinp .U

2
(24)

(21)
aG

The dependence on (A, , /1, , ) can now be eliminated be-
G

tween Eqs. (20) and (21) to give

mbm 1 aG
mt 2m, V,b rib ri, &ri

' 3/2
aG

a1

1/6

The factor in square brackets is the net effect on m, of
the RG scaling of the Yukawa matrices from MG to m, .
It reduces the predicted value of m„but not by so much
as one might have hoped. This is because, although the
generation of 5„considerably reduces m„ this is largely
offset by the generation of 5d, resulting in the small value
of —,

' for the index. Nevertheless, as a result of the RG
running from MG to m„our prediction for m, is
significantly smaller than that of He and Hou [see Eq. (4)]
[6].

This equation is not our final prediction for m, because
it still depends on the free parameter At This can be re-

G

moved by studying the solution for mb From. Eq. (15f),
' 3/2 1/6

a2 a1
mb =ibm,

tG aG

4m
1

4H 1

3I 3I &2
tG

0 12=1.09 1+'"
k2

tG

(25)

so that

190sinP GeV
m, =

(1+0.12/A, )
' (26)

If we take perturbativity to imply that A, t (2, we
G

derive an "upper bound"

m, (187 GeV .

Using solution (15a) in (21) gives

(27)

From Eq. (23) we learn that the top quark is heavy,
and thus for (24) to be true neither A, , nor sinp can be
much less than 1. Hence the solution (15a) for A, , is use-

fully rewritten as

This is the prediction for the top-quark mass in terms
of the inputs mb, m„m „and V,b. Numerically, we find

m& =(4.4 GeV)
1b 1 1

1 41 A, I 1+0.12/A, ,

' 1/12

(28)

mb
m, =(176 GeV)

4. 15 GeV

0.053
'

1.41

V„

m

1.22 GeV

1.94

Qc
(23)

As expected, the top-quark mass tends to be very
heavy. We have inserted low values for m, and mb and a
high value for V,b in (23) so that this equation can be
viewed as a lower bound on m, . Note that the lower
bound is particularly sensitive to V,b. Changing V,b to
0.058 decreases m, from 176 to 147 GeV. A decrease in
the experimental error bar for V,b will make our lower
bound for m, much more restrictive. Using central
values for the bottom and charm masses, we have
m, =188 GeV, which we shall soon see is at its perturba-
tive "upper bound. "

The two predictions of the second and third genera-
tions have been given in Eqs. (17) and (22), where

m, —md and mt are given in terms of the inputs m„, m„
mb, m„and V,b. However, we can obtain considerably
more information by requiring that the top-quark Yu-
kawa coupling is everywhere perturbative. This need not

The perturbativity constraint A, t &2 is equivalent to
G

mb & 3.9 GeV. Indeed, we could have replaced the per-
turbativity constraint by the requirement that the b
quark be heavier than 3.9 GeV.

One can use the "upper bound" on m, of (27) in (23) to
derive an "upper bound" on the b-quark mass:

(4.4 G V)
1.22 GeV

m,

2
V.b nb

0.053 1.41 1.94

(29)

Hence we conclude this discussion of the heavy two-
generation predictions by summarizing our t and b re-
sults: The b-quark mass is larger than 3.9 GeV and has
an "upper bound" given by (29); the t-quark mass has an
"upper bound" of 187 GeV coming from perturbativity
and can range down to a lower value given in (23), which
is sensitive to m, /V, b. The range of A, t is 1 —2 with the

G

lower bound being extremely sensitive to m, /V, b

Finally, we obtain our prediction for sinp, which ap-
pears in much phenomenology of the MSSM. We find
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mb
sinP= 0.89

4 GeV
m,

1.22 GeV
0.053

V,b

0. 12

tG

5
4.25 GeV

mb

m,

1.22 GeV
0.053

V,b

4.25 GeV

mb
(30)

where the first equation results from combining Eqs.
(23)—(25) and the second makes use of Eq. (28) to fix the
value of k, in terms of mb. Using values for

G

m&=4. 25 GeV and m, =1.22 GeV, we find sinP-1.
Note that demanding sin p(1.0 [Eq. (30)] gives us an im-
portant lower bound on V,b)0.052, with m, =1.22,
mb =4. 15.

Next, we consider the predictions which involve the
lightest generation. The theory has two additional real
parameters to be determined: C and F. We will fix these
by inputting m„/md and m, /m„. Three further predic-
tions will result: m, /md, 01, and 82.

Diagonalizing the e/p and d/s subspaces of the mass
matrices gives the Georgi-Jarlskog relation

d /s e/p
(1—d/s) (1—e/p)

(31)

which yields a very accurate prediction for m, /md
=25.15. At p= 1 GeV, Eq. (17) predicts m, —md =149
MeV. Combining these two results, we find

md=6. 2 MeV,

m, =156 MeV .
(32)

s1=0.196 .

Diagonalization in the u /c sector gives

(33)

$2—
m„(p)
m, (p)

(34)

allowing a prediction for s2 which involves the uncertain-
ty in the value of the input parameter m„ /md.

' 1/2
1.25 GeV

(35)
0.6 m,

s2 ——0.05

This m, /md ratio is larger than is obtained using
leading-order chiral perturbation theory [14]. However,
Kaplan and Manohar [15] have shown that it is accept-
able when second-order chiral effects are included for a
wide range of u/d. A recent calculation by Leutwyler
[15], which makes additional assumptions to obtain the
coeKcients of these second-order terms, prefers m, /md
to be less than 22.

