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Coupling first-order phase transitions to curvature-squared infiation
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A new way to couple first-order phase transitions to inflation is proposed. The mechanism, dubbed

getaway inflation, bypasses the problem of the "graceful exit" by letting the inflationary phase of the
background have a classical end. At the same time, a stage of bubble production via semiclassical tun-

neling occurs, allowing speculations on the role of bubbles on the early structure formation. A realiza-

tion of the proposed process is found in a nonminimally coupled higher-order gravity theory which by it-

self deserves further investigation.

PACS number(s): 98.80.Bp, 98.80.Dr

I. INTRODUCTION

The decennial history of inflation appears as a sequence
of rising, improving, and quitting of a small but fruitful
set of ideas. The very beginning of inflation rested on the
key words "phase transition, " and all the play was based
on the energetics of a supercooling universe and subse-
quent latent heat release [l] (old inflation). Later, it ap-
peared that in fact a first-order phase transition caused
more trouble than was able to be solved, and new mecha-
nisms were proposed where essentially classical evolution
took place: new inflation [2] and chaotic inflation [3].
Bubbles and related issues were suddenly discarded (or at
least pushed outside of the present horizon), even because
the observed Universe did not seem to keep any trace of
such bulky objects. Recently, however, the binomial
inflation and phase transition have gained new attention
(for an "extended" review, see Ref. [4]). The extended
inflation [5] (EI) proposed by La and Steinhardt suggests
overcoming the "graceful exit" problem by slowing the
inflationary expansion of that part of the Universe which
remains trapped in the false-vacuum phase, and that we
simply refer to as "background. " While in the old mod-
els the background was supposed to undergo de Sitter
inflation, i.e., an exponential growth of its dimensions, in
EI it is found that nonminimal coupling (NMC) of matter
to gravity allows a power-law inflationary expansion of
the cosmic scale factor, a-t~, p ) 1. In this case, the
bubbles of a true vacuum, which semiclassically nucleate
out of the false vacuum and expand with a Friedmann-
like behavior rolling down toward the true minimum of
the matter potential, are able to fill the greatest part of
the disposable space. It is then possible to derive the
fraction of space occupied by the bubbles at any time,
and find the conditions to get values around unity.
Several models have already been put forward which
make use of this mechanism [6]. In Ref. [7] density and
gravitational quantum fluctuations in EI are analyzed,
while Ref. [8] deals with the impact of EI on baryo-
genesis. It is worth noting that an important feature is
common to both old inflationary schemes and EI: in
both cases the background is forever inflating, even if
asymptotically almost all the space gets filled by nucleat-

ed bubbles. Very recently, another model has been pro-
posed in Ref. [9] which exploits two coupled fields in pure
Einstein gravity to modulate the bubble nucleation rate
and to complete the phase transition. This model bears
some resemblance to the one to be exposed here. Howev-
er, contrary to our scenario, there again the background
does not have a classical way out of its false-vacuum
state: rather, the inflation is completed solely by semi-
classical bubble production.

Here we propose a different way to gracefully exit from
eternal inflation which at the same time keeps alive the
idea of first-order phase transitions. Suppose we have
two coupled fields P and P, the former being the usual
inflaton, and that we are on the false-vacuum minimum
at P=Pz. During this phase, if the dynamics of the
Universe along the P direction is slow enough, the
description of bubbles nucleating from the false vacuum
toward the true one at Pr is still valid. This phase is very
similar to old inflation. The difference arises when one
considers the motion along the f direction: after some
amount of time, the background, i.e., that part of the
Universe which has not yet performed the phase transi-
tion, reaches a point where the potential barrier between

Pz and Pz no longer exists. Then, the background may
roll down classically, back along the P direction, toward
the true-vacuum state. Thus, the background shares a
common fate with the bubbles, becoming dynamically in-
distinguishable from them. In a word, we can say that
the bubbles evolve semiclassically, while the background
escapes purely classically from the false vacuum state. A
pictorial representation of a P, g potential which does the
job is shown in Fig. 1. The false vacuum clearly disap-
pears at some value of g, where a classical gateway con-
nects it to the true vacuum. Then the "graceful exit"
problem cannot even be posed, since there is no longer a
forever inflating background. However, the presence of
the bubble walls nucleated in the first phase can still be
exploited as initial seeds for large-scale structure forma-
tion [6]. We call this scenario "getaway inflation. "

The question now is the following: is there a simple
model which can account for the features described
above' The essential ingredient is a special coupling be-
tween the two fields able to shrink the barrier for P. It is
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pend on the coupling constant, and it also has been pro-
posed recently to account for the apparent periodicity in
deep redshift surveys [21], and to reconcile cosmic-string
production with inflation [22] (notice that the last paper
in Ref. [6] makes extended inflation in a R plus JBD
theory). Here we take a logical step forward and let the
quadratic term in the Ricci scalar in the gravity Lagrang-
ian be nonminimally coupled to rnatter. Consider the La-
grangian (in Planck units, c =A'=G = 1)

RL (R,P) = —R+e'~ +16mL (P),
6M

(P) =—P „(t'"—V(P),1

FIG. 1. Potential for P and g. A classical path links the (un-

stable) false vacuum (on the left) with the true vacuum (on the
right). This is the same potential (21): one axis is P, the other
one is 1(t—:co= —,'in~1 —S/3~.

clear that a simple decoupled model V(P, g)
= V&(P)+ V2(g) does not work. Instead of looking for
some special coupling among the fields involved, we pro-
pose in the next section a model which naturally holds
the required features and which makes a step forward in

the investigation of unconventional gravity theories, such
as quadratic gravity Lagrangians and nonminimal cou-
plings. The proposed model suffers from the same fine-

tuning problem [10] of all viable inflationary theories put
forward so far; a numerical estimate of the potential fiat-
ness required is given in Sec. II.

II. A HIGHER-ORDER NONMINIMAL THEORY

Higher-order gravity Lagrangians have been intensive-

ly studied in recent years (see, e.g., Ref. [11]). They are
required as a low-energy limit of many theories attempt-

ing to quantize gravity and, as an interesting cosmologi-
cal fallout, it has been recognized that higher-order
corrections to the Hilbert Lagrangian behave like a kind
of scalar field, thus producing inflation [12], removing the
initial singularity [13],creating dark matter [14],modify-

ing Newton's law [15],and so on. Another simple exam-

ple of the generalization of Einstein s gravity theory is
the nonminirnal coupling (NMC) of matter to gravity
(see, e.g., Ref. [16]), in the various forms of Jordan-
Brans-Dicke (JBD) theory [17], of induced gravity [18],
of Kaluza-Klein four-dimensionally reduced theory [19]
and so on. The NMC generates new classes of inflation

[20] (power-law, exactly de Sitter, chaotic) which only de-

L(R,Q)= —R+a$ R +PP~R pR 1

+ye p 5R P" Ry (2)

plus the usual JBD term. This theory can be recast by
means of a conformal transformation on the metric in a
pure Einsteinian form plus "extra fields, " but only if

'As usual it is tacitly assumed that there are no derivative cou-

plings; furthermore, the functional form of the couplings could

be generalized.

where ~ and M are positive constants with physical di-
mensions mass ' and mass, respectively. The form im-
posed to the coupling is a convenient one, but it is
equivalent to a P R term, which closely reminds the usu-
al NMC. As we will see later the relevant features of the
model do not depend on this specific choice. We recall
that the most general minimally coupled Lagrangian
quadratic in the curvature and with fourth-order (in the
metric) field equations is a linear combination of four
terms: (a) R, (b) R ~R ~, (c) R ~&sR ~r, (d)
e & sR ~""Rr „, (note that other terms such as ROR
which are quadratic in the curvature produce sixth-order
equations in the metric, see Ref. [23]). Fortunately,
things can be simplified. The term (d) (and all similar
combinations of the totally antisymmetric tensor e and of
the Riemann tensor) is a total divergence in four dimen-
sions [24] and does not contribute to the field equations;
the terms (a), (b), and (c) can be combined in four dimen-
sions in the Gauss-Bonnet term, LGB=R —4R pR
+R py5R Py, which is a total divergence; and, finally, in

conformally flat metrics, where the Weyl conformal ten-
sor C py5 vanishes, another algebraic relation holds:
R —6R R P+3R R Py =3C C Py =0. Thusap apy5 apy5 7

in a conformally flat four-dimensional space-time the R
term is the only independent quadratic term. The R field
is sometimes called a scalaron [12] because, as will be

shown later, it behaves as a scalar field with mass M.
However, it is clear that the Gauss-Bonnet term is no
longer a total divergence when nonminimally coupled to
an external field P, and therefore it cannot be used to sim-

plify the general Lagrangian. It then turns out that the
most general quadratic Lagrangian with NMC is of the
form'
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R
A4+D(R)= I& gd + X R (3)

where R =R„" is the (4+D)-dimensional curvature sca-
I

P=y=0 can this "extra matter" be put in the form of
scalar fields [25]; for PRO (but y=O), for example, one
needs to introduce a tensor field of spin 2. Here we
confine ourselves to the simplest possibility P=y=O
which, nevertheless, is shown to contain interesting
features. Inclusion of a JBD term will not change the
main conclusions.