The rotation angle in the d/s sector is obtained very
accurately by tan8, =+md /m, or

From the Kobayashi-Maskawa matrix of Eq. (11), we
see that s2 ——V„s/V, & ~, so that (35) should be compared
with the data

~ V„t, /V, & ~

=0.09+0.04 [16]. We have
completed the three additional predictions which involve
the first generation: m, /md [and therefore md as given
in Eq. (32)], 8, of Eq. (33), and 82 of Eq. (35).

There is still one remaining parameter of the original
seven unknown Yukawa couplings which still has to be
determined: the phase P. It is fixed by inputting the Ca-
bibbo angle:

sin8& = V„,= s, +c,sze '~~ =0.221+0.003 . (36)

Keeping track of the experimental uncertainty on
sin8C and the dependence of sz on m„/md gives

1/2

cosg=(0. 53+0 06)
0.6

m„/md

m,
1.25 GeV

—0. 13
m„/md

0.6
1.25 GeV

m,

1/2

(37)

or

sing=0 91+

(38)

The CP-violating phase in this model is therefore deter-
mined to be large. Note that there is no quadrant ambi-
guity for the angles of the KM matrix. Without losing
any generality we have chosen the signs of A, . . . , F so
that 0&, 02, and 83 are all in the first quadrant. We then
find that P is determined to also lie in the first quadrant.

We finish this section by presenting our predictions for
the parameters that appear in the Wolfenstein form of
the KM matrix. For us, A, and A are both input parame-
ters. Since m, &187 GeV implies large values for V,b,
this implies that A will also be large:

V 2

Q9
cb 0.22 1

0.053 V d
(39)

The quantity p +g is related to s2, and so

where the upper (lower) error is correlated with the upper
(lower) error in sin8C.

Hence taking m„/md =0.6+0.2 gives

cosg =0.41+o zz

(~2+ +2)1/2 0
$2 Q 221 m„/md

0.6
1.25 GeV

1/2

(40)

and i) is related to sing:
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0.221q=0.2

2
m„/md

0.6
1.25 GeV

m,

1/2

sing=(0. 12—0.23) . (41}

IV. DISCUSSION AND CONCLUSIONS

We have presented a framework for describing fermion
masses in supersymmetric grand unified theories. We ob-
tain all 13 low-energy fermion masses and mixing angles
in terms of 7 real parameters in the Yukawa matrices at
MG and the ratio of Higgs VEV's tanp. We fit these 8 ar-
bitrary parameters using, as much as possible, the best-
measured low-energy parameters (e,p, r, c, b~ l V,b I

tt /d
~ V,d ~

). We then make 6 predictions: d and s [Eq. (32)], t
[Eq. (23)],

~ V„&/V,b~ [Eq. (35)], sinP [Eq. (30}], and the
CP-violating angle [Eq. (38) or (41)]. It is important to
realize that the relations for md, m„and mb in terms of
m„m„, and m, are those of Georgi and Jarlskog. The
important new predictions that we make are for
m„~ V„b/V, b ~, sinp, and the CP-violating angle. Harvey,
Ramond, and Reiss [19], who studied the Georgi-
Jarlskog Ansatz in an SO(10) model, were the first to real-
ize that it led to a prediction for m, in terms of V,b and
that the Ansatz led to a KM matrix which violated CP.
However, they do not RG scale the Yukawa couplings to
obtain predictions for m„~ V„b/V, s ~, or the CP-violating
angle.

The down- and strange-quark masses are within the er-
rors quoted by Gasser and Leutwyler [14]. The ratio
m, /md=25. 15 is fixed by the Georgi-Jarlskog relation
[Eq. (31)]. This result is consistent with the chiral-
Lagrangian analysis of Kaplan and Manohar [15], but
somewhat larger than is allowed by a more recent
analysis of Leutwyler [15]using additional constraints.

The ratio
~ V„b/V, b ~

-0.05 is at the low end of the ac-
ceptable range 0.09+0.04 [16]. More recent analyses,
however, seem to favor the upper end [17]. A better
determination of this ratio will provide a solid test of our
framework.

The top-quark mass is predicted to be large, between
176 and 190 GeV. The lower bound, however, depends
sensitively on the experimental value of

~ V,b~ =0.044+0.009 [16]. We have quoted our results
with V,b =0.053, at the upper lcm' bound. In fact, we can-

not tolerate a value which is much lower than this, as is
discussed following Eq. (30}.

Finally, in a forthcoming paper [18]we shall present an
analysis of the consequences of our model for IC and 8
physics. We just remark here that our results are con-
sistent with all measured quantities. In addition, we
make very specific predictions for future measurements of
CP-violating asymmetries in neutral 8-meson decays.

All our results are subject to a number of theoretical
uncertainties. We have stated the dependence on experi-
mentally observed inputs explicitly. We have, however,
additional uncertainties which we have not evaluated. In
particular, there will always be threshold effects coming
at both the weak and GUT scales. At the weak scale we
have the Higgs boson, in addition to a multitude of super-
symmetric partners of ordinary particles. We have as-
sumed a common new particle threshold at 160 GeV.
Note that these low-energy thresholds may someday be
measured experimentally. At the GUT scale, on the oth-
er hand, there are many more particles, with different
masses, which affect the boundary conditions of our RGE
equations at MG. The combined effects could easily
change our results by several percent. We note, however,
that the predictions for the ratios m, /md and

~ V„b/V, s ~

are insensitive to these uncertainties.
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