Let us stress that the scalar-scalaron coupling in Eq. (1)
naturally arises in a multidimensional quadratic gravity,
where the dilation field gets coupled with R (see, e.g.,
Ref. [25]). Suppose we start with the (4+D)-dimensional
action

lar and g =det(g„ii). Here upper case letters run in the
range (0, 1, . . . , 3+D), lower case latin letters in the
range (4, 5, . . . , 3+D), and greek letters in (0, . . . , 3).
We assume a M4 XSD manifold with metric

gzz =diag(g„„,h; ), where h," is the D-dimensional
metric of the compact homogeneous and isotropic space
SD (internal space) with scale factor e~. The curvature
scalar can be split into two parts: R =R4+RD, where,
in the homogeneous case,

R4= —6(H+2H ),
(4)

RD= D[2$+—(D —1)p +6Hp+(D —1)e 2D&],

and H =a/a is the Hubble parameter. The last term in

RD takes into account the spatial curvature of the inter-
nal space. We may then perform the integration over the
internal space dimensions (dimensional reduction):

2

34= —
g4 e ~R —e ~ +De ~ D+1 "—D —1e

+ [—(D —1)RP P'" 2R R'"—+(D —1)Re ~]
1 —2

3M ~p «p

RD

6M
(5)

where among various kinds of dilaton-scalaron couplings
a sector analogous to (1) is put in evidence. However, we
will not follow here the multidimensional approach be-
cause we are going to interpret P as an infiaton field with
its own quartic bistable potential.

As we said above, the constant M in Eq. (1) is the
Starobinsky scalaron mass [12] and when r =0 it acts as a
mass for the scalar field R. The effective scalaron mass in
our model will be M,~=Me '~ . Notice that it is not
required to have P~ —oo to recover usual Einstein gravi-
ty: it is sufficient in fact to let R ~0, as is commonly the
case in cosmological models.

The gravitational field equations derived from the La-
grangian (1) are

3G„„—S(R„——,'Rg„)+(S.„—g„„S) =24rtT„„,

(6)

where S =Re'~/M and G„„—:R„—g„„R/2. The trace
of the Einstein equations is a second-order equation
(fourth order in the metric) where the S field plays as a
Klein-Gordon scalar field. We have

CIS+M e '~S+8mT(P)=0, .

where T= —P P' +4V(P) is the trace of the energy-

momentum tensor for P. The field equation for P is

M
Clg+ V'(P) — S e '~=0,

96m.
(8)

where V'—=BV/BP. The last two equations are valid in

any given metric and constitute our dynamical system.
They are sufficient to completely determine the problem
if we work in a homogeneous and isotropic flat metric
g„„=diag(1,—a, —a, —a ) with the scale factor a (t).
The (0,0) component of Einstein equations is a Hamil-
tonian constraint useful as a check during numerical in-
tegration. In the above metric it reads

HS =3H —8mp(P) —S +H2 M e '~S
2

12
(9)

where p(P)—:Toe= —,'P + V(P). It is easy to generalize
the coupling to a generic term f (P)R /6M in the La-
grangian (1). Then the scalaron field is to be defined as
S=f($)R/M . While Eq. (6) remains untouched, the
last term on the right-hand side of Eq. (8) becomes

MS (df/dP)/(96m—f ).
The typical potential for the inflaton must show two

minima: a local one (false vacuum) at P =P~ and a global
one (true vacuum) at P=Pz. . Putting, for simplicity,
/~=0 we may write

2V(P)= VF 1+ (P +2bgrg+cPr) (10)

The word "inflaton" is somewhat ambiguous in the context of
two-field inflations where both fields cooperate at the same time;
we leave here the denomination "inflaton" to the field which
performs the first-order phase transiton, even if it is along the
second field that the slow-rolling occurs. Eventually, we should
speak of a transiton and an inflaton.

where VF=V(QF=O) and A, is a positive dimensionless
constant. The further condition that V(gr)= V'(Pz. )=0
implies b =1/A, —1 and c = —3/A, +1, with A, )3 for
mathematical consistency. The height of the barrier (lo-
cated at /~ =cga /2) between Pz and PF grows with A, .
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U(g, co) =e M e '~(1 —e ") + V(P)
327T

(21)

It is not difficult to check that the equilibrium points
BU/BQ=BU/Bco=0 are the same as those previously
found. However, the expression (21) reveals us a new
equilibrium point at infinity: for P, ro~ Oc, in fact,
U(g, co)~0. This "ground state" at infinity also arises in
gravity theories containing curvature terms of order
higher than two, in simple nonminimally coupled La-
grangians and in Kaluza-Klein theories. This new
minimum is separated from Pi by the saddle (()2', clearly it
is not a Friedmannian limit and we will check numerical-
ly that our trajectories are not attracted by it. It would
be also possible to remove completely this unwanted
minimum of U(g, co) by generalizing the effective scala-
ron mass [28] M,s —=Me

Let us describe now in some detail the evolutionary dy-
namics of the model. The behavior is radically different
depending on whether or not the two paired points Pi, P4
exist. When they do exist, which happens when (15) is
not satisfied, P3 is a maximum and P4 a minimum with
respect to the P direction. This implies that the local
minimum P4 is separated out from the true vacuum by a
barrier at P3 (see Fig. 3), and that the model is completely
equivalent to an old inflationary theory, where the bub-
bles of true vacuum never catch up the de Sitter back-
ground (notice that a pure R model does not allow a
inechanisin similar to extended inflation). But if P3,P4 no
longer exist, then the false vacuum P =PF is not an equi-
librium point for the whole potential, although it is a
ininimum for V(P). Figure 4 displays P-constant sections

V(u, g)

FIG. 3. Potential (21) with (meta)stable false vacuum. The
model does not implement getaway inflation. The parameters
do not verify Eq. (15}.

a=2.5

FIG. 4. Sections for P =const of U(P, co} in (21) for different
values of co, growing from top to bottom ( —S also grows). At
the last section the barrier shrinks away and the fields may turn
around and reach the true vacuum.

of U(g, ro) for growing values of ro: at a certain value ro,
the barrier disappears; these are indeed sections of the
same potential plotted in Fig. 1. Here, after an initial
period of quasi-de Sitter inflation, the Universe rolls out
purely classically from the false vacuum, turns around
the barrier and finally reaches the true vacuum
P=((}T,R =0, after the usual sequence of Friedmannian
oscillations. A suitable coupling with a radiationlike field
may then reheat the Universe [29], generating the huge
amount of entropy observed today. During the first
stage, however, bubbles of true vacuum nucleate on the
other side of the barrier via semiclassical tunneling, lead-
ing to the formation of walls of unthermalized energy,
possible seeds for galaxy formation. The completion of
the inflationary phase is thus achieved both via the classi-
cal getaway and via the bubble filling of the space; con-
trary to other models, even if the true-vacuum bubbles
are not sufficient to fill the Universe the end of the false-
vacuum phase is guaranteed by the slow-rolling path
down to the global minimum. The bubble nuc1eation rate
is clearly time dependent, as in the double field model of
Ref. [9] and in some extended inflationary models. No-
tice that the existence of a point where the barrier disap-
pears is not a unique feature of the coupling e ~: the
same property holds for any f(P) coupling such that
df/dg&0, like, e.g., f(((})=gP",n &0.

Examples of numerical integrations in two relevant
cases are displayed in Fig. 5. During the first and last
phases the trajectories are well approximated by the
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Then we may put VF=PT=1 and 6 =10 . The two
conditions above read

M =33c10
A. = 100

M &50~GA, ' M )
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M =3x10
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FIG. 5. Evolution of the model on the ((II,S) plane for two
values of A, . The trajectories start at the origin, follow the false-
vacuum valley, and reach the turnaround point. After a series
of P oscillations (damped through a phenomenological radiative
coupling), the model rolls down to the true vacuum state at
(P=gr, S=0), with a final epoch of S oscillations. In both
cases the condition (15) is verified.

equations

P~ (S)=aS, before turnaround,

P„(S)=PT+ae S after turnaround,

(22)

(23)

where a =rM PT/(192m V~A. ). These two parametric
trajectories track the false-vacuum and true-vacuum
"valleys" clearly visible in Fig. 1. The turnaround is lo-
cated at

T
4r)a(1 —e

(24)

The nuinber of e-foldings is given by 3H /M (where H
is the Hubble function during inflation) in the uncoupled
quadratic model; in our case this becomes (after the turn-
around) 3H /M, tt=S, /4. Too low a value for Mdt
would imply a very long inflationary phase, even after the
bubble nucleation, while the Universe is rolling back to-
ward the true vacuum. This would dilute the bubbles to
an unobservable level, making the whole model a useless
replica of a slow rolling inflation. We must then check
that the following constraints are compatible: the num-
ber of e-foldings after S, must not exceed, say, 60, and the
inequality (15) must hold. It is convenient to express
quantities in units of the relevant mass scale, e.g., the

The two conditions are satisfied for a wide set of effective

masses: M,&—=Me lies in the range from 10 GeV11

down to the lowest mass not in conflict with the current
tests of gravity (the scalaron mass introduces in fact a
Yukawa-type additive term exp( M—,ttr ) /r in the
Newton law [15],with M, tt constrained to be larger than,
say, 1 GeV). Note that our value of M,s should be in any
case much smaller than the preferred values in the typical
fourth-order models (around 10' GeV), where there is
the need for having enough scalaron fluctuations to in-
duce galaxy formation.

In a new inflation approach the initial values for the
fields S,P are to be assumed near the location of the
high-temperature symmetric minimum: here this loca-
tion can be put around the value of P3

=P~ when the
getaway condition (15) is marginally not satisfied. Then
p;„=3M /(64mGrVF) and S;„= 3v'A, /(r—pT). For the
range of parameters we are interested in, they are not far
from the origin (in particular, ~S;„~ && ~S, ~

).
After the completion of the inflation the Universe

reheats to a temperature suitable for baryogenesis and
standard cosmology. The reheating should be the result
of three distinct engines: bubble-wall collisions, damping
of S-field oscillations, and damping of P-field oscillations.
The latter phase occurs just after the turnaround (see Fig.
5), i.e., during the inflationary era, and is thus expected to
be much less influent than the other two. The fact that
the reheating can be produced by the bubbles alone al-
lows us in principle to choose the scalaron mass M, re-

sponsible for the amplitude of the scalaron field quantum
fluctuation 5p/p, as low as we like. In chaotic inflation,
on the contrary, the mass m of the driving field is

sandwiched between the conflicting requests of saving mi-

crowave isotropy on one side, of inducing large-scale
structure via zero-point fluctuations and of reheating the
Universe on the other. In this sense, getaway inflation,
like extended inflation, does not suffer of the "lower end"
of the fine-tuning problem. We now try to quantify the

upper bounds on the model parameters.
A low value of M as required by (25) (in particular,

much lower than 10 Mp& = 10' GeV) implies a very flat

potential and a suppressed fluctuation production. The
flatness of a potential V(P) during an inflationary stage
driven by iI'j can be expressed following Ref. [10] by the
dimensionless parameter AFT

= b, V/(b, g), where the
differences 6 are to be taken between the initial and the
final moment of the last sixty e-foldings of inflation {the
"observable" part of inflation). A small A, FT is a basic re-
quirement for any inflation. In reality, the condition not
to overproduce fluctuations leads to even smaller values
of XFz-, in fact so small that the whole matter has come to
earn the name of the "fine-tuning*' problem. The fluctua-
tion amplitude during inflation is usually calculated by
the expression 5p/p=0. 1H /itj (the numerical factor is
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somewhat model and author dependent and has been
chosen in agreement with Ref. [10]) but this expression
can be used only in the Einstein frame where gravity is of
general-relativity type and our inflaton field S behaves as
a scalar field: the conformal transformation (16) is then
required, the scalaron field being subject to the canonical
equation

Oco+ U =0, (26)

where U(co, g) is given in Eq. (21). We can then define

A~z =hU/(bt0) . For the fluctuation amplitude not to
be in conflict with the reported absence of anisotropies in
the cosmic microwave background the requirement is

2 H=0.1 =0. le " (2X 10, (27)
p de/dt

III. BUBBLENUCLEATION RATE

The domain-wall solution of Eq. (8) can be readily
found in the thin-wall limit [19,30]. When the vacua are
nearly degenerate (A,~ co ) we can approximate our po-
tential with Vo = V~A, P (P Pz. ) /Pz-, and a dom—ain-wall
solution for Eq. (8) is

where entries with carets make use of g„„: dt =e dt,
8 =e a, and so on. Numerical calculations show that the
two conditions (25) are stronger than (27): parameters
which fulfill (25) give 5p/p of order 10 —10 and
A,Fz--10 —10 . We did not span, however, the
whole parameter space. In other words, because of the
presence of G in Eq. (15), the getaway condition itself
constrains the model much more strongly than does the
amount of fluctuations on the last scattering surface. In
models where both fields are ordinary matter, 6 will not
show up in the getaway condition (15) and this constraint
should be consequently relaxed. Notice also that the
above expression for 5p/p does not hold near the turn-

around, when m=O: this in fact signals that the other
field P is to be mainly responsible for the fluctuations at
that moment.

Before closing the section, let us comment again on the
condition (15). We identify in our model three interesting
alternatives: (a) when (15) is not satisfied, the Universe
can end the false-vacuum phase only via old-inflationary-
like bubble nucleation toward (('iz', (b) when (15) is mar-
ginally not verified, the model is more similar to a new
inflation: our observable Universe prefers to escape from
the false vacuum phase with a single "thick" bubble nu-
cleated along the S direction, which then evolves as al-
ready described; (c) when (15) is well satisfied the getaway
mechanism is fully implemented and a purely classical
rolling down takes place, along with bubble production
up to the turnaround. Finally, it may be worth remark-
ing that in any case there is the distinct possibility that
the trajectory is able to climb over the saddle Pz and to
roll toward infinity, i.e., toward the second ground state
of U(g, co}: as the background always remains inflating
this case is physically uninteresting.

(28)

where R =Pz.QA. /V~ is the bubble radius and

b =Pz Q2/( V+A, } is the bubble-wall thickness: thin wall
here means in fact R /6 =A, /&2~ ao. (The derivation of
the above solution requires some nontrivial approxima-
tions; for details, see e.g., Ref. [19].) The geometry of the
nucleated bubbles changes as inflation proceeds, since the
true potential U(g, co) depends on the values of both
fields. Actually, the above derivation is valid only for
S-O, when the first term in the large parentheses of Eq.
(21) is negligible, and it has been presented only to get a
feeling of what parameters are involved. Near the end of
inflation, when the residual barrier height is going to van-
ish, a thick-wall limit is more appropriate. Apart from
the geometrical properties of bubbles, we are interested
also in the probability of nucleation for unit time for unit
volume I = A exp( B), wh—ere B is the Euclidean action
evaluated along the "bounce" path of the field, and in the
fraction of space filled by the bubbles at any given time
[31],which is controlled by the expression I /H . In the
thin-wall limit B = 27m. B i /(2e ), with

B,=f dg&2U(P, S), (29)

where the integration is performed between the minima
(with respect to P) Pz(S), ((}„(S)for any slice S and
where E(S) (the thickness parameter) is the energy
difference between Ptt(S} and P„(S). Since e, Pti, P„and
the integrand of 8

&
are functions of the second field S we

may calculate a function I'=I (S). Actually, we are
working here in the conformally rescaled (hatted) frame:
the nucleation rate in the original frame is [32] I =e f',
where e "=(1—S/3) . In Fig. 6 we plot the logarithm
of I (S), resting upon the following approximations:
thin-wall limit (e.g., A, = 100); tunneling along P direction;
no gravitational effects; approximation of the quartic po-
tential V(P) with a set of parabolas centered on the mini-
ma Pti(S), P„(S)and the maximum P~(S), for any value
of S; slow rolling along S. Each of these conditions is
inevitably broken near the turnaround, where the real dy-
namics of nucleation (as long as one can speak of nu-
cleation) are unclear; the dominant effect for producing
inhomogeneity during the latest stages is very likely the
quantum stochastic motion of the fields (see, e.g., Ref.
[33]). However, during the earliest phase, when the
geometry of the barrier does not change dramatically, we
expect that all the approximations are indeed reliable:
the global meaning of Fig. 6 should not be spoiled by a
refinement of the employed technique. The tunneling will
occur along the P direction provided the curvature (the
second derivative) of the potential along P is larger than
along S, which on the other hand is what we need for
having a slow rollover driven by S. As for the gravita-
tional effects, they should enhance the bubble production
[34] and thus are not expected to qualitatively modify the
result of Fig. 6. As it is intuitive, the bubble nucleation
rate grows during the model evolution (~S~ grows before
the turnaround at S, ), leading to exponentially more
small bubbles than big ones. In our model, however, the
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